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Abstract 

It is well known that a characteristic property of the Bertrand curve is the existence of a linear 

relation between its curvature and torsion. In this paper, we propose a new method for 

generating Bertrand curves, which avoids the basic restrictions. Our main result is that every 

space curve is a directional Bertrand curve. 
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1. INTRODUCTION 

 

A Bertrand curve is a curve in Euclidean 3-space whose principal normal is the principal normal of 

another curve [14]. More recently, there have been a number of studies in the Computer Aided Geometric 

Design (CAGD) literature dealing with Bertrand curves [13]. Moreover, the Bertrand curves are also 

studied even different spaces [10, 12]. 

 

The Frenet frame plays an important role in classical differential geometry. Because classical topics, for 

instance spherical curves, Bertrand curves, involutes and evolutes are investigated by using the Frenet 

frame [9]. However, the Frenet frame has several disadvantages in applications. For instance, the Frenet 

frame is undefined wherever the curvature vanishes. Moreover, the main disadvantage of the Frenet frame 

is that it has undesirable rotation about tangent vector [2]. Therefore, Bishop [1] introduced a new frame 

along a space curve which is more suitable for applications. But, it is well known that Bishop frame 

calculations are not an easy task [15] . In order to construct the 3D curve offset, Coquillart [4] introduced 

the quasi-normal vector of a space curve. In this paper, we extend this concept to Bertrand curves and 

obtain the differential geometric properties. 

 

The q-frame have many advantages compare to other frames (Frenet, Bishop). For instance, the q-frame 

can be defined even along a line ( 0  ). Morever, the q-frame can be calculated easily. 

 

Let ( )s  be a curve with arc length parameter s, the q-frame  q, , ,qt n b k  along the curve is given by 

q q q,     ,             


    


t k
t n b t n

t k
                                                                                                      (1)  
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where t is the unit tangent vector, qn is the quasi-normal vector, qb is the quasi-binormal vector and k  is 

the projection vector. For simplicity, we have choosen the projection vector (0,0,1)k   in this paper. 

However, the q-frame is singular in all cases where t  and k are parallel. Thus, in these cases, where t  

and k are paralel, the projection vector k  can be chosen as (0,1,0)k   or (0,0,1)k   [17,18]. 

The variation equations of the q-frame are given by 

 

1 2

q 1 3 q

q 2 3 q

0 k k

k 0 k                      

k k 0

t t

n n

b b







    
    

     
         

                                                                                   (2)  

        

where the q-curvatures are expressed as follows 

 

1 q

2 q

3 q q

k cos ,

k sin ,                     

k d ,

t n

t b

n b







   

   

    

                                                                                         (3)                 

and   is the  Euclidean angle between the principal normal vector n  and the quasi-normal vector qn . 

 

2. DIRECTIONAL BERTRAND OFFSET CURVES 

 

In this section, we introduce the directional Bertrand curves in Euclidean 3-space. A pair of curves are 

said to be directional Bertrand mates if there exists a one-to-one correspondence between their points 

such that both curves have a common principal quasi-normal at their corresponding points. 

Proposition 1. Let (s)  
be a space curve with arc length parameter s.  If the curve 1(s )  is directional 

Bertrand mate of (s) , then we have the following: 

(a) The distance between the corresponding points of the directional Bertrand mates is a constant. 

(b) The angle between the tangent vectors at the corresponding points of the directional Bertrand mates is 

a constant, if 3k 0.   

Proof: (a) Let us denote the q-frames of   and   by   , ,t n bq q
 and  , ,t n bq q

  
, respectively. Then 

there exists a relationship between the position vectors of   and   as 

 

1 q(s ) (s) (s).           n                                                                                                                (4) 

 

By differentiating (4) with respect to s  gives 

 

1
1 q 3 q

ds
(1 k ) k .       

ds

    t t n b                                                                                                 (5) 

 

On the other hand, since t  is orthogonal to qn , we have 
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0.                                                                                                                                              (6) 

 

which implies that constant,   thus the distance between the corresponding points of   and   is  

 

1(s ) (s) ,   
 

 

which is a constant. The proof is completed. 

(b) From (5) and (6), we get 

 

2 2 21
1 3

ds
(1 k ) k .     

ds
                                                                                                                   (7)  

 

From (5), we obtain 

 

1 3 q

2 2 2

1 3

(1 k ) k
.  

(1 k ) k


 

 
 

t b
t                                                                                                                (8)  

 

Let   denote the angle between the vectors t  and 
t . Thus we can write 

 

, cos ,      t t                                                                                                                                (9)  

 

where 

1

2 2 2

1 3

1 k
cos .    

(1 k ) k


  

 
                                                                                                     (10) 

  

In the last equation, if 3k 0 , then cos 1   which implies that the angle   between the tangent 

vectors is a constant. 

 

Theorem 2. Let (s)  be a space curve with arc length parameter s.  If the curve 1(s )  is directional 

Bertrand mate of (s) , then the relationship between the q-frames of   and   can be written as 
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2 2 2 2 2 2

1 3 1 3
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3 1 qq

2 2 2 2 2 2

1 3 1 3
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0

(1 k ) k (1 k ) k

0 1 0
.   

k (1 k )
0

(1 k ) k (1 k ) k







      
               
     
     
     
       
     
             

t t

nn

bb

                                                     (11) 

 

 

Proof: From (1) and (8), we have 

 

1 q 3 q

2 2 2

1 3

(1 k ) k
. 

(1 k ) k


   

 
 

t k n b k
t k                                                                                      (12)   

                                                    

On the other hand, using Lagrange's identity and (0,0,1)k implies that 

 

2 21 , 1 ,  t k t k                                                                                                            (13)  

 

where   is the third component of the tangent vector of the curve (s) . Similarly, a simple calculation 

implies that 

 

q q q.    b k t n k n
 

 

Substituting (12) and (13) into (11) gives 

 

2

1 3 q

2 2 2

1 3

( 1 (1 k ) k )
.

(1 k ) k


   

 
 

n
t k 

 

 

Thus, we have the quasi-normal vector q


n  of   

in the following form 

q q ,
t k

n n
t k







  


                                                                                                                                    

(14)                                                                       

Note that, the above equation implies that the quasi-normal vectors qn  and q


n  of directional Bertrand 

mates are always linearly dependent. 

From (1) and (8), the quasi-binormal of 1(s )  is obtained as 
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q 1 3

q
2 2 2

1 3

(1 k ) k
.                                            

(1 k ) k


 

 
 

b t
b

 

 

Thus, we state the following main corollary. 

 

Corollary 3. In view of equation (14), every space curve admits infinite directional Bertrand mates. 

Theorem 4. If a curve (s)  has a directional Bertrand mate 1(s ) , then the relations between q-

curvatures of the Bertrand mates (s)  and 1(s )  can be expressed as  

 

2

1 1 3
1 2 2 2

1 3

(1 k )k k
k ,

(1 k ) k

  
 

 


 

 

2

3 1 1 3
2 22 2 2

1 3

k (1 k ) k k
k k

(1 k ) k

 
   
  

 
 

and 

3
3 2 2 2

1 3

k
k

(1 k ) k

  
 

 

where 1 2k ,k 
 and 3k

 are the q-curvatures of 1(s ).  

Proof: From (9) and (10), 
t  and q


b  are, respectively, calculated by 

 

qcos sin ,t t b
                                                                                                                         (15) 

 

and 

 

q qsin cos ,b t b
                                                                                                                       (16) 

 

where 

3

2 2 2

1 3

k
sin . 

(1 k ) k


 

 
                                                                                                             (17)  

By differentiating (15) with respect to 1s , then substituting (2) and (7) into the result gives 

 

2 q 1 3 q 21

2 2 2

1 3

sin (d k ) (cos k sin k ) cos (k d )ds
.      

ds (1 k ) k

t n b
t


       


 

  
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From (3), we have 

 

1 3
1 2 2 2

1 3

cos k sin k
k .  

(1 k ) k

  
 

 


                                                                                                                    (18)  

 

By a similar method, 2k
 and  3k

 can be obtained as  

 

2 3 2 1
2 2 2 2

1 3

sin (d k ) k cos (d k )(1 k )
k ,

(1 k ) k

       
 

 
                                             

                           (19)  

 

and 

3 1
3

2 2 2

1 3

cos k sin k
k .  

(1 k ) k

  
 

 


                                                                                                                 (20)  

 

Substituting (10) and (17) into (18) and (20), gives  

 

2 2

1 1 3
1 2 2 2

1 3

(1 k )k k
k ,

(1 k ) k

  
 

 


 

and 

3
3 2 2 2

1 3

k
k .

(1 k ) k

  
 

 

 

On the other hand, from (10) and (19), we have 

 

3

1

k
tan .   

(1 k )


 


 

 

By differentiating above equation gives 

 

2

3 1 1 3

2 2 2

1 3

k (1 k ) k k
d .

(1 k ) k

   
  

 
                                                                                                               (21)  

 

Substituting (10), (17) and (21) into (19) gives 
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2

3 1 1 3
2 22 2 2

1 3

k (1 k ) k k
k k .

(1 k ) k

 
   
  

 
 

 

This concludes the proof. 

 

3. EXAMPLES 

 

In this section, we have made several examples to show the advantages of this new approach.  

 

Example 1. In this example, we construct the directional Bertrand mate of the line parametrized by 

(t) (t, t, t).    

The q-frame of the line is obtained by 

 

3 3 3
( , , ).

3 3 3
t

 

 

By using (1) and (0,0,1)k  we have the quasi-normal vector as follows 

 

q

2 2
( , ,0),

2 2
 n  

and 

q

6 6 6
( , , ).

6 6 6
 b

 

 

For 1  , the directional Bertrand mate of the line is parametrized by 

2 2
(t) (t , t , t).

2 2
      
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Figure 1. The curve(blue) with directional Bertrand mate(black). The quasi-normal(red) vectors are 

shown. 

Figure 1 shows the directional Bertrand mate of the line. 

 

Example 2. Assume that the curve is given by 

9(t) (t, t, t ). 
 

 

 

 

Figure 2. The curve (blue) and; left: The Bertrand mate (black) with the Frenet normal vectors (red), 

right: The directional Bertrand mate (black) with the quasi-normal vectors (red). 

It is easy to see that the curvature   and the torsion   of the curve are obtained by  

3
2

7

16

72 2t
,     0,

(2 81t )
   

  

respectively. Thus this curve is a plane curve. Therefore, this curve admits infinite Bertrand mates. 

For 1  , the Bertrand mate and the directional Bertrand mate of the curve are shown in Figure 2. 

 



210 Mustafa DEDE, Cumali EKİCİ, İlkay ARSLAN GÜVEN / GU J Sci, 31(1): 202-211 (2018) 

 

 

Observe that, there are two issues that we need to discuss. One is that; hence 0,   the angle 

between the rotation minimizing frame (Bishop frame) and Frenet frame is constant, therefore 

Bishop frame is also not suitable for this example and the other is that; as shown in Figure 2, the 

Frenet normal vector can not be calculated at the point (0,0,0), therefore, the Bertrand mate of 

the curve is not accurate. There is no doubt that the best result is obtained by using q-frame. 

 

Example 3. Let us consider the curve parametrized by  

3 3
2 2(1 t) (1 t) 2t

(t) ( , , ).
3 3 2

 
   

 

 Figure    

Figure 3. The curve (blue) and; left: The Bertrand mate (black) with the Frenet normal vectors (red), 

right: The directional Bertrand mate (black) with the quasi-normalvectors (red). 

It is easy to see that 

2 2

1 2 1 2
,and .

4 41 t 1 t
    

 
 

Thus, there is linear relation between the curvature and the torsion of the curve, this curve admits infinite 

Bertrand mates. It should be pointed out, however, that the normal vector of (t)  
has undesirable 

rotation which causes the twist in the Bertrand mate. For  3  , the Bertrand mate and the directional 

Bertrand mate of the curve (t)  are shown in Figure 3. 

 

4. CONCLUSION 

 

In this paper, we give a new idea to solve the stability problem of parallel plane curves (see Figure 2). 

This idea can be summarized by the following useful rule:  

Assume that we have a plane curve in three dimensional space then, by using the q-frame, we can 

construct parallel curve in the z-axis direction (0,0,1)k  . The parallel curves constructed by using this 

new technique can be used in geometric design without requirements of any additional approximation 

methods. 
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