

SOFT IDEALS OVER A SEMIGROUP GENERATED BY A SOFT SET

Ahmed Ramadan¹ Abdelarahman Halil¹ Esam Hamouda² Amira Seif Allah^{*,2}

<A.Ramadan@yahoo.com> <A.A.Halil@yahoo.com > < ehamouda70@gmail.com > < seifamira123@yahoo.com >

¹Department of Mathematics, Faculty of Science, Beni-Suef University, Egypt ²Department of Basic Science, Faculty of Industrial Education, Beni-Suef University, Egypt

Abstract – In this paper, the concept of soft singletons is defined. Consequently, we introduce the soft principal left (right) ideals over a semigroup S. The smallest soft right (left) ideals over S generated by a soft set over S are studied. Some illustrative examples are given.

Keywords – Soft sets, soft semigroups, soft ideals, soft singleton.

1. Introduction and Preliminaries

The concept of a soft set was first introduced by Molodtsov in [6]. Aktas and Cagman [1] adapted this concept to define soft groups. In [2], the authors introduced the concept of soft semigroups as a collection of subsemigroups of a semigroupand defined soft (left, right, quasi, bi) ideals of a semigroup. Shabir and Ahmad applied soft sets theory of ternary semigroups [7]. Jun and et al introduced concepts of soft ideals over ordered semigroups [5]. Properties of soft \mathbb{T} -semigroups and soft ideals over a \mathbb{T} -semigroup were studied in [3]. In Section 2 we introduce the definition of soft singletons andsome basic propositions. In Section 3 we define the soft left (right) ideal generated by a soft set over a semigroup and the soft ideal generated by a soft sets over a semigroup and find, as special cases, those soft ideals generated by soft sets over monoids.

Let **S** be a semigroup. A nonempty subset **A** of **S** is called a subsemigroup of **S** if $A^2 \subseteq A$, a left (right) ideal of **S** if $SA \subseteq A(AS \subseteq A)$ and a two-sided ideal (or simply ideal) of **S** if it is both a left and a right ideal of **S**.

^{*}Corresponding Author.

Definition 2.1 [1]. Let U be a universal set and let E be a set of parameters. Let P(U) denote the power set of U and let $A \subseteq E$. A pair (F, A) is called a soft set over U if F is a mapping $F : A \rightarrow P(U)$.

Definition 2.2 [5]. Let (F, A) and (G, B) be soft sets over U, then (G, B) is called a soft subset of (F, A), denoted by $(G, B) \subseteq (F, A)$ If $B \subseteq A$ and $G(b) \subseteq F(b)$ for all $b \in B$.

Definition 2.3 [2]. Let U be an initial universe set, E be the universe set of parameters and $A \subseteq E$.

- a) (F, A) is called a relative null soft set (with respect to the parameter set A), denoted by (\mathcal{N}, A) if $F(e) = \emptyset$, for all $e \in A$.

Definition 2.4 [2]. Let U be an initial universe set, E be the universe set of parameters and $A \subseteq E$. Then (U, A) is said to be an absolute soft set over U if U(e) = U, for all $e \in A$.

Definition 2.3 [2]. Let (F, A) and (G, B) be two soft sets over a common universe U, then

1) The extended intersection of (F, A) and (G, B) denoted by $(F, A) \cap_{\varepsilon} (G, B)$, is defined as soft set (H, C) where $C = A \cap B, \forall c \in C$,

$$H(c) = \begin{cases} F(c) & \text{if } c \in A \setminus B \\ G(c) & \text{if } c \in B \setminus A \\ F(c) \cap G(c) & \text{if } c \in A \cap B \end{cases}$$

2) The restricted intersection of (F, A) and (G, B), denoted by $(F, A) \sqcap (G, B)$, is defined as soft set (H, C) where $C = A \cap B$ and $H(c) = F(c) \cap G(c)$ for all $c \in C$.

Definition 2.4 [2]. Let (F, A) and (G, B) be two soft sets over a common universe U, then

1) The extended union of (F, A) and (G, B) denoted by $(F, A) \cup_{s} (G, B)$, is defined as soft set (H, C) where $C = A \cup B, \forall c \in C$,

$$H(c) = \begin{cases} F(c) & \text{if } c \in A \setminus B \\ G(c) & \text{if } c \in B \setminus A \\ F(c) \cup G(c) & \text{if } c \in A \cap B \end{cases}$$

2) The restricted union of (F, A) and (G, B), denoted by $(F, A) \sqcup (G, B)$, is defined as soft set (H, C) where $C = A \cap B$ and $H(c) = F(c) \cup G(c)$ for all $c \in C$.

2. Principle Soft Ideals

In the rest of this paper, S is a semigroup and S^1 denotes the monoid generated by S.

Definition 2.1. [2]. Let (F, A) and (G, B) be two soft sets over a semigroup S. The restricted product of (F, A) and (G, B) denoted by $(F, A) \in (G, B)$ is defined as the soft set (H; C) where $C = A \cap B$ and H(c) = F(c)G(c) for all $c \in C$.

Definition 2.2. [2]. A soft set (F, A) over a semigroup S is called a soft semigroup if by $(\mathcal{N}, A) \neq (F, A) \neq \emptyset_S$ and $(F, A) \in (F, A) \subseteq (F, A)$.

It is shown that (F, A) is a soft semigroup over S if and only if $\forall x \in A, F(x) \neq \emptyset$ is a subsemigroup of S [2].

Definition 3.3. [2]. A soft set $(\mathcal{N}, A) \neq (F, A) \neq \emptyset_S$ over a semigroup *S* is called a soft left (right) ideal over *S*, if $(S, A) \circ (F, A) \subseteq (F, A)$ $((F, A) \circ (S, A) \subseteq (F, A))$ Where (S, A) is an absolute soft set over *S*. A soft set over *S* is a soft ideal if it is both a soft left and a soft right ideal over *S*.

It is shown that a soft set (F, A) over S is a soft ideal over S if and only if $F(a) \neq \emptyset$ is an ideal of S [2].

Definition 2.3. Let $x \in S$. A soft set (x, A) over a semigroup S is called a soft singleton if $x(a) = \{x\}$ for all $a \in A$.

Definition 2.3. For a soft singleton (x, A) and a soft set (F, A) over S, we say(x, A) belongs to (F, A), denoted by $(x, A) \in (F, A)$, if $x \in F(a)$, for all $a \in A$.

Example 2.4. Let S = (N, +) be the semigroup of natural numbers. Define $F : A = \{1, 2, 3\} \rightarrow P(N)$ by $F(1) = \{2, 3, 4, ...\}, F(2) = \{3, 4, 5, ...\}$ and $F(3) = \{4, 5, 6, ...\}$. It is obvious that $(4, A) \in (F, A)$ because $4 \in F(a)$ for all $a \in A$ while (x, A) does not belong to (F, A) for all $x \in A$.

Proposition 2.5. Let (F, A) be a soft set over a semigroup S. If (F, A) is a soft semigroup, then $(x, A) \stackrel{\sim}{\circ} (y, A) \in (F, A)$ for any $(x, A), (y, A) \in (F, A)$.

Proof. Assume that (F, A) is a soft semigroup, then for all $a \in A, F(a)$ is a subsemigroup of S. Let $(x, A), (y, A) \in (F, A) \Rightarrow (x, A) \circ (y, A) = (xy, A) \in (F, A)$ because $xy \in F(a)$ for all $a \in A$. \Box

Proposition 2.6. If (F, A) is a soft left (right) ideal over a semigroup S, then $(S, A) \stackrel{\circ}{\circ} (x, A) \sqsubseteq (F, A), ((x, A) \stackrel{\circ}{\circ} (S, A) \sqsubseteq (F, A))$ for all $(x, A) \in (F, A)$.

Proof. Suppose that (F,A) is a soft left (right) ideal over, then for all $a \in A, F(a)$ is a left (right) ideal of S. Let $x \in F(a)$ for all $a \in A$, then $Sx \subseteq F(a)$ ($xS \subseteq F(a)$) for all $a \in A$. Thus $(S,A) \circ (x,A) \equiv (F,A), ((x,A) \circ (S,A) \equiv (F,A))$ for all $(x,A) \in (F,A)$. \Box

Generally, the opposite direction of the above proposition is not true. Also, it is not necessary that a soft set (F, A) equals union of all soft singletons belonging to it. This fact is depicted in the following example.

Example 2.7. Let $S = \{1, 2, 3, 4, 5\}$ be a semigroup defined by the following table

	1	2	3	4	5	
1	1	2	3	4	5	
2	2	2	2	2	2	
3	3	2	3	3	2	
4	4	2	4	4	2	
5	5	2 2 2 2 2 5	5	5	5	

For $A = \{1,2\} \subset S$, define the soft set (F, A) by $F(1) = \{4,5\}$ and $F(2) = \{4\}$. Clearly, (4, A) is the only soft singleton belonging to (F, A). Moreover, $(4, A) \in (F, A)$ but (F, A) is not a soft semigroup over S because $F(1) = \{4,5\}$ is not subsemigroup of S. It is obvious that (F, A) is not the union of its soft singletons. Let (G, A) be a soft set over S defined as $G(1) = \{1, 2, 4\}$ and $G(2) = \{2, 4\}$. The soft singletons belonging to (G, A) are (2, A) and (4, A). Easily, one can show that $(x, A) \in (S, A) \subset (G, A)$ for all $(x, A) \in (G, A)$ but (G, A) is not a soft right ideal over S because $G(1) = \{1, 2, 4\}$ is not an ideal of S.

Definition 2.8. The smallest soft right (left) ideal over S containing (x, A) is called the principal soft right (left) ideal generated by (x, A). The smallest soft ideal over S containing (x, A) is called the principal soft ideal generated by (x, A).

By definition, $(x, A) \circ (S^1, A) = (H, A)$ such that $H(a) = xS^1 = \{x\} \cup xS$. That is, $(x, A) \circ (S^1, A)$ is a soft set over S with a constant value equals the principal right ideal of S generated by $\{x\}$.

Lemma2.9. $(x, A) \approx (S^1, A)$ is the principal soft right ideal over Sgenerated by (x, A).

Proof. Clearly, $(x, A) \in (S^1, A)$ is a soft right ideal over S and $(x, A) \in (x, A) \in (S^1, A)$. Let (G, A) be a soft right ideal over S containing (x, A), then

$$xS^{1} \subseteq G(a)S^{1} = G(a) \cup G(a)S \subseteq G(a)$$

hence $(x, A) \circ (S^1, A) \sqsubset (G, A)$. Then $(x, A) \circ (S^1, A)$ is the principal soft right ideal over S generated by (x, A). \Box

Similarly, we get the dual result.

Lemma2.9. $(S^1, A) \circ (x, A)$ is the principal soft left ideal over S generated by (x, A).

Lemma2.10. $(S^1, A) \circ (x, A) \circ (S^1, A)$ is the principal soft ideal over S generated by (x, A).

Proof. Since $x = 1x1 \subseteq S^1xS^1$, then $(x, A) \in (S^1, A) \circ (x, A) \circ (S^1, A)$. Obviously, $(S^1, A) \circ (x, A) \circ (S^1, A)$ is a soft ideal over S. Suppose that (G, A) be a soft ideal over S containing (x, A), then

$$S^1 x S^1 \subseteq S^1 G(a) S^1 = G(a) \cup G(a) S \cup S G(a) \cup S G(a) S \subseteq G(a)$$

thus $(S^1, A) \circ (x, A) \circ (S^1, A) \equiv (G, A)$. Then $(S^1, A) \circ (x, A) \circ (S^1, A)$ is the principal soft ideal over S generated by (x, A). \Box

Lemma 2.12. (Principle soft left Ideal Lemma). Let $x, y \in S$, then the following statements are equivalent;

1) $(S^1,A) \circ (x,A) \equiv (S^1,A) \circ (y,A)$, 2) $(x,A) \in (S^1,A) \circ (y,A)$, 3) $x = y \circ r x = sy$ for some $s \in S$.

Proof. Straightforward.

Lemma 2.13. (Principle Soft Right Ideal Lemma). Let $x, y \in S$, then the following statements are equivalent;

1) $(x,A) \circ (S^1,A) \equiv (y,A) \circ (S^1,A)$, 2) $(x,A) \in (y,A) \circ (S^1,A)$, 3) x = y or x = ys for some $s \in S$.

Proof. Straightforward.

Theorem 2.14. Let $\mathcal{L}_{\mathcal{I}}\mathcal{R}$ be relations on a semigroup \mathcal{S} defined by

- 1) $x \mathcal{L} y$ if and only if $(S^1, A) \circ (x, A) = (S^1, A) \circ (y, A)$,
- 2) $x\mathcal{R}y$ if and only if $(x, A) \circ (S^1, A) = (y, A) \circ (S^1, A)$.

Then $\mathcal{L}[\mathcal{R}]$ is aright [left] congruence relation.

Proof. $x\mathcal{L}x$ ($x\mathcal{R}x$) because $S^1x = S^1x$ ($xS^1 = xS^1$). It is clear that \mathcal{L} and are symmetric and transitive relations. Then \mathcal{L} and \mathcal{R} are equivalence relations. To show that \mathcal{L} [\mathcal{R}] is a right [left] congruence, assume $x\mathcal{L}y$ [$x\mathcal{R}y$] and $s \in S$ then

$$(S^1, A) \circ (x, A) = (S^1, A) \circ (y, A) [(x, A) \circ (S^1, A) = (y, A) \circ (S^1, A)]$$

that is,

$$S^1x = S^1y \Rightarrow S^1xs = S^1ys [xS^1 = yS^1 \Rightarrow sxS^1 = syS^1].$$

Hence

$$(S^{1},A) \circ (x,A) \circ (s,A) = (S^{1},A) \circ (y,A) \circ (s,A)[(s,A) \circ (x,A) \circ (S^{1},A)]$$
$$= (s,A) \circ (y,A) \circ (S^{1},A)],$$

This implies that $xs\mathcal{L}ys$ [$sx\mathcal{R}sy$]. Thus \mathcal{L} [\mathcal{R}] is a right [left] congruence. \Box

Corollary 2.15. For $x, y \in S$, we have

- $x \mathcal{L} y \Leftrightarrow \exists s, t \in S^1$ such that $(s, A) \circ (y, A) = (x, A)$ and $(t, A) \circ (x, A) = (y, A)$.
- $x\mathcal{R}y \Leftrightarrow \exists s, t \in S^1$ such that $(y, A) \stackrel{\sim}{\circ} (s, A) = (x, A)$ and $(x, A) \stackrel{\sim}{\circ} (t, A) = (y, A)$.

Proof. Let $x \pounds y \Leftrightarrow \text{if } (S^1, A) \stackrel{\circ}{\circ} (x, A) = (S^1, A) \stackrel{\circ}{\circ} (y, A) \Leftrightarrow (S^1, A) \stackrel{\circ}{\circ} (x, A) \equiv (S^1, A) \stackrel{\circ}{\circ} (y, A)$ and $(S^1, A) \stackrel{\circ}{\circ} (y, A) \equiv (S^1, A) \stackrel{\circ}{\circ} (x, A) \Leftrightarrow x = sy$ and y = tx for some $t, s \in S \Leftrightarrow (s, A) \stackrel{\circ}{\circ} (y, A) = (x, A)$ and $(t, A) \stackrel{\circ}{\circ} (x, A) = (y, A)$, by lemma 3.7. For $x \Re y$, the result comes directly by a similar argument. \Box

Definition 2.16. We define the equivalence relation $\mathcal{H} = \mathcal{L} \cap \mathcal{R}$. For $x \in S$, we define L_x to be the \mathcal{L} -class of $x; R_x$ to be the \mathcal{R} -class of x and H_x is the \mathcal{H} -class of x.

Example 2.17. Let $x, y \in S = (N, +)$, then

$$x\mathcal{L}y_{\Leftrightarrow}(N^{1},A) \circ (y,A) = (N^{1},A) \circ (y,A)_{\Leftrightarrow} N^{1} + x = N^{1} + y_{\Leftrightarrow} x = y.$$

Thus $\mathcal{L} = \mathcal{R} = \mathcal{H} = \{(x, x) \colon \forall x \in N\}$ and then $L_x = R_x = H_x = \{x\}$, for all $x \in N$.

3. Soft Ideals Generated by Soft Sets

Authors in [2], showed that $(F, A) \cap_{\mathcal{R}} (G, B)$ for any soft ideals (F, A) and (G, B) over S is a soft ideal. Hence the restricted intersection of all soft ideals over S containing the soft set (H, A) is the soft ideal over S generated by (H, A).

Definition 3.1. The smallest soft right (left) ideal over *S* containing (F, A) is called the soft right (left) ideal generated by (F, A), denoted by ([F], A) (($\langle F \rangle, A$)). The smallest soft ideal over *S* containing (F, A) is called the soft ideal generated by (F, A), denoted by ((F), A).

Theorem 3.2.Let (F, A) be a soft set over S, then

$$(\langle F \rangle, A) = (F, A) \sqcup (S, A) \circ (F, A).$$

Proof. Let $\{(F_i, A): i \in I\}$ the family of all soft left ideals over S containing (F, A), then $F_i(a)$ is a left ideal of S for all $i \in I, a \in A$. Since $SF(a) \subseteq SF_i(a) \subseteq F_i(a)$ for each $i \in I, a \in A$, then

$$(S,A) \circ (F,A) \sqsubseteq \prod_{i \in I} \{(F_i,A)\}.$$

As a result, $(F, A) \sqcup (S, A) \circ (F, A) \sqsubseteq \prod_{i \in I} \{(F_i, A)\}$. We notice that $(\langle F \rangle, A)$ is a soft left ideal over S^1 because $\langle F \rangle(a)$ is the left ideal of S generated by F(a) for all $a \in A$. This follows that we have $\prod_{i \in I} \{(F_i, A)\} \sqsubseteq (\langle F \rangle, A)$. By definition, we get

$$\sqcap_{i\in I} \{ (F_i, A) \} = (\langle F \rangle, A).$$

Similarly, we prove the following result.

Theorem 3.3.Let (F, A) be a soft set over S, then

$$([F],A) = (F,A) \sqcup (F,A) \stackrel{\sim}{\circ} (S,A).$$

Theorem 3.4.Let (F, A) be a soft set over S^1 , then

$$\langle F \rangle(a) = \bigcup_{x \in S^1} xF(a)$$

Proof. Since for all $a \in A, F(a) = 1F(a) \subseteq \langle F \rangle(a)$, then $(F, A) \subseteq (\langle F \rangle, A)$. The soft set $(\langle F \rangle, A)$ is a soft left ideal over S^1 . Indeed, by definition $(S^1, A) \circ (\langle F \rangle, A) = (H, A)$ where

$$H(a) = S^{1}(F)(a) = S^{1}\left(\bigcup_{x \in S^{1}} xF(a)\right) = \bigcup_{x \in S^{1}} S^{1}xF(a) \subseteq \bigcup_{x \in S^{1}} xF(a) = \langle F \rangle(a)$$

Thus $H(a) \subseteq \langle F \rangle(a)$ for all $a \in A$. As a result, $(\langle F \rangle, A)$ is a soft left ideal over S^1 . Let (G, A) be a soft left ideal over S^1 containing (F, A), then

$$\langle F \rangle(a) = \bigcup_{x \in S^4} xF(a) \subseteq \bigcup_{x \in S^4} xG(a) \subseteq G(a)$$

Hence $(\langle F \rangle, A) \sqsubseteq (G, A)$. By definition, we conclude that $(\langle F \rangle, A) = (G, A)$. This ends the proof. \Box

Similarly, we prove the following result.

Theorem 3.5. Let (F, A) be a soft set over S^1 , then

$$\langle F \rangle(a) = \bigcup_{x \in S^4} F(a)x$$

Example 3.6.Consider the non-commutative semigroup $S = \{1, a, b, c\}$

•	1	а	b	С
1	1	а	b	с
a	а	а	а	a
b	a b c	b	b	b
с	С	b	а	С

For $A = \{1\} \subset S$, define a soft set (F, A) over S by $F(1) = \{b\}$. By definition, $(S, A) \circ (F, A) = (H, A)$ such that $H(1) = SF(1) = S\{b\} = \{a, b\}$. Then

$$(F)(1) = F(1) \cup SF(1) = \{a, b\}.$$

That is, $(\langle F \rangle, A) = (F, A) \sqcup (S, A) \circ (F, A)$ is a soft left ideal over S containing (F, A). Let (G, A) be a soft left ideal over S containing (F, A). Then $\{b\} = F(1) \subseteq G(1) = \{a, b, c\}$ or $G(1) = \{a, b\}$. For all cases, $(\langle F \rangle, A) \subseteq (G, A)$. Therefore, $(\langle F \rangle, A)$ is the soft left ideal over S containing (F, A).

Let (F, A) be a soft set over S defined by $F(1) = \{c\}$. By definition, $(F, A) \circ (S, A) = (H, A)$ such that $H(1) = F(1)S = \{c\}S = \{a, b, c\}$. Then

$$[F](1) = F(1) \cup F(1)S = \{a, b, c\}.$$

That is, $([F],A) = (F,A) \sqcup (F,A) \tilde{\circ} (S,A)$ is a soft right ideal over S containing (F,A). Let (G,A) be a soft right ideal over S containing (F,A). Then $\{c\} = F(1) \subseteq G(1) = \{a, b, c\}$ is the only right ideal of S that contains F(1). Thus $([F],A) \subseteq (G,A)$. Therefore, ([F],A) is the soft right ideal over S containing (F,A). \Box

Theorem 3.7. Let (F, A) be a soft set over S, then

$$((F),A) = (F,A) \sqcup (F,A) \circ (S,A) \sqcup (F,A) \circ (S,A) \sqcup (S,A) \circ (F,A) \circ (S,A).$$

Proof. Let $\{(F_i, A): i \in I\}$ the family of all soft ideals over *S* containing (F, A), then $F_i(a)$ is an ideal of *S* for all $i \in I$, $a \in A$. By the same way as in theorem, we show that

$$(S,A) \stackrel{\circ}{\circ} (F,A) \sqsubseteq \sqcap_{i \in I} \{(F_i,A)\},$$
$$(F,A) \stackrel{\circ}{\circ} (S,A) \sqsubseteq \sqcap_{i \in I} \{(F_i,A)\}$$

and

$$(S,A) \circ (F,A) \circ (S,A) \sqsubseteq \sqcap_{i \in I} \{(F_i,A)\}$$

for each $i \in I, a \in A$. Hence $((F), A) \sqsubseteq \prod_{i \in I} \{(F_i, A)\}$. Because

$$(F)(a) = F(a) \cup SF(a) \cup F(a)S \cup SF(a)S$$

is the ideal of *S* generated by F(a) for all $a \in A$. Thus we have $\prod_{i \in I} \{(F_i, A)\} \sqsubseteq ((F), A)$. By definition, we get $\prod_{i \in I} \{(F_i, A)\} = ((F), A)$.

Theorem 3.8. Let (F, A) be a soft set over S^1 , then

$$([\langle F \rangle], A) = (\langle F \rangle, A) = (\langle F \rangle, A).$$

Proof. By definition, $([\langle F \rangle], A)$ is a soft right ideal over S^1 . Also $([\langle F \rangle], A)$ is a soft left ideal over S^1 . Indeed, we have

$$S^{1}[\langle F \rangle](a) = S^{1}(\bigcup_{x \in S^{1}} \langle F \rangle(a)x) = \bigcup_{x \in S^{1}} S^{1}\langle F \rangle(a)x \subseteq \bigcup_{x \in S^{1}} \langle F \rangle(a)x = [\langle F \rangle](a).$$

So $([\langle F \rangle], A)$ is a soft ideal over S^1 containing (F, A). Let (G, A) be a soft ideal over S^1 containing (F, A), then $(\langle F \rangle, A) \equiv (G, A)$ and $([\langle F \rangle], A) \equiv (G, A)$. This means $([\langle F \rangle], A)$ is a soft ideal over S^1 generated by (F, A), hence $([\langle F \rangle], A) = (\langle F \rangle, A)$. Similarly, we can show that $((F), A) = (\langle [F] \rangle, A)$. This completes the proof. \Box

References

- [1] H. Aktas, N. Cagman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735.
- [2] M. I. Ali, M. Shabir, K. P. Shum, On soft ideals over semigroups, Southeast Asian Bulletin of Mathematics 34 (2010) 595-610
- [3] T. Changphas, B. Thongkam, On soft -semigroups, Annals of Fuzzy Mathematics and Informatics 4 (2) (2012) 217-223
- [4] J.M. Howie, An Introduction to Semigroup Theory, Academic Press, 1976
- [5] Y. B. Jun, K. J. Lee, A. Khan, Soft ordered semigroups, Math. Log. Quart. 56/1 (2010) 42 -50
- [6] D. A. Molodtsov, Soft set theory first results, Computers and Mathematics with Applications 37 (1999) 19-31.
- [7] M. Shabir, A. Ahmad On soft ternary semigroups, Annals of Fuzzy Mathematics and Informatics 3/1 (2012) 39-59.