http://www.newtheory.org

ISSN: 2149-1402

Received: 07.12.2017 Published: 26.01.2018 Year: 2018, Number: 20, Pages: 48-56 Original Article

Generalized Pre α -Closed Sets in Topology

Praveen Hanamantrao Patil1<praveenpatil97@gmail.com>Prakashgouda Guranagouda Patil2,*<praveenpatil01@gmail.com>

¹Department of Mathematics, Navodaya Institute of Technology, Raichur-584101, Karnataka, India. ²Department of Mathematics, Karnatak University, Dharwad-580003, Karnataka, India.

Abstaract – In this paper, a new class of sets called generalized pre α -closed sets are introduced and studied in topological spaces, which are properly placed between the class of pre closed and the class of generalized star pre closed (g*p-closed) sets.

Keywords - Closed sets, $gp\alpha$ -closed sets, $gp\alpha$ -open sets.

1 Introduction

The concept of stronger forms of open sets and closed sets were introduced by Stone[17], which were called as regular open and regular closed sets respectively. Levine[10]introduced the generalized closed sets in topology as generalization of closed sets. The concept of Levine[10] opened the flood gates of research in weaker forms of closed sets in general topology. Many researchers like [1], [2], [4], [7], [12], [13], [14], [16], [18], [19] and others have studied many weaker forms of closed sets in topological spaces. Recently, Benchalli et al.[3] and Jafari et al.[8] studied $\omega\alpha$ -closed and pre g*-closed sets. The aim of this paper is to continue the study of generalization of closed sets namely generalized pre α -closed(briefly gp α -closed) set using α -open [16] in topological spaces. Also, we introduce the concept of gp α -closure, gp α -interior and gp α -neighborhood in topological spaces.

2 Preliminaries

Throughout this paper, spaces X and Y(or (X, τ) and (Y, σ)) denote topological spaces, in which no separation axioms are assumed unless explicitly stated. The

^{*} Corresponding Author

following definitions are useful in the sequel.

Definition 2.1. A subset A of a topological space X is called a

- 1. semi-open [9] if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.
- 2. pre-open set [14] if $A \subseteq int(cl(A))$ and pre-closed set if $cl(int(A)) \subseteq A$.
- 3. α -open set [16] if $A \subseteq int(cl(int(A)))$ and α -closed set if $cl(int(cl(A))) \subseteq A$.
- 4. semi-preopen set [1] if $A \subseteq cl(int(cl(A)))$ and semi-preclosed set if $int(cl(int(A))) \subseteq A$.

Definition 2.2. A subset A of a topological space X is called a

- 1. generalized closed (briefly g-closed)[10](briefly ω -closed[18], pre g^* -closed[8]) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open(resp. semi-open, $\omega \alpha$ -open) in X.
- 2. generalized preclosed (briefly gp-closed)[13],(resp. generalized pre regular closed (briefly gpr-closed[7])), if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open(resp. regular open) in X.
- 3. generalized semi-pre closed(briefly gsp-closed)[5], if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 4. semi generalized closed(briefly sg-closed)[4] (resp.generalized semi-closed[2]), if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open (resp. open) in X.
- 5. $\omega \alpha$ -closed [3], if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open in X.

3 Generalized Pre α Closed Sets

In this section, the concept of generalized pre α closed set is introduced and studied some of its properties in topological spaces.

Definition 3.1. In a topological space X, a subset A of X is called generalized pre α -closed (briefly gp α -closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in X.

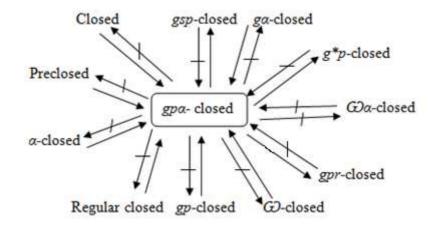
The compliment of $gp\alpha$ -closed is $gp\alpha$ -open in X. The family of all $gp\alpha$ -closed sets in X is denoted by $Gp\alpha C(X)$.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the family of gp α -closed sets in X is given by $\operatorname{Gp}\alpha C(X) = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}$.

Remark 3.3. From the definition 3.1, it is clear that every pre closed set is $gp\alpha$ -closed but not conversely.

Example 3.4. Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}\}$. Then the subset $A = \{a, e\}$ of X is gp α -closed but not pre closed in X.

Remark 3.5. From the definition 3.1 and from [1,3,4,5,7,12,18,19,20], we have the following implications. However converse implications are not true in general.



Example 3.6. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b, c\}\}$. Then the subset $A = \{a, b\}$ is $\text{gp}\alpha$ -closed but not closed, regular closed and $\omega\alpha$ -closed in X and $B = \{c\}$ is $\text{gp}\alpha$ -closed but not α -closed.

Example 3.7. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a, b\}\}$. Then the subset $A = \{a\}$ is $gp\alpha$ -closed but not $g\alpha$ -closed in X and the subset $B = \{a, b\}$ is gpr-closed but not $gp\alpha$ -closed set in X.

Example 3.8. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Then the subset $A = \{b\}$ is gp α -closed but not ω -closed in X and $B = \{a, c\}$ is $\omega\alpha$ -closed, gp-closed, gp-closed and g*p-closed but not gp α -closed in X.

From the above observations, the class of $gp\alpha$ -closed sets are properly placed between the class of preclosed and g*p-closed sets.

Remark 3.9. The following examples show that semi-closed(resp. semi-preclosed) and $gp\alpha$ -closed sets are independent of each other.

Example 3.10. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $A = \{b\}$ is semi-closed (resp.semi-pre closed) but not gp α -closed.

Example 3.11. In Example 3.7, the subset $A = \{a\}$ is $gp\alpha$ -closed but not semiclosed and semi-pre closed in X.

Remark 3.12. From the following examples it is clear that $gp\alpha$ -closed and sg-closed (resp. g-closed, gs-closed) sets are independent of each other.

Example 3.13. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $A = \{a\}$ is sg-closed, gs-closed but not $gp\alpha$ -closed in X.

Example 3.14. In Example 3.7, the subset $A = \{b\}$ is $gp\alpha$ -closed but not gs-closed, sg-closed and g-closed in X.

Example 3.15. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}\}$. Then the subset $A = \{a, c\}$ is g-closed but not $gp\alpha$ -closed in X.

Remark 3.16. From the examples 3.6 and 3.7, the $\omega\alpha$ -closed and $gp\alpha$ -closed sets are independent of each other.

Theorem 3.17. If A is gp α -closed in X, then pcl(A) - A does not contain any non-empty α -closed set in X.

Proof. Let F be a α -closed set in X contained in pcl(A) - A. Then $F \subseteq X - A$ and $A \subseteq X - A$. A subset A is α -closed and X - F is α -open in X, then $pcl(A) \subseteq X - F$. So, $F \subseteq X - pcl(A)$. Therefore $F \subseteq (pcl(A) - A) \cap (X - cl(A)) = \phi$. Hence, pcl(A) - A does not contain any non-empty α -closed set in X.

Theorem 3.18. Let A and B are $gp\alpha$ -closed sets, then $A \cup B$ is $gp\alpha$ -closed.

Proof. Let U be an α -open set in X such that $A \subseteq U$ and $B \subseteq U$. Since A and B are $\text{gp}\alpha$ -closed sets, then $pcl(A) \subseteq U$ and $pcl(B) \subseteq U$. But $pcl(A \cup B) = pcl(A) \cup pcl(B) \subseteq U$, so $pcl(A \cup B) \subseteq U$. Hence $A \cup B$ is $\text{gp}\alpha$ -closed.

Theorem 3.19. If A is $gp\alpha$ -closed set and $A \subseteq B \subseteq pcl(A)$, then B is $gp\alpha$ -closed.

Proof. Let U be an α -open in X such that $B \subseteq U$. Then $A \subseteq B$ implies that $A \subseteq U$. Since A is $gp\alpha$ -closed, then $pcl(A) \subseteq U$. But $B \subseteq pcl(A)$, so $pcl(B) \subseteq pcl(A)$. Then $pcl(B) \subseteq U$. Hence B is $gp\alpha$ -closed.

Theorem 3.20. If A is α -open and $gp\alpha$ -closed set of X, then A is preclosed.

Proof. Let $A \subseteq A$, where A is α -open. Then $pcl(A) \subseteq A$ as A is $gp\alpha$ -closed. But $A \subseteq pcl(A)$ is always true. Therefore A = pcl(A). Hence A is preclosed.

Theorem 3.21. Let $A \subseteq Y \subseteq X$ and suppose that A is $\text{gp}\alpha$ -closed in X, then A is $\text{gp}\alpha$ -closed relative to Y.

Proof. Consider $A \subseteq Y \cap G$, where G is open and so α -open in X. Since A is gp α closed in X, $A \subseteq G$ which implies $pcl(A) \subseteq G$. That is $Y \cap pcl(A) \subseteq Y \cap G$, where $Y \cap pcl(A)$ is the pre-closure of A. Thus A is gp α -closed relative to Y.

Definition 3.22. [11] For a topological space X, the kernel of a subset A of X is defined as the intersection of all open supersets of A and denoted by ker(A) or A^{\wedge} .

Definition 3.23. A subset A of X is called p star-closed (briefly p^* -closed), if $A = pcl(A) \cap A^{\wedge}$ and its compliment is p^* -open.

Theorem 3.24. For a subset A of X, the following are equivalent:

- (i) A is preclosed.
- (ii) A is gp α -closed and $A = pcl(A) \cap U$, for some open set U.
- (iii) A is $gp\alpha$ -closed and p^* -closed.

Proof. $(i) \to (ii)$ Every preclosed set is $\text{gp}\alpha$ -closed and A = pcl(A) and X is open. Then $A = X \cap A$, implies that $A = pcl(A) \cap X$.

 $(ii) \rightarrow (iii)$ Let $A = pcl(A) \cap U$, where U is some open set. Then $A \subseteq pcl(A)$ and $A \subseteq U$. But $A \subseteq ker(A) \subseteq U$. So, $A \subseteq ker(A) \subseteq pcl(A)$ implies $A \subseteq pcl(A) \cap U = A$. Then we have $A = ker(A) \cap pcl(A)$. Hence A is p^* -closed.

 $(iii) \to (i)$ Let A be gp α -closed, by definition, $pcl(A) \subseteq A$, wherever $A \subseteq U$ and U is α -open. Then $pcl(A) \subseteq ker(A) \subseteq U$, therefore $A = ker(A) \cap pcl(A)$ and hence A is preclosed.

Theorem 3.25. For each $x \in X$, $\{x\}$ is α -closed or $X - \{x\}$ is $\text{gp}\alpha$ -closed in X.

Proof. Let $\{x\}$ be α -closed, then the proof is completed. Suppose $\{x\}$ is not α -closed in X, then $X - \{x\}$ is not α -open and only α -open set containing $X - \{x\}$ is space X itself. Therefore $pcl(X - \{x\}) \subseteq X$ and hence $X - \{x\}$ is $pc\alpha$ -closed in X.

4 gp α -Closure and gp α -Interior

In this section we introduce $gp\alpha$ -closure and $gp\alpha$ -interior of a subset A of X by using the $gp\alpha$ -closed and $gp\alpha$ -open sets also studied their properties.

Definition 4.1. A subset A of X, the intersection of all $gp\alpha$ -closed sets containing A is called the $gp\alpha$ -closure of A and is denoted by $gp\alpha - cl(A)$.

That is $gp\alpha - cl(A) = \cap \{G : A \subseteq G, G \text{ is } gp\alpha \text{ -closed in } X \}.$

Definition 4.2. A subset A of X, $gp\alpha$ -interior of A and denoted by $gp\alpha - int(A)$, defined as $gp\alpha - int(A) = \bigcup \{G : G \subseteq A, G \text{ is } gp\alpha\text{-open in } X \}$.

Remark 4.3. If $A \subseteq X$, then

- (i) $A \subseteq \operatorname{gp} \alpha cl(A) \subseteq cl(A)$
- (ii) $int(A) \subseteq gp\alpha int(A) \subseteq A$.

Theorem 4.4. If A and B are subsets of X, then

- (i) $gp\alpha cl(X) = X$ and $gp\alpha cl(\phi) = \phi$.
- (ii) $A \subseteq \operatorname{gp} \alpha cl(A)$
- (iii) If B is any gp α -closed set containing A, then gp $\alpha cl(A) \subseteq B$
- (iv) If $A \subseteq B$, then $\operatorname{gp} \alpha cl(A) \subseteq \operatorname{gp} \alpha cl(B)$
- (v) $gp\alpha cl(A) = gp\alpha cl(gp\alpha cl(A))$
- (vi) $gp\alpha cl(A \cup B) = gp\alpha cl(A) \cup gp\alpha cl(B)$

Proof. (i),(ii), (iii) and (iv) follows from the definition 4.1.

(v) Let E be $gp\alpha$ -closed set containing A. Then by definition 4.1, $gp\alpha - cl(A) \subseteq E$. Since, E is $gp\alpha$ -closed and contains $gp\alpha - cl(A)$ and is contained in every $gp\alpha$ closed set containing A, it follows $gp\alpha - cl(gp\alpha - cl(A)) \subseteq gp\alpha - cl(A)$. Therefore $gp\alpha - cl(gp\alpha - cl(A)) = gp\alpha - cl(A)$. (vi) Since $\operatorname{gp}\alpha - cl(A) \subseteq \operatorname{gp}\alpha - cl(A \cup B)$ and $\operatorname{gp}\alpha - cl(B) \subseteq \operatorname{gp}\alpha - cl(A \cup B)$ implies that $\operatorname{gp}\alpha - cl(A) \cup \operatorname{gp}\alpha - cl(A \cup B)$. Let x be any point in X such that $x \notin \operatorname{gp}\alpha - cl(A) \cup \operatorname{gp}\alpha - cl(B)$, then there exist $\operatorname{gp}\alpha$ -closed sets E and F, such that $A \subseteq E$ and $B \subseteq F$, $x \notin E$ and $x \notin F$ implies that $x \notin E \cup F$, $A \cup B \subseteq E \cup F$ and $E \cup F$ is $\operatorname{gp}\alpha$ -closed. Thus $x \notin \operatorname{gp}\alpha - cl(A \cup B)$, $\operatorname{gp}\alpha - cl(A \cup B) \subseteq \operatorname{gp}\alpha - cl(A) \cup \operatorname{gp}\alpha(B)$. Hence, we conclude that $\operatorname{gp}\alpha - cl(A \cup B) = \operatorname{gp}\alpha - cl(A) \cup \operatorname{gp}\alpha - cl(B)$.

Theorem 4.5. Let A and B be subsets of X, then

 $gp\alpha - cl(A \cap B) \subseteq gp\alpha - cl(A) \cap gp\alpha - cl(B)$

Remark 4.6. The equality of Theorem 4.5 does not hold in general as seen from the following example.

Example 4.7. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ be a topology on X. For subsets of X, $A = \{a\}$ and $B = \{b\}$. The $\operatorname{gp}\alpha - cl(A) = \{a, c\}$ and $\operatorname{gp}\alpha - cl(B) = \{b, c\}$, then $\operatorname{gp}\alpha - cl(\{A \cap B\}) = \phi$. Hence

 $gp\alpha - cl(A) \cap gp\alpha - cl(B) \nsubseteq gp\alpha(A \cap B)$

Remark 4.8. If $A \subseteq X$ and A is gp α -closed, then $gp\alpha - cl(A)$ is smallest $gp\alpha$ -closed subset of X containing A.

Theorem 4.9. For any $x \in X$, $x \in \text{gp}\alpha - cl(A)$ if and only if $A \cap V \neq \phi$ for every $\text{gp}\alpha$ -open set V containing x.

Proof. Let $x \in \text{gp}\alpha - cl(A)$. Suppose there exists $\text{gp}\alpha$ -open set V containing x, such that $A \cap V \neq \phi$, then $A \subseteq X - V$, where X - V is $\text{gp}\alpha$ -closed set. So, that $\text{gp}\alpha - cl(A) \subseteq X - V$. This implies that $x \notin \text{gp}\alpha - cl(A)$, which contradicts to the fact that $x \in \text{gp}\alpha - cl(A)$. Hence $A \cap V \neq \phi$ for every open set containing x.

Conversely, let $x \notin \text{gp}\alpha - cl(A)$, then there exists $\text{gp}\alpha$ -closed set G containing A, such that, $x \notin G$. Then $x \in X - F$ is $\text{gp}\alpha$ -open. Also $(X - F) \cap A = \phi$, which is contradiction. Hence, $x \in gp\alpha - cl(A)$.

Theorem 4.10. Let A be subset of X, then $gp\alpha - int(A)$ is the largest $gp\alpha$ -open subset of X contained in A, if A is $gp\alpha$ -open.

The converse of the above theorem need not be true as seen from following example.

Example 4.11. In the example 3.7, the subset $A = \{b, c\}$ of X, then $gp\alpha$ -int(A)= $\{b\}$ is $gp\alpha$ -open in (X, τ) , but A is not $gp\alpha$ -open in X.

Theorem 4.12. Let A and B be subsets of X, then

- (i) $gp\alpha int(X) = X$ and $gp\alpha int(\phi) = \phi$.
- (ii) $\operatorname{gp}\alpha int(A) \subseteq A$.

(iii) If B is any gp α -open set contained in A, then $B \subseteq \text{gp}\alpha - int(A)$.

Proof. (i) and (ii) follows from the definition 4.2.

(*iii*) Suppose B is any gp α -open set contained in A. Let $x \in B$,since B is gp α -open set contained in A. Then $x \in \text{gp}\alpha$ -int(A). Hence, $B \subseteq \text{gp}\alpha$ -int(A).

Remark 4.13. For any subset of X, $int(A) \subseteq gp\alpha - int(A)$

5 gp α -Neighborhoods and gp α -Limit points

In this section we define the $gp\alpha$ -neighborhood, $gp\alpha$ -limit points and $gp\alpha$ -derived set of a set and study some of their basic properties.

Definition 5.1. A subset N of X is said to be $gp\alpha$ -neighborhood of a point $x \in X$, if there exists an $gp\alpha$ -open set G containing x, such that $x \in G \subseteq N$.

Definition 5.2. Let (X, τ) be a topological space and A be a subset of X. A subset N of X is said to be gp α -neighborhood of A if there exists an gp α -open set G such that $A \in G \subseteq N$.

The collection of all $gp\alpha$ -neighborhood of $x \in X$ is called the $gp\alpha$ -neighborhood system and denoted by $gp\alpha N(x)$.

Theorem 5.3. If $N \subseteq X$ is gp α -open if it is a gp α -neighborhood of each of its points.

Proof. Let $x \in N$. Since N is $gp\alpha$ -open such that $x \in N \subseteq N$. Also x is an arbitrary point of N, it follows that N is a $gp\alpha$ -neighborhood of each of its points.

Remark 5.4. The converse of the above theorem need not to be true as seen from following example.

Example 5.5. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{b\}\}$. A subset $A = \{b, c\}$ is $\text{gp}\alpha$ -neighborhood of each of its points b and c but A is not $\text{gp}\alpha$ -open.

Theorem 5.6. If A be subset of X and $x \in \text{gp}\alpha - cl(A)$ if and only if any $\text{gp}\alpha$ -neighborhood N of x in X, $N \cap A \neq \phi$.

Proof. Suppose there is a gp α -neighborhood of N of x in X, such that $N \cap A = \phi$. Then there exist an gp α -open set G of X, such that $x \in G \subseteq N$. So, $G \cap A = \phi$ and $x \in X - G$. This implies $\operatorname{gp}\alpha - \operatorname{cl}(A) \in X - G$ and therefore $x \notin \operatorname{gp}\alpha - \operatorname{cl}(A)$, which contradicts to the fact that $x \in \operatorname{gp}\alpha - \operatorname{cl}(A)$. Hence, $N \cap A \neq \phi$.

Conversely, let us assume that $x \notin \text{gp}\alpha - cl(A)$, there exists a gp α -closed set G of X, such that $A \subseteq G$ and $x \notin G$. So, $x \in X - G$ and X - G is gp α -open in X. It becomes a gp α -neighborhood of x in X. Since $A \cap (X - G) = \phi$, which leads to a contradiction. Hence, $x \in \text{gp}\alpha - cl(A)$.

Definition 5.7. A point $x \in X$ is called a gp α -limit point of a subset A of X, if and only if every gp α -neighborhood of x contains a point of A distinct from x. That is $[N - \{x\}] \cap A \neq \phi$ for each gp α -neighborhood of N of x.

Equivalently, if and only if every $gp\alpha$ -open set G containing x contains a point of A other than x.

In topological space (X, τ) , the set of all $gp\alpha$ -limit points of A is called a $gp\alpha$ -derived set of A and is denoted by $gp\alpha - d(A)$.

Theorem 5.8. Let A and B be subsets of X, then

- (i) $gp\alpha d(\phi) = \phi$.
- (ii) If $A \subseteq B$, then $\operatorname{gp} \alpha d(A) \subseteq \operatorname{gp} \alpha d(B)$.
- (iii) If $x \in \text{gp}\alpha d(A)$, then $x \in \text{gp}\alpha d[A \{x\}]$.

- (iv) $\operatorname{gp}\alpha d(A \cap B) = \operatorname{gp}\alpha d(A) \cap \operatorname{gp}\alpha d(B)$.
- (v) $\operatorname{gp}\alpha d(A \cap B) \subseteq \operatorname{gp}\alpha d(A) \cap -d(B).$

Proof. (i) and (ii) follows from the definition 5.7.

(iii)Let $x \in gp\alpha - d(A)$. By definition 5.7, every $gp\alpha$ -open set G containing x contains at least one point other than x. Hence, $x \in gp\alpha - d[A - \{x\}]$, that is x is $gp\alpha$ -limit point of $[A - \{x\}]$. Thus $x \in gp\alpha - d[A - \{x\}]$.

(iv) We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. From (ii) $\operatorname{gp}\alpha - d(A) \cup \operatorname{gp}\alpha - d(B) \subseteq \operatorname{gp}\alpha - d(A \cup B)$. In other way, suppose $x \notin (\operatorname{gp}\alpha - d(A) \cup \operatorname{gp}\alpha - d(B))$, then $x \notin \operatorname{gp}\alpha - d(A)$ and $x \notin \operatorname{gp}\alpha - d(B)$, hence there exists $\operatorname{gp}\alpha$ -open sets U and V each containing x, such that $U \cap (A - \{x\}) = \phi$ and $V \cap (B - \{x\}) = \phi$. Then $(U \cap V) \cap (A - \{x\}) = \phi$ and $U \cap V) \cap (B - \{x\}) = \phi$. On combining $(U \cap V) \cup ((A \cup B) - \{x\}) = \phi$. Therefore $x \notin \operatorname{gp}\alpha - d(A \cup B)$. Hence, $\operatorname{gp}\alpha - d(A \cup B) = \operatorname{gp}\alpha - d(A) \cup \operatorname{gp}\alpha - d(B)$.

(v) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, from (ii) $\operatorname{gp} \alpha - d(A \cap B) \subseteq \operatorname{gp} \alpha - d(A)$ and $\operatorname{gp} \alpha - d(A \cap B) \subseteq \operatorname{gp} \alpha - d(B)$. Consequently, $\operatorname{gp} \alpha - d(A \cap B) \subseteq \operatorname{gp} \alpha - d(A) \cap \operatorname{gp} \alpha - d(B)$.

References

- [1] D. Andrijevic, *Semi-preopen sets*, Mat. Vesnik, 38 (1) (1986) 24-32.
- [2] S. P. Arya and T. M. Nour, *Charactrezations of s-Normal spaces*, Indian Jl.Pure and Appld.Math., 21 (1990) 717-719.
- [3] S. S. Benchalli, P. G. Patil and T. D. Rayanagoudar, $\omega\alpha$ -closed sets in topological spaces, The Global Jl. Appl. Maths and Math Sciences, 2 (2009) 53-63.
- [4] P. Bhattacharya and B. K. Lahiri, Semi-generalized closed sets in topology, The Indian. Jl. Math, 29 (3) (1987) 375-382.
- [5] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci., Kochi Univ., Ser. A. Math, 16 (1995) 35-48.
- [6] W. Dunham and N. Levine, Further results on generalized closed sets in topology, Kyungpook Math. Jl, 20 (1980) 169-175.
- Y. Gnanambal, On Generalized pre-regular closed sets in topological spaces, Indian Jl. Pure. Appl. Math. 28 (3) (1997) 351-360.
- [8] S. Jafari, S. S. Benchalli, P. G. Patil and T. D. Rayanagoudar, Pre g*-closed sets in topological spaces, Jl. of Advanced Studies in Topology, 3 (2012) 55-59.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36-41.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19 (2)(1970) 89-96.
- [11] H. Maki, Generalized Λ-sets and associated closure operator, The Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, (1986) 139-146.

- [12] H. Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, Bull. Fukuoka Uni. Ed. Part III, 42 (1993) 13-21.
- [13] H. Maki, J.Umehare and T.Nori, Every topological space is $Pre-T_{1/2}$, Mem.Fac.Soc.Kochi Univ.Math.,17(1996) 32-42.
- [14] A. S. Mashhour, M. E. Abd El-Monesf and S. N. El-Deeb, On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt 53 (1982) 47-53.
- [15] A. S. Mashhour, M. E. Abd El-Monesf and S. N. El-Deeb, α -continuous and α -open mappings, Acta Math Hung. 41 (1983) 213-218.
- [16] O. Njasted, On some classes of nearly open sets, Pacific Jl. Math, 15 (1965) 961-970.
- [17] M. Stone, Absolutely FG spaces, Proc. Amer. Math. Soc., 80 (1980) 515-520.
- [18] P. Sundaram and M. Sheik John, On ω-closed sets in topology, Acta. Ciencia Indica, 4 (2000) 389-392.
- [19] M. K. R. S. Veerakumar, g*pre-closed sets, Acta. Ciencia Indica, 28 (2002) 51-60.