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1 Introduction

In abstract algebra, a semiring is an algebraic structure similar to a ring, but with-
out the requirement that each element must have an additive inverse. After the
introduction of fuzzy sets by Zadeh [26], a number of generalizations of this funda-
mental concept have come up. Algebraic structures play a vital role in Mathematics
and numerous applications of these structures are seen in many disciplines such as
computersciences, information sciences, theoretical physics, control engineering and
so on. This inspires researchers to study and carry out research in various concepts
of abstract algebra in fuzzy setting. There are natural ways to fuzzify various al-
gebraic structures and it has been done successfully by many mathematicians. For
instance, Rosenfeld [23] is the father of fuzzy abstract algebra and the reader may
consult the papers [12] or [13] about fuzzy semigroups; [11], [10], [15], [24] or [27]
about fuzzy ideals and fuzzy rings; [14] or [17] about fuzzy modules; [16] about fuzyy
vector spaces; [7] about fuzzy coalgebras over a field; [25] about Lie algebras, and
so on. In 1993, Ahsan et al. [1] introduced the notion of fuzzy semirings. In1994,
Dutta and Biswas [8] characterized fuzzy prime ideals of a semiring. Recently, many
results of semiring theory are investigated by many researchers in fuzzy context. The
notion of intuitionistic fuzzy sets introduced by Atanassov [3] (also see [4], [5]) is one
among them. Biswas [6] applied the concept of intuitionistic fuzzy sets to the theory
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of groups and studied intuitionistic fuzzy subgroups of a group. Norms originated
from the studies of probabilistic metric spaces in which triangular inequalities were
extended using the theory of norms. Later, Hohle [9], Alsina et al. [2] introduced the
norms into fuzzy set theory and suggested that norms be used for the intersection of
fuzzy sets. The author by using norms, investigated some properties of fuzzy sub-
modules, fuzzy subrings, fuzzy ideals of subtraction semigroups, intuitionistic fuzzy
subrings and ideals of a ring, fuzzy Lie algebra (See [18, 19, 20, 21, 22]).

In this paper, we introduce the notions of intuitionistic fuzzy subsemirings of
a semiring with respect to norms and establish necessary and sufficient conditions
for them. We also investigate the algebraic nature of such type of them under
intersection, direct some, homomorphism and anti-homomorphism.

2 Preliminary

Definition 2.1. A semiring is a set R equipped with two binary operations ” + ”
and ”.” called addition and multiplication, such that:

(1) (R, +) is a commutative monoid with identity element 0:
(a) (a + b) + c = a + (b + c),
(b) 0 + a = a + 0 = a,
(c) a + b = b + a.
(2) (R, .) is a monoid with identity element 1:
(a) (a.b).c = a.(b.c),
(b) 1.a = a.1 = a.
(3) Multiplication left and right distributes over addition:
(a) a.(b + c) = (a.b) + (a.c),
(b) (a + b).c = (a.c) + (b.c).
(4) Multiplication by 0 annihilates R: 0.a = a.0 = 0.

This last axiom is omitted from the definition of a ring: it follows from the
other ring axioms. Here it does not, and it is necessary to state it in the defini-
tion. The difference between rings and semirings, then, is that addition yields only a
commutative monoid, not necessarily a commutative group. Specifically, elements in
semirings do not necessarily have an inverse for the addition. The symbol . is usually
omitted from the notation; that is, a.b is just written ab. Similarly, an order of op-
erations is accepted, according to which . is applied before +; that is, a+bc is a+(bc).

A commutative semiring is one whose multiplication is commutative. An idem-
potent semiring is one whose addition is idempotent: a + a = a, that is, (R, +, 0) is
a join-semilattice with zero.

Example 2.2. (1) By definition, any ring is also a semiring. A motivating exam-
ple of a semiring is the set of natural numbers N (including zero) under ordinary
addition and multiplication. Likewise, the non-negative rational numbers and the
non-negative real numbers form semirings. All these semirings are commutative.
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(2) The set of all ideals of a given ring form a semiring under addition and mul-
tiplication of ideals.

(3) Any unital quantale is an idempotent semiring.

(4) Any bounded, distributive lattice is a commutative, idempotent semiring
under join and meet.

Definition 2.3. Let R be a semiring. A nonempty subset S of R is a subsemiring
of R if and only if x + y ∈ S and xy ∈ S for all x, y ∈ S.

Definition 2.4. A t-norm T is a function T : [0, 1] × [0, 1] → [0, 1] having the
following four properties: For all x, y, z ∈ [0, 1];

(T1) T (x, 1) = x (neutral element),
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity),
(T3) T (x, y) = T (y, x) (commutativity),
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

It is clear that if x1 ≥ x2 and y1 ≥ y2, then T (x1, y1) ≥ T (x2, y2).

Example 2.5. (1) Standard intersection T -norm Tm(x, y) = min{x, y}.

(2) Bounded sum T -norm Tb(x, y) = max{0, x + y − 1}.

(3) algebraic product T -norm Tp(x, y) = xy.

(4) Drastic T -norm

TD(x, y) =





y if x = 1
x if y = 1
0 otherwise.

(5) Nilpotent minimum T -norm

TnM(x, y) =

{
min{x, y} if x + y > 1

0 otherwise.

(6) Hamacher product T -norm

TH0(x, y) =

{
0 if x = y = 0

xy
x+y−xy

otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the
pointwise largest t-norm: TD(x, y) ≤ T (x, y) ≤ Tmin(x, y) for all x, y ∈ [0, 1].
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Definition 2.6. A t-conorm C is a function C : [0, 1] × [0, 1] → [0, 1] having the
following four properties: For all x, y, z ∈ [0, 1];

(C1) C(x, 0) = x ,
(C2) C(x, y) ≤ C(x, z) if y ≤ z ,
(C3) C(x, y) = C(y, x) ,
(C4) C(x,C(y, z)) = C(C(x, y), z) ,

Example 2.7. (1) Standard union t-conorm Cm(x, y) = max{x, y}.
(2) Bounded sum t-conorm Cb(x, y) = min{1, x + y}.
(3) Algebraic sum t-conorm Cp(x, y) = x + y − xy.
(4) Drastic T -conorm

CD(x, y) =





y if x = 0
x if y = 0
1 otherwise,

dual to the drastic T -norm.
(5) Nilpotent maximum T -conorm , dual to the nilpotent minimum T -norm:

CnM(x, y) =

{
max{x, y} if x + y < 1

1 otherwise.

(6) Einstein sum (compare the velocity-addition formula under special relativity)

CH2(x, y) =
x + y

1 + xy
is a dual to one of the Hamacher t-norms. Note that all t-

conorms are bounded by the maximum and the drastic t-conorm: Cmax(x, y) ≤
C(x, y) ≤ CD(x, y) for any t-conorm C and all x, y ∈ [0, 1].

Recall that t-norm T ( t-conorm C) is idempotent if for all x ∈ [0, 1], T (x, x) =
x(C(x, x) = x).

Definition 2.8. For sets X,Y and Z, f = (f1, f2) : X → Y ×Z is called a complex
mapping if f1 : X → Y and f2 : X → Z are mappings.

Definition 2.9. Let Let ϕ be a function from set X into set Y such that A = (µA, νA)
and B = (µB, νB) be two intuitionistic fuzzy sets in X and Y respectively.
For all x ∈ X, y ∈ Y, we define

ϕ(A)(y) = (ϕ(µA)(y), ϕ(νA)(y)) =

=

{
(sup{µA(x) | x ∈ R,ϕ(x) = y}, inf{νA(x) | x ∈ R,ϕ(x) = y}), if ϕ−1(y) 6= ∅
(0, 1), if ϕ−1(y) = ∅

Also ϕ−1(B)(x) = (ϕ−1(µB)(x), ϕ−1(νB)(x)) = (µB(ϕ(x)), νB(ϕ(x))).

Lemma 2.10. Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].
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Lemma 2.11. Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z))

for all x, y, w, z ∈ [0, 1]

Definition 2.12. Let X be a nonempty set. A complex mapping A = (µA, νA) :
X → [0, 1] × [0, 1] is called an intuitionistic fuzzy set (in short, IFS) in X if
µA + νA ≤ 1 where the mappings µA : X → [0, 1] and νA : X → [0, 1] denote the
degree of membership (namely µA(x)) and the degree of non-membership (namely
νA(x)) for each x ∈ X to A, respectively. In particular 0∼ and 1∼ denote the
intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by
0∼(x) = (0, 1) and 1∼(x) = (1, 0), respectively.

We will denote the set of all IFSs in X as IFS(X).

Definition 2.13. Let X be a nonempty set and let A = (µA, νA) and B = (µB, νB)
be IFSs in X. Then

(1) A ⊂ B iff µA ≤ µB and νA ≥ νB.
(2) A = B iff A ⊂ B and B ⊂ A.

Definition 2.14. If A is intuitionistic fuzzy subset of R, then the sets {< x, µA(x) >
| x ∈ R} and {< x, νA(x) > | x ∈ R}, are called fuzzy subset and anti-fuzzy subset of
R with respect to intuitionistic fuzzy set A. For α, β ∈ [0, 1], we define the following
sets

(1) U1(A,α) = {x ∈ R | µA(x) ≥ α},
(2) U2(A,α) = {x ∈ R | νA(x) ≥ α},
(3) L1(A, β) = {x ∈ R | µA(x) ≤ β},
(4) L2(A, β) = {x ∈ R | νA(x) ≤ β}
(5) Cα,β = {x ∈ R | µA(x) ≥ α, νA(x) ≤ β}.

The sets U1(A,α) and L1(A, β) are respectively called the upper α-level cut and
lower β-level cut of the fuzzy subset of R w.r.t. IFSA and the sets U2(A,α) and
L2(A, β) are respectively called the upper α-level cut and lower β-level cut of the
anti-fuzzy subset of R w.r.t. IFSA.

Definition 2.15. Let R and S be any two semirings and f : R → S be a function:

(1) f is called a homomorphism if f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) for
all x, y ∈ R.

(2) f is called an anti-homomorphism if f(x+y) = f(x)+f(y) and f(xy) = f(y)f(x)
for all x, y ∈ R.
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3 Level Subsets of Intuitionistic Fuzzy Subsemir-

ing af a Semiring with Respect to Norms

Definition 3.1. Let R be a semiring. An A = (µA, νA) is said to be intuitionistic
fuzzy subsemiring with respect to norms(a t-norm T and a t-conorm C) (in short,
IFSN(R)) of R if

(1) µA(x + y) ≥ T (µA(x), µA(y))
(2) µA(xy) ≥ T (µA(x), µA(y))
(3) νA(x + y) ≤ C(νA(x), νA(y))
(4) νA(xy) ≤ C(νA(x), νA(y)),

for all x, y ∈ R.

Example 3.2. Let R = (Z, +, .) be a semiring of integer. For all x ∈ R we define a
fuzzy subset µA and νA of R as

µA(x) =

{
0.75 if x ∈ {0,±2,±4, ...}
0.60 if x ∈ {±1,±3, ...}

νA(x) =

{
0.35 if x ∈ {0,±2,±4, ...}
0.55 if x ∈ {±1,±3, ...}

Let T (x, y) = Tp(x, y) = xy and C(x, y) = Cp(x, y) = x + y − xy for all x, y ∈ R,
then A = (µA, νA) ∈ IFSN(R).

Proposition 3.3. Let A ∈ IFSN(R) and T, C be idempotent. If α, β ∈ [0, 1], then
Cα,β is a subsemiring of R.

Proof. If x, y ∈ Cα,β, then µA(x), µA(y) ≥ α and νA(x), νA(y) ≤ β. Now

(1) µA(x + y) ≥ T (µA(x), µA(y)) ≥ T (α, α) = α.
(2) µA(xy) ≥ T (µA(x), µA(y)) ≥ T (α, α) = α.
(3) νA(x + y) ≤ C(νA(x), νA(y)) ≤ C(β, β) = β.
(4) νA(xy) ≤ C(νA(x), νA(y)) ≤ C(β, β) = β.

Thus x + y, xy ∈ Cα,β and therefore Cα,β is a subsemiring of R.

Proposition 3.4. Let R be a semiring and A ∈ IFS(R). If T, C be idempotent and
Cα,β be a subsemiring of R for all α, β ∈ [0, 1], then A ∈ IFSN(R).

Proof. Let x, y ∈ R and for Cαi,βi
with i = 1, 2 we have µA(x) = α1, µA(y) = α2,

νA(x) = β1 and νA(y) = β2 such that α1, α2, β1, β2 ∈ [0, 1]. Since x, y ∈ Cαi,βi
and

Cαi,βi
is a subsemiring of R so x + y, xy ∈ Cαi,βi

. Now we prove that A ∈ IFSN(R)
in the following conditions.

(a) Let α1 > α2 and β1 < β2 such that x, y ∈ Cα1,β1 . Then

(1) µA(x + y) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).
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(2) µA(xy) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(b) Let α1 < α2 and β1 < β2 such that x, y ∈ Cα2,β1 . Then

(1) µA(x + y) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(2) µA(xy) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β1 = C(β1, β1) ≤ C(β1, β2) = C(νA(x), νA(y)).

(c) Let α1 > α2 and β1 > β2 such that x, y ∈ Cα1,β2 . Then

(1) µA(x + y) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).

(2) µA(xy) ≥ α1 = T (α1, α1) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

(d) Let α1 < α2 and β1 > β2 such that x, y ∈ Cα2,β2 . Then

(1) µA(x + y) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(2) µA(xy) ≥ α2 = T (α2, α2) ≥ T (α1, α2) = T (µA(x), µA(y)).

(3) νA(x + y) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

(4) νA(xy) ≤ β2 = C(β2, β2) ≤ C(β1, β2) = C(νA(x), νA(y)).

Thus from (a) to (d) we get that A ∈ IFSN(R).

Proposition 3.5. Let R be a semiring and A ∈ IFS(R) defined by

µA(x) =

{
1 if x ∈ H
0 if x /∈ H

and

νA(x) =

{
0 if x ∈ H
1 if x /∈ H.
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If H is a subsemiring of R and T, C be idempotent, then A ∈ IFSN(R).

Proof. Let x, y ∈ R and H is a subsemiring of R. Then

(a) If x, y ∈ H, then x + y, xy ∈ H and we have:

(1) µA(x + y) = 1 ≥ 1 = T (1, 1) = T (µA(x), µA(y)).

(2) µA(xy) = 1 ≥ 1 = T (1, 1) = T (µA(x), µA(y)).

(3) νA(x + y) = 0 ≤= 0 = C(0, 0) = C(νA(x), νA(y)).

(4) νA(xy) = 0 ≤ 0 = C(0, 0) = C(νA(x), νA(y)).

(b) If x ∈ H and y /∈ H, then x + y, xy /∈ H and then:

(1) µA(x + y) = 0 ≥ 0 = T (1, 0) = T (µA(x), µA(y)).

(2) µA(xy) = 0 ≥ 0 = T (1, 0) = T (µA(x), µA(y)).

(3) νA(x + y) = 1 ≤ 1 = C(0, 1) = C(νA(x), νA(y)).

(4) νA(xy) = 1 ≤ 1 = C(0, 1) = C(νA(x), νA(y)).

(c) If x, y /∈ H, then x + y, xy /∈ H and so:

(1) µA(x + y) = 0 ≥ 0 = T (0, 0) = T (µA(x), µA(y)).

(2) µA(xy) = 0 ≥ 0 = T (0, 0) = T (µA(x), µA(y)).

(3) νA(x + y) = 1 ≤ 1 = C(1, 1) = C(νA(x), νA(y)).

(4) νA(xy) = 1 ≤ 1 = C(1, 1) = C(νA(x), νA(y)).

Now fram (a) to (c) we obtain that A ∈ IFSN(R).

Definition 3.6. Let A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy sets
in semiring R. Define A ∩ B = (µA∩B, νA∩B) as µA∩B(x) = T (µA(x), µB(x)) and
νA∩B(x) = C(νA(x), νB(y)) for all x ∈ R.

Proposition 3.7. Let A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy
sets in semiring R. If A,B ∈ IFSN(R), then (A ∩B) ∈ IFSN(R).

Proof. Let x, y ∈ R. Then

(1) µA∩B(x + y) = T (µA(x + y), µB(x + y))
≥ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= T (T (µA(x), µB(x)), T (µA(y), µB(y)))
= T (µA∩B(x), µA∩B(y))
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(2) µA∩B(xy) = T (µA(xy), µB(xy))
≥ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= T (T (µA(x), µB(x)), T (µA(y), µB(y)))
= T (µA∩B(x), µA∩B(y))

(3) νA∩B(x + y) = C(νA(x + y), νB(x + y))
≤ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= C(C(νA(x), νA(y)), C(νB(x), νB(y)))
= C(νA∩B(x), νA∩B(y))

(4) νA∩B(xy) = C(νA(xy), νB(xy))
≤ T (T (µA(x), µA(y)), T (µB(x), µB(y)))
= C(C(νA(x), νA(y)), C(νB(x), νB(y)))
= C(νA∩B(x), νA∩B(y))

Therefore (A ∩B) ∈ IFSN(R).

Corollary 3.8. Let {Ai = (µAi
, νAi

) | i = 1, 2, 3, ..., n} ⊆ IFSN(R). Then so does
∩Ai

= (µ∩Ai
, ν∩Ai

).

Proposition 3.9. Let A ∈ IFSN(R) and T, C be idempotent.

(1) For all α ∈ [0, 1], the µ-level α-cut U(µA, α) = {x ∈ R | µA ≥ α} is a subsemiring
of R.

(2) For all β ∈ [0, 1], the ν-level β-cut L(νA, β) = {x ∈ R | νA ≤ β} is a subsemiring
of R.

Proof. (1) Let x, y ∈ U(µA, α). Since A ∈ IFSN(R) so µA(x+y) ≥ T (µA(x), µA(y)) ≥
T (α, α) = α and µA(xy) ≥ T (µA(x), µA(y)) ≥ T (α, α) = α. Thus x + y, xy ∈
U(µA, α) and then U(µA, α) is a subsemiring of R.

(2) Let x, y ∈ L(νA, β). As A ∈ IFSN(R) then νA(x + y) ≤ C(νA(x), νA(y)) ≤
C(β, β) = β and νA(xy) ≤ C(νA(x), νA(y)) ≤ C(β, β) = β. Therefore x + y, xy ∈
L(νA, β) and L(νA, β) is a subsemiring of R.

Definition 3.10. Let A = (µA, νA) and B = (µB, νB) be two intuitionistic fuzzy
sets in R and S, respectively. The direct som of A and B, denoted by A ⊕ B =
(µA⊕µB, νA⊕νB), is an intuitionistic fuzzy set in R⊕S such that for all x in R and
y in S,(µA ⊕ µB)(x, y) = T (µA(x), µB(y)) and (νA ⊕ νB)(x, y) = C(νA(x), νB(y))

Proposition 3.11. If Ai = (µAi
, νAi

) ∈ IFSN(Ri) for i = 1, 2, then A1 ⊕ A2 ∈
IFSN(R1 ⊕R2).

Proof. Let (x1, y1), (x2, y2) ∈ R1 ⊕R2. Then
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(1) (µA1 ⊕ µA2)((x1, y1) + (x2, y2)) = (µA1 ⊕ µA2)(x1 + x2, y1 + y2)
= T (µA1(x1 + x2), µA2(y1 + y2))
≥ T (T (µA1(x1), µA1(x2)), T (µA2(y1), µA2(y2)))
= T (T (µA1(x1), µA2(y1)), T (µA1(x2), µA2(y2)))
= T ((µA1 ⊕ µA2)(x1, y1), (µA1 ⊕ µA2)(x2, y2))

(2) (µA1 ⊕ µA2)((x1, y1)(x2, y2)) = (µA1 ⊕ µA2)(x1x2, y1y2)
= T (µA1(x1x2), µA2(y1y2))
≥ T (T (µA1(x1), µA1(x2)), T (µA2(y1), µA2(y2)))
= T (T (µA1(x1), µA2(y1)), T (µA1(x2), µA2(y2)))
= T ((µA1 ⊕ µA2)(x1, y1), (µA1 ⊕ µA2)(x2, y2))

(3) (νA1 ⊕ µA2)((x1, y1) + (x2, y2)) = (νA1 ⊕ νA2)(x1 + x2, y1 + y2)
= C(νA1(x1 + x2), νA2(y1 + y2))
≤ C(C(νA1(x1), νA1(x2)), C(νA2(y1), νA2(y2)))
= C(C(νA1(x1), νA2(y1)), C(νA1(x2), νA2(y2)))
= C((νA1 ⊕ νA2)(x1, y1), (νA1 ⊕ νA2)(x2, y2))

(4) (νA1 ⊕ µA2)((x1, y1)(x2, y2)) = (νA1 ⊕ νA2)(x1x2, y1y2)
= C(νA1(x1x2), νA2(y1y2))
≤ C(C(νA1(x1), νA1(x2)), C(νA2(y1), νA2(y2)))
= C(C(νA1(x1), νA2(y1)), C(νA1(x2), νA2(y2)))
= C((νA1 ⊕ νA2)(x1, y1), (νA1 ⊕ νA2)(x2, y2))

Corollary 3.12. Let Ai = (µAi
, νAi

) ∈ IFSN(Ri) for i = 1, 2, ..., n. Then

A1 ⊕ A2 ⊕ ...⊕ An ∈ IFSN(R1 ⊕R2 ⊕ ...⊕Rn).

4 Homomorphisms and Anti-Homomorphisms of

Intuitionistic Fuzzy Subsemirings of Semirings

Under Norms

Proposition 4.1. Let ϕ be an epihomomorphism from semiring R into semiring S.
If A = (µA, νA) ∈ IFSN(R), then ϕ(A) = (ϕ(µA), ϕ(νA)) ∈ IFSN(S).

Proof. Let y1, y2 ∈ S. Then

(1) ϕ(µA)(y1 + y2)
= sup{µA(x1 + x2) | x1, x2 ∈ R,ϕ(x1)y1, ϕ(x2) = y2}
≥ sup{T (µA(x1), µA(x2)) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
= T (sup{µA(x1) | x1 ∈ R, ϕ(x1) = y1}, sup{µA(x2) | x2 ∈ R, ϕ(x2))y2})
= T (ϕ(µA)(y1), ϕ(µA)(y2))
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(2) ϕ(µA)(y1y2)
= sup{µA(x1x2) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
≥ sup{T (µA(x1), µA(x2)) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
= T (sup{µA(x1) | x1 ∈ R, ϕ(x1) = y1}, sup{µA(x2) | x2 ∈ R, ϕ(x2) = y2})
= T (ϕ(µA)(y1), ϕ(µA)(y2))

(3) ϕ(νA)(y1 + y2)
= inf{νA(x1 + x2) | x1, x2 ∈ R, ϕ(x1) = y1, ϕ(x2) = y2}
≤ inf{C(νA(x1), νA(x2)) | x1, x2 ∈ R,ϕ(x1) = y1, ϕ(x2) = y2}
= C(inf{νA(x1) | x1 ∈ R, ϕ(x1) = y1}, inf{νA(x2) | x2 ∈ R,ϕ(x2) = y2})
= C(ϕ(νA)(y1), ϕ(νA)(y2))

(4) ϕ(νA)(y1y2)
= inf{νA(x1x2) | x1, x2 ∈ R,ϕ(x1) = y1, ϕ(x2) = y2}
≤ inf{C(νA(x1), νA(x2)) | x1, x2 ∈ R,ϕ(x1) = y1, ϕ(x2) = y2}
= C(inf{νA(x1) | x1 ∈ R, ϕ(x1) = y1}, inf{νA(x2) | x2 ∈ R,ϕ(x2) = y2})
= C(ϕ(νA)(y1), ϕ(νA)(y2))

Hence ϕ(A) ∈ IFSN(S).

Corollary 4.2. Let ϕ be an anti-epihomomorphism from semiring R into semiring
S. If A = (µA, νA) ∈ IFSN(R), then ϕ(A) ∈ IFSN(S).

Proposition 4.3. Let Let ϕ be a homorphism from semiring R into semiring S. If
B = (µB, νB) ∈ IFSN(S), then ϕ−1(B) = (ϕ−1(µB), ϕ−1(νB)) ∈ IFSN(R).

Proof. Let x1, x2 ∈ R.

(1) ϕ−1(µB)(x1 + x2) = µB(ϕ(x1 + x2))
= µB(ϕ(x1) + ϕ(x2))
≥ T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(2) ϕ−1(µB)(x1x2) = µB(ϕ(x1x2))
= µB(ϕ(x1)ϕ(x2))
≥ T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(3) ϕ−1(νB)(x1 + x2) = νB(ϕ(x1 + x2))
= νB(ϕ(x1) + ϕ(x2))
≤ C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))

(4) ϕ−1(νB)(x1x2) = νB(ϕ(x1x2))
= νB(ϕ(x1)ϕ(x2))
≤ C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))
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Then ϕ−1(B) ∈ IFSN(R).

Proposition 4.4. Let Let ϕ be a anti-homorphism from semiring R into semiring
S. If B = (µB, νB) ∈ IFSN(S), then ϕ−1(B) ∈ IFSN(R).

Proof. Let x1, x2 ∈ R.

(1) ϕ−1(µB)(x1 + x2) = µB(ϕ(x1 + x2))
= µB(ϕ(x1) + ϕ(x2))
≥ T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(2) ϕ−1(µB)(x1x2) = µB(ϕ(x1x2))
= µB(ϕ(x2)ϕ(x1))
≥ T (µB(ϕ(x2)), µB(ϕ(x1)))
= T (µB(ϕ(x1)), µB(ϕ(x2)))
= T (ϕ−1(µB)(x1), ϕ

−1(µB)(x2))

(3) ϕ−1(νB)(x1 + x2) = νB(ϕ(x1 + x2))
= νB(ϕ(x1) + ϕ(x2))
≤ C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))

(4) ϕ−1(νB)(x1x2) = νB(ϕ(x1x2))
= νB(ϕ(x2)ϕ(x1))
≤ C(νB(ϕ(x2)), νB(ϕ(x1)))
= C(νB(ϕ(x1)), νB(ϕ(x2)))
= C(ϕ−1(νB)(x1), ϕ

−1(νB)(x2))

Therefore ϕ−1(B) ∈ IFSN(R).

Proposition 4.5. Let ϕ be an epihomomorphism from semiring R into semiring
S and T, C be idempotent. If A = (µA, νA) ∈ IFSN(R) and Cα,β = {x ∈
R | µA(x) ≥ α, νA(x) ≤ β} be subsemiring of A, then ϕ(Cα,β) = Cά,β́ = {ϕ(x) = y ∈
S | µϕ(A)(y) ≥ ά, νϕ(A)(y) ≤ β́} will be a subsemiring of ϕ(A).

Proof. Since A = (µA, νA) ∈ IFSN(R) so from Proposition 4.1 ϕ(A) = (µϕ(A), νϕ(A)) ∈
IFSN(S). Let y1, y2 ∈ Cά,β́. Then

(1) µϕ(A)(y1 + y2) ≥ T (µϕ(A)(y1), µϕ(A)(y2)) ≥ T (ά, ά) = ά.
(2) µϕ(A)(y1y2) ≥ T (µϕ(A)(y1), µϕ(A)(y2)) ≥ T (ά, ά) = ά.

(3) νϕ(A)(y1 + y2) ≤ C(νϕ(A)(y1), νϕ(A)(y2)) ≤ C(β́, β́) = β́.

(4) νϕ(A)(y1y2) ≤ C(νϕ(A)(y1), νϕ(A)(y2)) ≤ C(β́, β́) = β́.

Then y1 + y2, y1y2 ∈ Cά,β́ and ϕ(Cα,β) = Cά,β́ is a subsemiring of ϕ(A).
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Proposition 4.6. Let ϕ be a homorphism from semiring R into semiring S and
T,C be idempotent. If B = (µB, νB) ∈ IFSN(S) and Cα,β = {y ∈ S | µB(y) ≥
α, νB(y) ≤ β} be a subsemiring of B, then ϕ−1(Cα,β) = Cά,β́ = {ϕ−1(y) = x ∈
R | µϕ−1(B)(x) ≥ ά, νϕ−1(B)(x) ≤ β́} be a subsemiring of ϕ−1(B).

Proof. Let x1, x2 ∈ Cά,β́. As Proposition 4.3 ϕ−1(B) ∈ IFSN(R) and then

(1) µϕ−1(B)(x1 + x2) ≥ T (µϕ−1(B)(x1), µϕ−1(B)(x2)) ≥ T (ά, ά) = ά.
(2) µϕ−1(B)(x1x2) ≥ T (µϕ−1(B)(x1), µϕ−1(B)(x2)) ≥ T (ά, ά) = ά.

(3) νϕ−1(B)(x1 + x2) ≤ C(νϕ−1(B)(x1), νϕ−1(B)(x2)) ≤ C(β́, β́) = β́.

(4) νϕ−1(B)(x1x2) ≤ C(νϕ−1(B)(x1), νϕ−1(B)(x2)) ≤ C(β́, β́) = β́.

Thus x1 + x2, x1x2 ∈ Cά,β́ and so ϕ−1(Cα,β) = Cά,β́ is a subsemiring of ϕ−1(B).
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