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Abstract – In this paper, the concept of soft singletons is defined. Consequently, we introduce the soft 

principal left (right) ideals over a semigroup S. The smallest soft right (left) ideals over S generated by a soft 

set over S are studied. Some illustrative examples are given. 
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1. Introduction and Preliminaries  
 

The concept of a soft set was first introduced by Molodtsov in [6]. Aktas and Cagman [1] 

adapted this concept to define soft groups. In [2], the authors introduced the concept of soft 

semigroups as a collection of subsemigroups of a semigroupand defined soft (left, right, 

quasi, bi) ideals of a semigroup. Shabir and Ahmad applied soft sets theory of ternary 

semigroups [7]. Jun and et al introduced concepts of soft ideals over ordered semigroups 

[5]. Properties of soft ℾ-semigroups and soft ideals over a ℾ-semigroup were studied in [3]. 

In Section 2 we introduce the definition of soft singletons andsome basic propositions. In 

Section 3 we define the soft left (right) ideal generated by a soft set over a semigroup and 

the soft ideal generated by a softset over a semigroup, and find, as special cases, those soft 

ideals generated by soft sets over monoids.  

 

Let  be a semigroup. A nonempty subset  of  is called a subsemigroup of if  , a 

left (right) ideal of  if ( ) and a two-sided ideal (or simply ideal) of  if  it is 

both a left and a right ideal of .  
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Definition 2.1 [1]. Let  be a universal set and let  be a set of parameters. Let  

denote the power set of  and let . A pair  is called a soft set over  if  is a 

mapping  

 

Definition 2.2 [5]. Let  and  be soft sets over , then  is called a soft 

subset of , denoted by If  and  for all . 

 

Definition 2.3 [2]. Let  be an initial universe set, be the universe set of parameters and 

. 

 

a) is called a relative null soft set (with respect to the parameter set ), denoted 

by if , for all . 

b) We shall denote by   the unique soft set over with an empty parameter set 

which is called the empty soft set over . 

 

Definition 2.4 [2]. Let  be an initial universe set,  be the universe set of parameters and  

. Then   is said to be an absolute soft set over if , for all . 

 

Definition 2.3 [2]. Let  and  be two soft sets over a common universe , then 

 

1) The extended intersection of  and  denoted by , is 

defined as soft set  where  

 

 
 

2) The restricted intersection of and , denoted by , is 

defined as soft set  where and  for all 

. 

 

Definition 2.4 [2]. Let  and  be two soft sets over a common universe , then 

 

1) The extended union of  and  denoted by , is defined as 

soft set  where  

 

 
 

2) The restricted union of  and , denoted by , is defined as 

soft set  where  and  for all . 
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2. Principle Soft Ideals 
 

In the rest of this paper, S is a semigroup and  denotes the monoid generated by S. 

 

Definition 2.1. [2]. Let  and  be two soft sets over a semigroup . The 

restricted product of  and  denoted by  is defined as the soft set 

 where  and  for all . 

 

Definition 2.2. [2]. A soft set  over a semigroup  is called a soft semigroup if by 

 and  

 

It is shown that     is a soft semigroup over  if and only if  is a 

subsemigroup of  [2]. 

 

Definition 3.3. [2]. A soft set  over a semigroup  is called a soft 

left (right) ideal over , if  ( ) Where 

 is an absolute soft set over S. A soft set over  is a soft ideal if it is both a soft left 

and a soft right ideal over . 

 

It is shown that a soft set  over  is a soft ideal over  ifand only if  is an 

ideal of  [2]. 

 

Definition 2.3. Let  A soft set  over a semigroup  is called a soft singleton if 

 for all . 

 

Definition 2.3. For a soft singleton  and a soft set  over  we say  

belongs to , denoted by  if , for all . 

 

Example 2.4. Let  be the semigroup of natural numbers. Define 

 by } and 

  It is obvious that   because  for all  while 

 does not belong to  for all  

 

Proposition 2.5. Let  be a soft set over a semigroup . If  is a soft semigroup, 

then  for any  

 

Proof. Assume that   is a soft semigroup, then for all is a subsemigroup of 

. Let  because  for 

all .    □ 

 

Proposition 2.6. If  is a soft left (right) ideal over a semigroup , then 

 ( ) for all  

 

Proof. Suppose that  is a soft left (right) ideal over, then for all  is a left 

(right) ideal of . Let  for all  then  ( ) for all   

Thus ( ) for all .    □ 

 



Journal of New Theory 18 (2017) 94-102                                                                                                     97 
 

Generally, the opposite direction of the above proposition is not true. Also, it is not 

necessary that a soft set  equals union of all soft singletons belonging to it. This fact 

is depicted in the following example. 

 

Example 2.7. Let  be a semigroup defined by the following table  

 
. 1 2 3 4 5 

1 1 2 3 4 5 

2 2 2 2 2 2 

3 3 2 3 3 2 

4 4 2 4 4 2 

5 5 5 5 5 5 

 

For , define the soft set by  and . Clearly, 

 is the only soft singleton belonging to . Moreover,   but 

 is not a soft semigroup over  because  is not subsemigroup of . It is 

obvious that  is not the union of its soft singletons. Let  be a soft set over  

defined as  and . The soft singletons belonging to  are 

 and . Easily, one can show that  for all  

but  is not a soft right ideal over  because  is not an ideal of . 

 

Definition 2.8. The smallest soft right (left) ideal over  containing  is called the 

principal soft right (left) ideal generated by . The smallest soft ideal over  

containing   is called the principal soft ideal generated by . 

 

By definition,  such that . That is, 

 is a soft set over  with a constant value equals the principal right ideal of  

generated by . 

 

Lemma2.9.  is the principal soft right ideal over generated by . 

 

Proof. Clearly,  is a soft right ideal over  and . 

Let  be a soft right ideal over  containing , then  

 

 
 

hence  Then  is the principal soft right ideal over 

generated by .  □ 

 

Similarly, we get the dual result. 

 

Lemma2.9.  is the principal soft left  ideal over  generated by . 

 

Lemma2.10.  is the principal soft ideal over  generated by 

. 
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Proof. Since  then  Obviously, 

 is a soft ideal over . Suppose that  be a soft ideal over  

containing , then 

 

 
 

thus  Then  is the principal soft 

ideal over  generated by .  □ 

 

Lemma 2.12. (Principle soft left Ideal Lemma). Let  then the following statements 

are equivalent; 

 

1)  

2) , 

3) or   for some . 

 

Proof. Straightforward. 

 

Lemma 2.13. (Principle Soft Right Ideal Lemma). Let  then the following 

statements are equivalent; 

 

1)  

2) , 

3)  or   for some . 

 

Proof. Straightforward. 

 

Theorem  2.14. Let  be relations on a semigroup  defined by  

 

1)  if and only if  

2)  if and only if  

 

Then  [  is aright [left] congruence relation. 

 

Proof.  because  It is clear that  and are symmetric 

and transitive relations. Then  and  are equivalence relations. To show that  [  is a 

right [left] congruence, assume ] and  then 

 

 

 

that is,  

 

. 

 

Hence  
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This implies that  ]. Thus   [   is a right [left] congruence.  □ 

 

Corollary 2.15. For  we have  

 

• 
⇔

 such that  and  

• 
⇔

 such that  and  

 

Proof. Let 
⇔

if  
⇔

  

and 
⇔

  and   for some  

⇔

 and  by lemma 3.7. For , the 

result comes directly by a similar argument.□ 

 

Definition 2.16. We define the equivalence relation  . For   we define 

 to be the -class of ;  to be the -class of  and  is the -class of . 

 

Example 2.17. Let , then 

 

⇔ ⇔ ⇔

 

 

Thus  and then  for all  

 

 

3. Soft Ideals Generated by Soft Sets 

 
Authors in [2], showed that  for any soft ideals  and  over  is 

a soft ideal. Hence the restricted intersection of all soft ideals over  containing the soft set 

 is the soft ideal over  generated by . 

 

Definition 3.1. The smallest soft right (left) ideal over  containing  is called the  soft 

right (left) ideal generated by  denoted by . The smallest soft ideal 

over  containing   is called the soft ideal generated by  denoted by  

 

Theorem 3.2.Let  be a soft set over , then 

 

 
 

Proof. Let  the family of all soft left ideals over  containing , then 

 is a left ideal of  for all  Since  for each  

 then  

 

 

As a result, . We notice that  is a soft left 

ideal over  because  is the left ideal of  generated by  for all  This 

follows that we have  By definition, we get  

 

 

 

Similarly, we prove the following result. 
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Theorem 3.3.Let  be a soft set over , then 

 

 
 

Theorem 3.4.Let  be a soft set over , then 

 

 
 

Proof. Since for all  then  The soft set 

 is a soft left ideal over  .  Indeed, by definition  

where  

 

 
 

 

Thus  for all  As a result,  is a soft left ideal over . Let 

 be a soft left ideal over  containing , then  

 

 
 

Hence  By definition, we conclude that . This ends the 

proof.  □ 

 

Similarly, we prove the following result. 

 

Theorem 3.5. Let  be a soft set over , then 

 

 
 

Example 3.6.Consider the non-commutative semigroup  

 

. 1            a  b c 

1 1 a b c 

a a a a a 

b b b b b 

c c b a c 

 

For ,  define a soft set  over by . By definition, 

 such that . Then  
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. 

 

That is,   is a soft left ideal over  containing . Let 

be a soft left ideal over  containing . Then  or 

. For all cases, . Therefore,  is the soft left ideal 

over  containing . 

 

Let  be a soft set over defined by . By definition, 

 such that . Then  

 

. 

 

That is,   is a soft right ideal over  containing . 

Let  be a soft right ideal over containing . Then 

 is the only right ideal of  that contains . Thus 

. Therefore,  is the soft right ideal over containing .  □ 

 

Theorem 3.7. Let  be a soft set over , then 

 

 
 

Proof. Let   the family of all soft ideals over  containing , then  

is an ideal of  for all  By the same way as in theorem, we  show that  

 

, 

 
and 

 
 

for each  . Hence . Because 

 

 
 

is the ideal of  generated by  for all . Thus we have . 

By definition, we get □ 

 

Theorem 3.8. Let  be a soft set over , then 

 

 
 

Proof. By definition,  is a soft right ideal over . Also   is a soft left 

ideal over . Indeed, we have 
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So  is a soft ideal over  containing . Let  be a soft ideal over  

containing , then  and . This means  is 

a soft ideal over  generated by , hence  . Similarly, we can 

show that . This completes the proof.  □ 
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