	Gazi University	
	Journal of Science	
	http://dergipark.gov.trtgujs	

Pisano Periods For The K-Fibonacci And K-Lucas Sequences Mod 2n

Dursun TAŞCI ${ }^{1, *}$, Gül ÖZKAN KIZILIRMAK ${ }^{2}$
${ }^{1}$ Gazi University, Faculty of Sciences, Departments Mathematics, 06500, Ankara, Turkey
${ }^{2}$ Gazi University, Faculty of Sciences, Departments Mathematics, 06500, Ankara, Turkey

Article Info

Received: 10/04/2017
Accepted: 23/12/2017

Abstract

The goal of this paper is to investigate period of k-Lucas sequence with related divisibility properties and periods of k-Fibonacci and k-Lucas sequences mod 2^{n}.

Keywords

k-Fibonacci
k-Lucas
Pisano period

1. INTRODUCTION

Some sequences of numbers have been studied over several years. In the literature, in mathematics and physics, there are a lot of integer sequences, which are used in almost every field modern sciences. The Fibonacci sequence is the famous integer sequence, which is defined by the following recurrence relation
$F_{n+1}=F_{n}+F_{n-1}$
With the initial conditions $F_{0}=0$ and $F_{1}=1$.
Another well-known sequence is the Lucas sequence, which satisfies the following recurrence relation
$L_{n+1}=L_{n}+L_{n-1}$
with $L_{0}=2$ and $L_{1}=1$.
There are many generalizations of the Fibonacci and Lucas sequences [1,2,4]. Two of them was given by Falcon and Plaza in [2,4] as follows:

For any integer number $k \geq 1$, the k th Fibonacci sequences $\left\{F_{k, n}\right\}_{n \in \mathbb{N}}$ is defined as for $\mathrm{n} \geq 1$
$F_{k, n+1}=k F_{k, n}+F_{k, n-1}$
with initial conditions $F_{k, 0}=0, F_{k, 1}=1$.
If we take $k=1$ in (1), we get the Fibonacci sequence: $\{0,1,1,2,3,5,8, \ldots\}$.

By setting $k=2$ in (1), we obtain the Pell sequence: $\{0,1,2,5,12,29,70, \ldots\}$.
The k-Lucas sequence $\left\{L_{k, n}\right\}_{n \in \mathbb{N}}$ is defined by the following recurrence relation for $n, k \geq 1$
$L_{k, n+1}=k L_{k, n}+L_{k, n-1}$
with $L_{k, 0}=2, L_{k, 1}=k$.
For $k=1$ in (2), the classical Lucas sequence is obtained: $\{2,1,3,4,7,11,18, \ldots\}$.
For $k=2$ in (2), the Pell-Lucas sequence is obtained: $\{2,2,6,14,34,82,198, \ldots\}$.
There are some properties for these numbers. Some of them are [2,4]:

- For $n \in \mathbb{N}, F_{k, 2 n+1}=\left(F_{k, n}\right)^{2}+\left(F_{k, n+1}\right)^{2}$,
- For $n \in \mathbb{N}, F_{k, n-1} F_{k, n+1}-\left(F_{k, n}\right)^{2}=(-1)^{n}$,
- For $r>n, L_{k, n-r} L_{k, n+r}-\left(L_{k, n}\right)^{2}=(-1)^{n+r} L_{k, 2 r}+2(-1)^{n+1}$,
- For $n \in \mathbb{N}, F_{k, 2 n}=F_{k, n} L_{k, n}$,
- For $n, m \in \mathbb{N}, L_{k, n} L_{k, n+m}=L_{k, 2 n+m}+(-1)^{n} L_{k, m}$,
- For $m \geq 1, L_{k, n+1} L_{k, m}+L_{k, n} L_{k, m-1}=\left(k^{2}+4\right) F_{k, n+m}$.

The period of the Fibonacci sequence $\bmod m$ was first studied by Wall [12]. The recurrence part in the sequence creates a new sequence and gives the length of the periods of these sequences. Furthermore Kramer and Hoggatt [8] studied the periods of Fibonacci and Lucas sequences mod 2n. Falcon and Plaza [3] studied the period length of the k-Fibonacci sequence mod m. The period of such cyclic sequences is known as Pisano period and the period-length is denoted by $\pi_{k}(m)$.

Motivated by the above papers, we study the Pisano period for the k-Lucas sequence and we obtain Pisano periods for the k-Fibonacci and k-Lucas sequences $\bmod 2^{\mathrm{n}}$.

2. PISANO PERIODS FOR THE K-FIBONACCI AND K-LUCAS SEQUENCES

Theorem 2.1. $\left\{L_{k, n} \bmod m\right\}_{n \in \mathbb{N}}$ is a simple periodic sequence .
Proof. From the defining relation we write,
$L_{k, n-1}=L_{k, n+1-} k L_{k, n}$.
If $L_{k, t+1} \equiv L_{k, s+1}(\bmod m)$ and $L_{k, t} \equiv L_{k, s}(\bmod m)$, then
$L_{k, t-1} \equiv k L_{k, s-1}(\bmod m)$.
By continiuing this way, we get $L_{k, t-s+1} \equiv L_{k, 1}(\bmod m)$ and $L_{k, t-s} \equiv L_{k, 0}(\bmod m)$.
So that $\left\{L_{k, n} \bmod m\right\}_{n \in \mathbb{N}}$ is a simple periodic sequence with $t-s$ period.
Corollary 2.2. For $m>3$ every Pisano period begins with 2,3 .
Theorem 2.3. If the prime factorization of m is $m=\prod_{i}{ }^{e_{i}}$, then
$\pi_{k}\left(\operatorname{lcm}\left(p_{i}{ }^{e_{i}}\right)\right)=\operatorname{lcm}\left(\pi_{k}\left(p_{i}{ }^{e_{i}}\right)\right)$.
Proof. The statement $\pi_{k}\left(p_{i}{ }^{{ }^{i}}\right)$ is the length of the period of $L_{k, n}(\bmod \mathrm{p})$ implies that the sequence $L_{k, n}\left(\bmod p_{i}{ }^{e_{i}}\right)$, repeats only after blocks of length $c \pi_{k}\left(p_{i}{ }^{e_{i}}\right)$ and the statement $\pi_{k}(m)$ is the period-
length of the sequence $L_{k, n}(\bmod m)$, which is, $L_{k, n}\left(\bmod p_{i}{ }^{e_{i}}\right)$ repeats after $\pi_{k}(m)$ terms for all values of i. Since any such number gives a period of $L_{k, n}(\bmod m)$, we conclude that $\pi_{k}(m)=\operatorname{lcm}\left(\pi_{k}\left(p_{i} e_{i}\right)\right)$.

Corollary 2.4. If $r \mid m$ then $\pi_{k}(r) \mid \pi_{k}(m)$.
Proof. If $r \mid m$, then $m=r . p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \ldots p_{k}{ }^{e_{k}}$. From Theorem 2.3, we get
$\pi_{k}(m)=\operatorname{lcm}\left(\pi_{k}(r), \pi_{k}\left(p_{1}{ }^{e_{1}}\right), \ldots, \pi_{k}\left(p_{k}{ }^{e_{k}}\right)\right)$ and from lcm definition $\pi_{k}(r) \mid \pi_{k}(m)$.
Lemma 2.5. If k is an odd integer, then for $n \in \mathbb{N}$
i. $L_{k, 3 n} \equiv 0(\bmod 2)$
ii. $F_{k, 3 n} \equiv 0(\bmod 2)$.

Proof. i. We can give the proof by induction. For $n=1$,
$L_{k, 3}=k^{3}+3 k$.
Since k is an odd number, $k^{3}+k$ is an even integer. Thus,
$L_{k, 3} \equiv 0(\bmod 2)$.
Suppose $L_{k, 3 n} \equiv 0(\bmod 2)$. So,

$$
\begin{aligned}
L_{k, 3(n+1)} & =k L_{k, 3 n+2}+L_{k, 3 n+1} \\
& =k\left(k L_{k, 3 n+1}+L_{k, 3 n}\right)+L_{k, 3 n+1} \\
& =\left(k^{2}+1\right) L_{k, 3 n+1}+k L_{k, 3 n}
\end{aligned}
$$

Since $\left(k^{2}+1\right)$ is an even integer and from induction hypothesis,
$\left(k^{2}+1\right) L_{k, 3 n+1}+k L_{k, 3 n} \equiv 0(\bmod 2)$.
Thus we get
$L_{k, 3(n+1)} \equiv 0(\bmod 2)$.
ii. We can give the proof by induction. For $n=1, F_{k, 3}=k^{2}+1$ and thus
$F_{k, 3} \equiv 0(\bmod 2)$.
Suppose $F_{k, 3 n} \equiv 0(\bmod 2)$. So,

$$
\begin{aligned}
F_{k, 3(n+1)} & =k F_{k, 3 n+2}+F_{k, 3 n+1} \\
& =k\left(k F_{k, 3 n+1}+F_{k, 3 n}\right)+F_{k, 3 n+1} \\
& =\left(k^{2}+1\right) F_{k, 3 n+1}+k F_{k, 3 n}
\end{aligned}
$$

and thus we have
$F_{k, 3(n+1)} \equiv 0(\bmod 2)$.
Lemma 2.6. If k is an even integer, then for $n \in \mathbb{N}$
i. $L_{k, 2^{n}} \equiv 0(\bmod 2)$
ii. $F_{k, 2^{n}} \equiv 0(\bmod 2)$.

Proof. i. We can give the proof by induction. For $n=1, L_{k, 2}=k^{2}+2$ and thus $L_{k, 2} \equiv 0(\bmod 2)$.

Suppose $L_{k, 2^{n}} \equiv 0(\bmod 2)$.
For $m=0$ and n is replaced by 2^{n}, we have the Eq. (7)
$L_{k, 2^{n+1}}=\left(L_{k, 2^{n}}\right)^{2}+2(-1)^{2^{n}+1}$
and thus
$L_{k, 2^{n+1}} \equiv 0(\bmod 2)$.
ii. We can give the proof by induction. For $n=1, F_{k, 2}=k$ and thus
$F_{k, 2} \equiv 0(\bmod 2)$.
Suppose $F_{k, 2^{n}} \equiv 0(\bmod 2)$.
For n is replaced by $2^{\text {n }}$, we get the Eq. (6)
$F_{k, 2^{n+1}}=F_{k, 2^{n}} L_{k, 2^{n}}$.
From the Eq. (11) and induction hypothesis can be formulated as
$F_{k, 2^{n+1}} \equiv 0(\bmod 2)$.
Lemma 2.7. If k is odd integer,
i. $F_{k, 3.2^{n-1}} \equiv 0\left(\bmod 2^{n}\right)$
ii. $F_{k, 3 \cdot 2^{n-1}+1} \equiv 1\left(\bmod 2^{n}\right)$.

Proof. i. We can give the proof by induction. For $n=1, F_{k, 3}=k^{2}+1$ and
$F_{k, 3} \equiv 0(\bmod 2)$.
Suppose $F_{k, 3.2^{n-1}} \equiv 0\left(\bmod 2^{n}\right)$.
For n is replaced by 3.2^{n-1}, we have the Eq. (6)
$F_{k, 3.2^{n}}=F_{k, 3.2^{n-1}} L_{k, 3.2^{n-1}}$.
From the Eq. (9) and induction hypothesis, $F_{k, 3.2^{n}} \equiv 0\left(\bmod 2^{n+1}\right)$ is satisfies.
ii. We can give the proof by induction. For $n=1, F_{k, 4}=k^{3}+2 k$ and thus $F_{k, 4} \equiv 1(\bmod 2)$.

Suppose $F_{k, 3 \cdot 2^{n-1}+1} \equiv 1\left(\bmod 2^{n}\right)$.
For n is replaced by 3.2^{n-1}, we get the Eq. (3)
$F_{k, 3.2^{n}+1}=\left(F_{k, 3.2^{n-1}}\right)^{2}+\left(F_{k, 3.2^{n-1}+1}\right)^{2}$

From the Eq. (10) and Eq. (13),
$\left(F_{k, 3.2}{ }^{n-1}\right)^{2} \equiv 0\left(\bmod 2^{n+1}\right)$
is satisfies. For n is replaced by 3.2^{n-1}, we have the Eq. (4)
$\left(F_{k, 3.2^{n-1}+1}\right)\left(F_{k, 3.2^{n-1}-1}\right)-\left(F_{k, 3.2^{n-1}}\right)^{2}=(-1)^{3.2^{n-1}}=1$.
Since $F_{k, 3.2^{n-1}-1}=F_{k, 3.2^{n-1}+1}-k F_{k, 3.2^{n-1}}$ and $F_{k, 3.2^{n-1}+1} \equiv 1\left(\bmod 2^{n}\right)$, then
$F_{k, 3.2^{n-1}+1} F_{k, 3 \cdot 2^{n-1}} \equiv 0\left(\bmod 2^{n+1}\right)$
is satisfies. Since,

$$
\begin{aligned}
\left(F_{k, 3.2^{n-1}+1}\right)\left(F_{k, 3.2^{n-1}+1}-k F_{k, 3 \cdot 2^{n-1}}\right)-\left(F_{k, 3 \cdot 2^{n-1}}\right)^{2}= & \left(F_{k, 3 \cdot 2^{n-1}+1}\right)^{2}-k F_{k, 3 \cdot 2^{n-1}+1} F_{k, 3.2^{n-1}} \\
& -\left(F_{k, 3.2}{ }^{n-1}\right)^{2}
\end{aligned}
$$

and $\left(F_{k, 3.2}{ }^{n-1}\right)^{2} \equiv 0\left(\bmod 2^{n+1}\right)$, then we get

$$
\begin{aligned}
\left(F_{k, 3.2^{n-1}+1}\right)\left(F_{k, 3.2^{n-1}+1}-k F_{k, 3.2^{n-1}}\right)-\left(F_{k, 3.2^{n-1}}\right)^{2} & \equiv\left(F_{k, 3.2} 2^{n-1}+1\right)^{2}\left(\bmod 2^{n+1}\right) \\
& \equiv 1\left(\bmod 2^{n+1}\right)
\end{aligned}
$$

From the Eq. (15) we have $F_{k, 3.2^{n}+1} \equiv\left(F_{k, 3.2^{n-1}+1}\right)^{2}\left(\bmod 2^{n+1}\right)$ and thus we have
$F_{k, 3.2^{n}+1} \equiv 1\left(\bmod 2^{n+1}\right)$.
Lemma 2.8. If k is an even integer,
i. $\quad F_{k, 2^{n}} \equiv 0\left(\bmod 2^{n}\right)$
ii. $\quad F_{k, 2^{n}+1} \equiv 1\left(\bmod 2^{n}\right)$.

Proof. i. We can give the proof by induction. For $n=1, F_{k, 2}=k$ and since k is an even integer,
$F_{k, 2} \equiv 0(\bmod 2)$.
Suppose $F_{k, 2^{n}} \equiv 0\left(\bmod 2^{n}\right)$.
For n is replaced by 2^{n}, we have the Eq. (6)
$F_{k, 2^{n+1}}=F_{k, 2^{n}} L_{k, 2^{n}}$.
From the Eq. (11) and induction hypothesis we get
$F_{k, 2^{n+1}} \equiv 0\left(\bmod 2^{n+1}\right)$.
ii. We can give the proof by induction. For $n=1, F_{k, 3}=k^{2}+1$ and $F_{k, 3} \equiv 1(\bmod 2)$.

Suppose $F_{k, 2^{n}+1} \equiv 1\left(\bmod 2^{n}\right)$.
For n is replaced by 2^{n}, we have the Eq. (3)

$$
\begin{equation*}
F_{k, 2^{n+1}+1}=\left(F_{k, 2^{n}}\right)^{2}+\left(F_{k, 2^{n}+1}\right)^{2} \tag{18}
\end{equation*}
$$

From the Eq. (12) and the Eq. (16),

$$
\left(F_{k, 2^{n}}\right)^{2} \equiv 0\left(\bmod 2^{n+1}\right)
$$

is satisfies. For n is replaced by 2^{n}, we have the Eq. (4)
$\left(F_{k, 2^{n}+1}\right)\left(F_{k, 2^{n}-1}\right)-\left(F_{k, 2^{n}}\right)^{2}=(-1)^{2^{n}}=1$.
From the induction hypothesis and the Eq. (16)
$F_{k, 2^{n}+1} F_{k, 2^{n}} \equiv 2^{n}\left(\bmod 2^{n+1}\right)$
is satisfies. Since k is an even integer, we get
$k F_{k, 2^{n}+1} F_{k, 2^{n}} \equiv 0\left(\bmod 2^{n+1}\right)$.
Thus we have
$\left(F_{k, 2^{n}+1}\right)\left(F_{k, 2^{n}+1}-k F_{k, 2^{n}}\right)-\left(F_{k, 2^{n}}\right)^{2}=\left(F_{k, 2^{n}+1}\right)^{2}-k F_{k, 2^{n}+1} F_{k, 2^{n}}-\left(F_{k, 2^{n}}\right)^{2}$
and since $\left(F_{k, 2^{n}}\right)^{2} \equiv 0\left(\bmod 2^{n+1}\right)$, then we get
$\left(F_{k, 2^{n}+1}\right)\left(F_{k, 2^{n}+1}-k F_{k, 2^{n}}\right)-\left(F_{k, 2^{n}}\right)^{2} \equiv\left(F_{k, 2^{n}+1}\right)^{2}\left(\bmod 2^{n+1}\right) \equiv 1\left(\bmod 2^{n+1}\right)$.
From the Eq. (18) we have $F_{k, 2^{n+1}+1} \equiv\left(F_{k, 2^{n}+1}\right)^{2}\left(\bmod 2^{n+1}\right)$ and thus we get
$F_{k, 2^{n+1}+1} \equiv 1\left(\bmod 2^{n+1}\right)$.
Theorem 2.9. The period of the k - Fibonacci sequences $\bmod 2^{n}$ is
$\pi_{k}\left(2^{n}\right)= \begin{cases}\text { if } k \text { odd, }, & 3.2^{n-1} \\ \text { if k even, } & 2^{n}\end{cases}$
Proof. The proof is obtain from Lemma 2.7 and Lemma 2.8.
Lemma 2.10. If k is odd integer, then $L_{k, 3.2^{n-1}} \equiv 2\left(\bmod 2^{n}\right)$.
Proof. We can give the proof by induction. When $n=1, L_{k, 3}=k^{3}+3 k$ and
$L_{k, 3} \equiv 0 \equiv 2(\bmod 2)$.
Suppose $L_{k, 3.2^{n-1}} \equiv 2\left(\bmod 2^{n}\right)$.
For $m=0$ and n is replaced by 3.2^{n-1}, we have the Eq. (7)

$$
\begin{aligned}
L_{k, 3 \cdot 2^{n}} & =\left(L_{k, 3.2} n-1\right)^{2}+2(-1)^{3 \cdot 2^{n-1}+1} \\
& =\left(L_{k, 3 \cdot 2^{n-1}}\right)^{2}-2 .
\end{aligned}
$$

Using the induction hypothesis we get $\left(L_{k, 3.2} 2^{n-1}\right)^{2} \equiv 4\left(\bmod 2^{n+1}\right)$. Thus we have

$$
L_{k, 3.2^{n}} \equiv 2\left(\bmod 2^{n+1}\right) .
$$

Lemma 2.11. If k is odd integer, then $L_{k, 3 \cdot 2^{n-1}+1} \equiv k\left(\bmod 2^{n}\right)$.
Proof. For $m=1$ and n is replaced by 3.2^{n-1}, we get the Eq. (8)

$$
k L_{k, 3.2^{n-1}+1}+2 L_{k, 3.22^{n-1}}=\left(k^{2}+4\right) F_{k, 3.2^{n-1}+1}
$$

From Lemma 2.10 and the Eq. (14), we have

$$
L_{k, 3 \cdot 2^{n-1}+1} \equiv k\left(\bmod 2^{n}\right) .
$$

Theorem 2.12. If k is odd integer, then the Pisano period of the k-Lucas sequences mod 2^{n} is 3.2^{n-1}.
Proof. The proof is obtain from Lemma 2.10 and Lemma 2.11.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Bolat, C., Köse, H., "On the properties of k-fibonacci numbers", International Journal of Contemporary Mathematical Sciences, 5(22): 1097-1105, (2010).
[2] Falcon, Plaza, A., "On the fibonacci k-numbers", Chaos, Solutions and Fractals, , 32: 1615-1624, (2007).
[3] Falcon, S., Plaza, A., "K-fibonacci sequences modulo m", Chaos, Solutions and Fractals, 41: 497504, (2009).
[4] Falcon, S., "On the k-lucas numbers", International Journal of Contemporary Mathematical Sciences, 21: 1039-1050, (2011).
[5] Falcon, S., Plaza, A., "The k-fibonacci sequences and the pascal 2-triangle", Chaos, Solutions and Fractals, 33: 38-49, (2007).
[6] Falcon, S., Plaza, A., "On k-fibonacci sequences and polynomials and their derivatives", Chaos, Solutions and Fractals, 39: 1005-1019, (2007).
[7] Kocer, E.G., Tunces, S., "Bivariate fibonacci and lucas like polynomials", GU J Sci, 29(1): 109-113, (2016).
[8] Kramer, J., Hoggat, V. E., "Special cases of fibonacci periodicity", The Fibonacci Quarterly, 10(5): 519-522, (1972).
[9] Niven, I., Zuckerman, H.S., Montegomery, H.L., "An introduction to the theory of numbers", 5 nd ed., John Wiley Sons, Inc., (1991).
[10] Rogers, N., Campbell, C. W., "The period of the fibonacci sequence modulo j", Phd, The University of Arizona, Tucson, USA, (2007).
[11] Vajda, S., "Fibonacci and lucas numbers, and the golden section, theory and applications", Ellis Horwood Limited, (1989).
[12] Wall, D. D., "Fibonacci series modulo m", The American Mathematical Monthly, 67: 525-532, (1960).

