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1. INTRODUCTION 

 

Some sequences of numbers have been studied over several years. In the literature, in mathematics and 

physics, there are a lot of integer sequences, which are used in almost every field modern sciences. The 

Fibonacci sequence is the famous integer sequence, which is defined by the following recurrence relation 

 

𝐹𝑛+1 = 𝐹𝑛+𝐹𝑛−1  
 

With the initial conditions  𝐹₀ = 0 and 𝐹₁ = 1.  

 

Another well-known sequence is the Lucas sequence, which satisfies the following recurrence relation 

 

𝐿𝑛+1 = 𝐿𝑛+𝐿𝑛−1 
 

with 𝐿₀ = 2 and 𝐿₁ = 1. 

 

There are many generalizations of the Fibonacci and Lucas sequences [1,2,4]. Two of them was given by 

Falcon and Plaza in [2,4] as follows: 

 

For any integer number 𝑘 ≥ 1, the 𝑘th Fibonacci sequences {𝐹𝑘,𝑛}
𝑛∈ℕ

 is defined as for n≥ 1  

 

𝐹𝑘,𝑛+1 = 𝑘𝐹𝑘,𝑛 + 𝐹𝑘,𝑛−1               (1) 

 

with initial conditions 𝐹𝑘,0 = 0,  𝐹𝑘,1 = 1. 
 

If  we take 𝑘 = 1 in (1), we get the Fibonacci sequence: {0, 1 ,1, 2, 3, 5, 8, . . . }. 
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By setting  𝑘 = 2 in (1), we obtain the Pell sequence: {0, 1, 2, 5, 12, 29, 70, . . . }. 
 

The 𝑘-Lucas sequence {𝐿𝑘,𝑛}
𝑛∈ℕ

 is defined by the following recurrence relation for 𝑛, 𝑘 ≥ 1 

 

𝐿𝑘,𝑛+1 = 𝑘𝐿𝑘,𝑛 + 𝐿𝑘,𝑛−1              (2) 

 

with  𝐿𝑘,0 = 2,  𝐿𝑘,1 = 𝑘.  

 

For 𝑘 = 1 in (2), the classical Lucas sequence is obtained: {2, 1, 3, 4, 7, 11, 18, … }. 
For 𝑘 = 2 in (2), the Pell-Lucas sequence is obtained: {2, 2, 6, 14, 34, 82, 198, . . . }. 

 

There are some properties for these numbers. Some of them are [2,4]: 

 For 𝑛 ∈ ℕ, 𝐹𝑘,2𝑛+1 = (𝐹𝑘,𝑛)2+(𝐹𝑘,𝑛+1)2,            (3) 

 For 𝑛 ∈ ℕ, 𝐹𝑘,𝑛−1  𝐹𝑘,𝑛+1 − (𝐹𝑘,𝑛)2 = (−1)𝑛,            (4)                                                                                     

 For  𝑟 > 𝑛, 𝐿𝑘,𝑛−𝑟𝐿𝑘,𝑛+𝑟 − (𝐿𝑘,𝑛)2 = (−1)𝑛+𝑟𝐿𝑘,2𝑟 + 2(−1)𝑛+1,           (5) 

 For 𝑛 ∈ ℕ, 𝐹𝑘,2𝑛 = 𝐹𝑘,𝑛𝐿𝑘,𝑛,              (6) 

 For  𝑛, 𝑚 ∈ ℕ, 𝐿𝑘,𝑛𝐿𝑘,𝑛+𝑚 = 𝐿𝑘,2𝑛+𝑚 + (−1)𝑛𝐿𝑘,𝑚,           (7) 

 For 𝑚 ≥ 1,  𝐿𝑘,𝑛+1𝐿𝑘,𝑚 + 𝐿𝑘,𝑛𝐿𝑘,𝑚−1 = (𝑘2 + 4)  𝐹𝑘,𝑛+𝑚.           (8) 

 

The period of the Fibonacci sequence mod 𝑚 was first studied by Wall [12]. The recurrence part in the 

sequence creates a new sequence and gives the length of the periods of these sequences. Furthermore 

Kramer and Hoggatt [8] studied the periods of Fibonacci and Lucas sequences mod 2ⁿ. Falcon and Plaza 

[3] studied the period length of the 𝑘-Fibonacci sequence mod 𝑚. The period of such cyclic sequences is 

known as Pisano period and the period-length is denoted by  𝜋𝑘(𝑚). 
 

Motivated by the above papers, we study the Pisano period for the 𝑘-Lucas sequence and  we obtain 

Pisano periods for the 𝑘-Fibonacci and 𝑘-Lucas sequences mod 2ⁿ. 

 

2. PISANO PERIODS FOR THE K-FIBONACCI AND K-LUCAS SEQUENCES 

 

Theorem 2.1. {𝐿𝑘,𝑛  mod 𝑚 }
𝑛∈ℕ

 is a simple periodic sequence . 

 

Proof. From the defining relation we write, 

 

𝐿𝑘,𝑛−1 = 𝐿𝑘,𝑛+1−𝑘𝐿𝑘,𝑛  .    
 

If  𝐿𝑘,𝑡+1 ≡ 𝐿𝑘,𝑠+1  (mod 𝑚)  and  𝐿𝑘,𝑡 ≡ 𝐿𝑘,𝑠  (mod 𝑚) , then 

 

𝐿𝑘,𝑡−1 ≡ 𝑘𝐿𝑘,𝑠−1  (mod 𝑚). 
 

By continiuing this way, we get 𝐿𝑘,𝑡−𝑠+1 ≡ 𝐿𝑘,1  (mod 𝑚) and  𝐿𝑘,𝑡−𝑠 ≡ 𝐿𝑘,0  (mod 𝑚). 

So that  {𝐿𝑘,𝑛  mod 𝑚 }
𝑛∈ℕ

 is a simple periodic sequence with 𝑡 − 𝑠 period. 

 

Corollary 2.2. For 𝑚 > 3 every Pisano period begins with 2, 3. 

 

Theorem 2.3. If  the prime factorization of 𝑚 is 𝑚 = ∏ 𝑝𝑖
𝑒𝑖, then  

 

𝜋𝑘(𝑙𝑐𝑚(𝑝𝑖
𝑒𝑖)) = 𝑙𝑐𝑚(𝜋𝑘(𝑝𝑖

𝑒𝑖)).        

                                                                                                           

Proof. The statement 𝜋𝑘(𝑝𝑖
𝑒𝑖) is the length of the period of 𝐿𝑘,𝑛  (mod p) implies that the sequence 

𝐿𝑘,𝑛  (mod 𝑝𝑖
𝑒𝑖), repeats only after blocks of length 𝑐𝜋𝑘(𝑝𝑖

𝑒𝑖) and the statement 𝜋𝑘(𝑚) is the period-
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length of the sequence 𝐿𝑘,𝑛  (mod m), which is, 𝐿𝑘,𝑛  (mod 𝑝𝑖
𝑒𝑖) repeats after 𝜋𝑘(𝑚) terms for all values 

of 𝑖. Since any such number gives a period of 𝐿𝑘,𝑛  (mod m), we conclude that 𝜋𝑘(𝑚) = 𝑙𝑐𝑚(𝜋𝑘(𝑝𝑖
𝑒𝑖)). 

 

Corollary 2.4. If 𝑟|𝑚 then  𝜋𝑘(𝑟)|𝜋𝑘(𝑚). 

 

Proof. If 𝑟 ∣ 𝑚, then 𝑚 = 𝑟. 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘. From Theorem 2.3, we get 

𝜋𝑘(𝑚) = 𝑙𝑐𝑚(𝜋𝑘(𝑟), 𝜋𝑘(𝑝1
𝑒1), … , 𝜋𝑘(𝑝𝑘

𝑒𝑘)) and from lcm definition 𝜋𝑘(𝑟)|𝜋𝑘(𝑚). 

 

Lemma 2.5. If 𝑘 is an odd integer, then for 𝑛 ∈ ℕ 

i.   𝐿𝑘,3𝑛 ≡ 0 (𝑚𝑜𝑑 2)                    (9) 

ii.  𝐹𝑘,3𝑛 ≡ 0 (𝑚𝑜𝑑 2).                   (10) 

 

Proof. i. We can give the proof  by induction. For 𝑛 = 1, 

 

𝐿𝑘,3 = 𝑘3 + 3𝑘. 

 

Since 𝑘 is an odd number, 𝑘3 + 𝑘 is an even integer. Thus, 

 

𝐿𝑘,3 ≡ 0 (mod 2). 
 

Suppose 𝐿𝑘,3𝑛 ≡ 0 (mod 2). So,  

 

𝐿𝑘,3(𝑛+1) = 𝑘𝐿𝑘,3𝑛+2 + 𝐿𝑘,3𝑛+1 

                 = 𝑘(𝑘𝐿𝑘,3𝑛+1 + 𝐿𝑘,3𝑛) + 𝐿𝑘,3𝑛+1 

                 = (𝑘2 + 1)𝐿𝑘,3𝑛+1 + 𝑘𝐿𝑘,3𝑛. 

 

Since (𝑘2 + 1) is an even integer and from induction hypothesis, 

 

(𝑘2 + 1)𝐿𝑘,3𝑛+1 + 𝑘𝐿𝑘,3𝑛 ≡ 0 (mod 2). 
 

Thus we get 

 

𝐿𝑘,3(𝑛+1) ≡ 0 (mod 2). 

 

ii. We can give the proof  by induction. For  𝑛 = 1, 𝐹𝑘,3 = 𝑘2 + 1 and thus 

 

𝐹𝑘,3 ≡ 0 (mod 2). 
 

Suppose 𝐹𝑘,3𝑛 ≡ 0 (mod 2). So, 

 

𝐹𝑘,3(𝑛+1) = 𝑘𝐹𝑘,3𝑛+2 + 𝐹𝑘,3𝑛+1 

                 = 𝑘(𝑘𝐹𝑘,3𝑛+1 + 𝐹𝑘,3𝑛) + 𝐹𝑘,3𝑛+1 

                 = (𝑘2 + 1)𝐹𝑘,3𝑛+1 + 𝑘𝐹𝑘,3𝑛 

 

and thus we have 

 

𝐹𝑘,3(𝑛+1) ≡ 0 (mod 2).  
 

Lemma 2.6. If 𝑘 is an even integer, then for 𝑛 ∈ ℕ  

i.   𝐿𝑘,2𝑛 ≡ 0 (mod 2)               (11) 

ii.  𝐹𝑘,2𝑛 ≡ 0 (mod 2).               (12) 
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Proof. i. We can give the proof by induction. For  𝑛 = 1, 𝐿𝑘,2 = 𝑘2 + 2  and thus 

 

𝐿𝑘,2 ≡ 0 (mod 2). 
 

Suppose 𝐿𝑘,2𝑛 ≡ 0 (mod 2). 
 

For  𝑚 = 0  and  𝑛 is replaced by 2ⁿ, we have the Eq. (7) 

 

𝐿𝑘,2𝑛+1 = (𝐿𝑘,2𝑛)2 + 2(−1)2𝑛+1 

 

and thus 

 

𝐿𝑘,2𝑛+1 ≡ 0 (mod 2). 

 

ii. We can give the proof by induction. For  𝑛 = 1, 𝐹𝑘,2 = 𝑘 and thus 

 

𝐹𝑘,2 ≡ 0 (mod 2). 
 

Suppose 𝐹𝑘,2𝑛 ≡ 0 (mod 2). 
 

For  𝑛 is replaced by 2ⁿ, we get the Eq. (6) 

 

𝐹𝑘,2𝑛+1 = 𝐹𝑘,2𝑛𝐿𝑘,2𝑛. 

 

From the Eq. (11) and induction hypothesis can be formulated as 

 

𝐹𝑘,2𝑛+1 ≡ 0 (mod 2).  

 

Lemma 2.7. If 𝑘 is odd integer, 

i.   𝐹𝑘,3.2𝑛−1 ≡ 0 (mod 2𝑛)               (13) 

ii.  𝐹𝑘,3.2𝑛−1+1 ≡ 1 (mod 2𝑛).              (14) 

 

Proof. i. We can give the proof by induction. For 𝑛 = 1,  𝐹𝑘,3 = 𝑘2 + 1  and 

 

𝐹𝑘,3 ≡ 0 (mod 2). 

 

Suppose 𝐹𝑘,3.2𝑛−1 ≡ 0 (mod 2𝑛). 

 

For  𝑛 is replaced by 3. 2𝑛−1, we have the Eq. (6) 

 

𝐹𝑘,3.2𝑛= 𝐹𝑘,3.2𝑛−1  𝐿𝑘,3.2𝑛−1. 

 

From the Eq. (9) and induction hypothesis,  𝐹𝑘,3.2𝑛 ≡ 0 (mod 2𝑛+1)  is satisfies. 

 

ii. We can give the proof by induction. For 𝑛 = 1,  𝐹𝑘,4 = 𝑘3 + 2𝑘  and thus 

𝐹𝑘,4 ≡ 1 (mod 2). 
 

Suppose 𝐹𝑘,3.2𝑛−1+1 ≡ 1 (mod 2𝑛).  

 

For  𝑛 is replaced by 3. 2𝑛−1, we get the Eq. (3) 

 

𝐹𝑘,3.2𝑛+1 = (𝐹𝑘,3.2𝑛−1)2 + ( 𝐹𝑘,3.2𝑛−1+1)2             (15)                                                                                                                        
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From  the Eq. (10) and  Eq. (13), 

 

(𝐹𝑘,3.2𝑛−1)2 ≡ 0 (mod 2𝑛+1)  

 

is satisfies. For  𝑛 is replaced by 3. 2𝑛−1, we have the Eq. (4) 

 

(𝐹𝑘,3.2𝑛−1+1 )(𝐹𝑘,3.2𝑛−1−1) − (𝐹𝑘,3.2𝑛−1)2 = (−1)3.2𝑛−1
= 1. 

 

Since 𝐹𝑘,3.2𝑛−1−1 =  𝐹𝑘,3.2𝑛−1+1 − 𝑘 𝐹𝑘,3.2𝑛−1 and  𝐹𝑘,3.2𝑛−1+1 ≡ 1 (mod 2𝑛), then 

 

𝐹𝑘,3.2𝑛−1+1𝐹𝑘,3.2𝑛−1 ≡ 0 (mod 2𝑛+1)  

 

is satisfies. Since, 

 

(𝐹𝑘,3.2𝑛−1+1 )(𝐹𝑘,3.2𝑛−1+1 − 𝑘 𝐹𝑘,3.2𝑛−1)– (𝐹𝑘,3.2𝑛−1)
2

= ( 𝐹𝑘,3.2𝑛−1+1)
2

− 𝑘 𝐹𝑘,3.2𝑛−1+1 𝐹𝑘,3.2𝑛−1 

                                                                                                         −(𝐹𝑘,3.2𝑛−1)2 

 

and  (𝐹𝑘,3.2𝑛−1)2 ≡ 0 (mod 2𝑛+1) , then we get 

 

(𝐹𝑘,3.2𝑛−1+1 )(𝐹𝑘,3.2𝑛−1+1 − 𝑘 𝐹𝑘,3.2𝑛−1)– (𝐹𝑘,3.2𝑛−1)
2

≡ ( 𝐹𝑘,3.2𝑛−1+1)
2

 (mod 2𝑛+1) 

                                                                                                    ≡ 1 (mod 2𝑛+1) . 

 

From the Eq. (15) we have 𝐹𝑘,3.2𝑛+1 ≡ ( 𝐹𝑘,3.2𝑛−1+1)
2

 (mod 2𝑛+1) and thus we have 

 

𝐹𝑘,3.2𝑛+1 ≡ 1 (mod 2𝑛+1). 

 

Lemma 2.8. If 𝑘 is an even integer, 

i.    𝐹𝑘,2𝑛 ≡ 0 (mod 2𝑛)              (16) 

ii.   𝐹𝑘,2𝑛+1 ≡ 1 (mod 2𝑛).              (17) 

 

Proof. i. We can give the proof  by induction. For  𝑛 = 1 ,  𝐹𝑘,2 = 𝑘  and since 𝑘 is an even integer,  

 
𝐹𝑘,2 ≡ 0 (mod 2). 

 

Suppose  𝐹𝑘,2𝑛 ≡ 0 (mod 2𝑛) .  

 

For  𝑛 is replaced by 2𝑛, we have the Eq. (6) 

 

𝐹𝑘,2𝑛+1= 𝐹𝑘,2𝑛  𝐿𝑘,2𝑛. 

 

From the  Eq. (11) and induction hypothesis  we get  

 

𝐹𝑘,2𝑛+1 ≡ 0 (mod 2𝑛+1). 

 

ii. We can give the proof by induction. For  𝑛 = 1 ,  𝐹𝑘,3 = 𝑘2 + 1  and  𝐹𝑘,3 ≡ 1 (mod 2). 

 

Suppose 𝐹𝑘,2𝑛+1 ≡ 1 (mod 2𝑛) . 
 

For  𝑛 is replaced by 2𝑛, we have the Eq. (3) 
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𝐹𝑘,2𝑛+1+1 =  (𝐹𝑘,2𝑛)2 +  (𝐹𝑘,2𝑛+1)2             (18) 

  

From the Eq. (12) and the Eq. (16), 

 

(𝐹𝑘,2𝑛)2 ≡ 0 (mod 2𝑛+1)  

 

 is satisfies. For  𝑛 is replaced by 2𝑛, we have the Eq. (4) 

 

(𝐹𝑘,2𝑛+1 )(𝐹𝑘,2𝑛−1) −  (𝐹𝑘,2𝑛)2 = (−1)2𝑛
= 1. 

 

From the induction hypothesis and the Eq. (16)  

 

𝐹𝑘,2𝑛+1 𝐹𝑘,2𝑛 ≡ 2𝑛 (mod 2𝑛+1)  

 

is satisfies. Since 𝑘 is an even integer, we get 

 

𝑘 𝐹𝑘,2𝑛+1 𝐹𝑘,2𝑛 ≡ 0 (mod 2𝑛+1).  
 

Thus we have 

 

(𝐹𝑘,2𝑛+1 )(𝐹𝑘,2𝑛+1 − 𝑘 𝐹𝑘,2𝑛  )–  (𝐹𝑘,2𝑛)2 =  (𝐹𝑘,2𝑛+1)2 − 𝑘 𝐹𝑘,2𝑛+1 𝐹𝑘,2𝑛 −  (𝐹𝑘,2𝑛)2 

              
 and since (𝐹𝑘,2𝑛)2 ≡ 0 (mod 2𝑛+1), then we get 

 

(𝐹𝑘,2𝑛+1 )(𝐹𝑘,2𝑛+1 − 𝑘 𝐹𝑘,2𝑛  )–  (𝐹𝑘,2𝑛)2 ≡  (𝐹𝑘,2𝑛+1)2 (mod 2𝑛+1) ≡ 1 (mod 2𝑛+1).  
 

From the Eq. (18) we have  𝐹𝑘,2𝑛+1+1 ≡  (𝐹𝑘,2𝑛+1)2(mod 2𝑛+1)  and thus we get 

 

𝐹𝑘,2𝑛+1+1 ≡ 1 (mod 2𝑛+1).   

 

Theorem 2.9. The period of the 𝑘- Fibonacci sequences mod 2𝑛  is 

 

𝜋𝑘(2𝑛) = {
𝑖𝑓 𝑘 𝑜𝑑𝑑,            3. 2𝑛−1

𝑖𝑓 𝑘 𝑒𝑣𝑒𝑛,          2𝑛       
 

 

Proof. The proof is obtain from Lemma 2.7 and Lemma 2.8. 

 

Lemma 2.10. If 𝑘 is odd integer, then  𝐿𝑘,3.2𝑛−1 ≡ 2 (mod 2𝑛). 

 

Proof. We can give the proof  by induction. When 𝑛 = 1, 𝐿𝑘,3 = 𝑘3 + 3𝑘 and  

 

𝐿𝑘,3 ≡ 0 ≡ 2 (mod 2). 
 

Suppose 𝐿𝑘,3.2𝑛−1 ≡ 2 (mod 2𝑛). 

 

For  𝑚 = 0  and  𝑛 is replaced by 3. 2𝑛−1, we have the Eq. (7) 

 

𝐿𝑘,3.2𝑛 = (𝐿𝑘,3.2𝑛−1)2 + 2(−1)3.2𝑛−1+1 

             = (𝐿𝑘,3.2𝑛−1)2 − 2. 
 

Using the induction hypothesis we get (𝐿𝑘,3.2𝑛−1)2 ≡ 4 (mod 2𝑛+1) . Thus we have 
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 𝐿𝑘,3.2𝑛 ≡ 2 (mod 2𝑛+1). 

 

Lemma 2.11. If 𝑘 is odd integer, then  𝐿𝑘,3.2𝑛−1+1 ≡ 𝑘 (mod 2𝑛). 

 
Proof. For  𝑚 = 1 and  𝑛 is replaced by 3. 2𝑛−1, we get the Eq. (8) 

 

𝑘𝐿𝑘,3.2𝑛−1+1 +  2𝐿𝑘,3.2𝑛−1 = (𝑘2 + 4) 𝐹𝑘,3.2𝑛−1+1 

 

From  Lemma 2.10 and the Eq. (14), we have 

 

 𝐿𝑘,3.2𝑛−1+1 ≡ 𝑘 (mod 2𝑛). 

 

Theorem 2.12.  If 𝑘 is odd integer, then the Pisano period of the 𝑘- Lucas sequences mod 2𝑛  is 3. 2𝑛−1. 
 

Proof. The proof is obtain from Lemma 2.10 and Lemma 2.11. 
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