http://www.newtheory.org

ISSN: 2149-1402

Received: 15.01.2018 Published: 02.03.2018 Year: 2018, Number: 21, Pages: 59-67 Original Article

On Topology of Fuzzy Strong *b*-Metric Spaces

Tarkan Öner <tarkanoner@mu.edu.tr>

Department of Mathematics, Muğla Sıtkı Koçman University, Muğla 48000, Turkey

Abstaract — In this study, we introduce and investigate the concept of fuzzy strong b-metric space such that is a fuzzy analogy of strong b-metric spaces. By using the open balls, we define a topology on these spaces which is Hausdorff and first countable. Later we show that open balls are open and closed balls are closed. After defining the standard fuzzy strong b-metric space induced by a strong b-metric, we show that these spaces have same topology. We also note that every separable fuzzy strong b-metric space is second countable. Moreover, we give the uniform convergence theorem for these spaces.

Keywords - Fuzzy strong b-metric space, strong b-metric space, b-metric spaces, uniform convergence.

1 Introduction and Preliminaries

The concept of b-metric space obtained by modifying the triangle inequality has been introduced by many authors.

Definition 1.1 ([3, 14, 8, 4, 13]). An ordered triple (X, D, K) is called b-metric (metric type) space and D is called b-metric on X if X is a nonempty set, $K \ge 1$ is a given real number and $D:X \times X \to [0, \infty)$ satisfies the following conditions for all $x, y, z \in X$

- 1) D(x,y) = 0 if and only if x = y,
- 2) D(x,y) = D(y,x),
- 3) $D(x,z) \le K[D(x,y) + D(y,z)].$

For a b-metric space (X, D, K), the b-metric D need not be continuous, an open ball is not necessarily open and a closed ball is not necessarily closed where B(x, r) = $\{y : D(x, y) < r\}$ is an open ball, $B[x, r] = \{y : D(x, y) \le r\}$ is a closed ball and Ais an open set if for any $x \in A$ there exists an open ball B(x, r) such $B(x, r) \subset A$ [15, 16, 11].

This fact suggests a strengthening of the notion of b-metric spaces.

Definition 1.2 ([16]). An ordered triple (X, D, K) is called strong b-metric space and D is called strong b-metric on X if X is a nonempty set, $K \ge 1$ is a given real number and $D:X \times X \to [0, \infty)$ satisfies the following conditions for all $x, y, z \in X$ 1) D(x, y) = 0 if and only if x = y,

2) D(x,y) = D(y,x),

3) $D(x,z) \le D(x,y) + KD(y,z).$

Remark 1.3 ([16]). Let (X, D, K) be a strong b-metric space.

(1) The strong b-metric D is continuous.

(2) Every open ball B(x,r) is open.

After Zadeh [6] introduced the theory of fuzzy sets, many authors have introduced and studied several notions of metric fuzziness [1, 9, 17, 7, 10] from different points of view.

Fuzzy metric type spaces, which is a generalization of fuzzy metric space in sense of George and Veeramani [1] have been introduced and studied in [12] as a fuzzy analogy of b-metric spaces.

Definition 1.4 ([2]). A binary operation $* : [0, 1] \times [0, 1] \longrightarrow [0, 1]$ is a continuous *t*-norm if * satisfies the following conditions;

1) * is associative and commutative,

2) * is continuous,

3) a * 1 = a for all $a \in [0, 1]$,

4) $a * b \le c * d$ whenever $a \le c$ and $b \le d, a, b, c, d \in [0, 1]$.

Definition 1.5 ([12]). A 4-tuple (X, M, *, K) is called a fuzzy metric type (fuzzy b-metric) space and M is called fuzzy metric type (fuzzy b-metric) on X if X is an arbitrary (non-empty) set, * is a continuous t-norm, and M is a fuzzy set on $X \times X \times (0, \infty)$, satisfying the following conditions for each $x, y, z \in X$ and t, s > 0, 1) M(x, y, t) > 0,

2) M(x, y, t) = 1 if and only if x = y,

3) M(x, y, t) = M(y, x, t),

4) $M(x, y, t) * M(y, z, s) \le M(x, z, K(t+s))$ for some constant $K \ge 1$,

5) $M(x, y, .) : (0, \infty) \to [0, 1]$ is continuous.

In a similar manner, in this study, we introduce a new concept, fuzzy strong b-metric space, as a fuzzy analogy of strong b-metric spaces and present some elementary results.

Remark 1.6 ([1]). For any $r_1 > r_2$, we can find a r_3 such that $r_1 * r_3 \ge r_2$ and for any r_4 we can find a r_5 such that $r_5 * r_5 \ge r_4$ $(r_1, r_2, r_3, r_4, r_5 \in (0, 1))$.

2 Fuzzy strong b-metric space

Definition 2.1. Let X be a non-empty set, K > 1, * is a continuous t-norm and M be a fuzzy set on $X \times X \times (0, \infty)$ such that for all $x, y, z \in X$ and t, s > 0, 1) M(x, y, t) > 0, 2) M(x, y, t) = 1 if and only if x = y,

3) M(x, y, t) = M(y, x, t), 4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + Ks)$, 5) $M(x, y, .) : (0, \infty) \to [0, 1]$ is continuous. Then M is called a fuzzy strong b-metric on X and (X, M, *, K) is called a fuzzy strong b-metric space.

Example 2.2. Let (X, D, K) be a strong b-metric space. Define

$$M_D(x, y, t) = \frac{t}{t + D(x, y)}$$

for t > 0 and $x, y \in X$. Then (X, M_D, \cdot, K) is a fuzzy strong b-metric space and is called standard fuzzy strong b-metric space induced by D. Here (1)–(3) and (5) are obvious and we show (4).

$$M_D(x, z, t) \cdot M_D(z, y, s) = \frac{t}{t + D(x, z)} \cdot \frac{s}{s + D(z, y)}$$
$$= \frac{1}{1 + \frac{D(x, z)}{t}} \cdot \frac{1}{1 + \frac{D(z, y)}{s}}$$
$$\leq \frac{1}{1 + \frac{D(x, z)}{t + Ks}} \cdot \frac{1}{1 + \frac{KD(z, y)}{t + Ks}}$$
$$\leq \frac{1}{1 + \frac{D(x, z) + KD(z, y)}{t + Ks}}$$
$$\leq \frac{1}{1 + \frac{D(x, z)}{t + Ks}}$$
$$= \frac{t + Ks}{t + Ks + D(x, z)}$$
$$= M_D(x, y, t + Ks)$$

Proposition 2.3. Let (X, M, *, K) be a fuzzy strong b-metric space. Then $M(x, y, _)$: $(0, \infty) \longrightarrow [0, 1]$ is nondecreasing for all $x, y \in X$.

Proof. Assume that M(x, y, t) > M(x, y, s), for s > t > 0. We have $M(x, y, t) * M(y, y, \frac{s-t}{K}) \le M(x, y, s) < M(x, y, t)$. Since M(y, y, s - t) = 1, we have M(x, y, t) < M(x, y, t) that is a contradiction.

Definition 2.4. Let (X, M, *, K) be a fuzzy strong b-metric space. For t > 0, the open ball B(x, r, t) with center $x \in X$ and radius 0 < r < 1 is defined by

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \}.$$

A subset $A \subset X$ is called open if for any $x \in A$, there exist $r \in (0, 1)$ and t > 0 such that $B(x, r, t) \subset A$.

Proposition 2.5. Let (X, M, *, K) be a fuzzy strong b-metric space and τ_M be the family of all open sets in X. Then τ_M is a topology on X.

Proof. 1. Clearly $\emptyset, X \in \tau_M$.

2. Let $A, B \in \tau_M$ and $x \in A \cap B$. Then $x \in A$ and $x \in B$, so there exist $t_1, t_2 > 0$ and $r_1, r_2 \in (0, 1)$ such that $B(x, r_1, t_1) \subset A$ and $B(x, r_2, t_2) \subset B$. Let $t = \min\{t_1, t_2\}$ and $r = \min\{r_1, r_2\}$. Then $B(x, r, t) \subset B(x, r_1, t_1) \cap B(x, r_2, t_2) \subset A \cap B$. Thus $A \cap B \in \tau_M$.

3. Let $A_i \in \tau_M$ for each $i \in I$ and $x \in \bigcup_{i \in I} A_i$. Then there exists $i_0 \in I$ such that $x \in A_{i_0}$. So, there exist t > 0 and $r \in (0, 1)$ such that $B(x, t, r) \subset A_{i_0}$. Since $A_{i_0} \subset \bigcup_{i \in I} A_i$, $B(x, r, t) \subset \bigcup_{i \in I} A_i$. Thus $\bigcup_{i \in I} A_i \in \tau_M$. Hence, τ_M is a topology on X.

Proposition 2.6. Let (X, M, *, K) be a fuzzy strong b-metric space. Then an open ball is an open set.

Proof. We will show that an open ball B(x,r,t) is an open set. Let $y \in B(x,r,t)$. Then we have M(x,y,t) > 1-r. Since $M(x,y, _{-})$ is nondecreasing and continuous, there exists $t_0 \in (0,t)$ such that $M(x,y,t_0) > 1-r$. Let $r_0 = M(x,y,t_0)$. Therefore $r_0 > 1-r$ and we can find a s, 0 < s < 1 such that $r_0 > 1-s > 1-r$. For r_0 and s such that $r_0 > 1-s$ we can find $r_1, 0 < r_1 < 1$ such that $r_0 * r_1 \ge 1-s$. Now we will show that $B(y, 1-r_1, \frac{t-t_0}{K}) \subset B(x,r,t)$. $z \in B(y, 1-r_1, \frac{t-t_0}{K})$ implies that $M(y, z, \frac{t-t_0}{K}) > r_1$. Hence we have

$$M(x, z, t) \geq M(x, y, t_0) * M(y, z, \frac{t - t_0}{K}) \\ \geq r_0 * r_1 \geq 1 - s > 1 - r.$$

Therefore $z \in B(x, r, t)$ and $B(y, 1 - r_1, \frac{t - t_0}{K}) \subset B(x, r, t)$.

Proposition 2.7. Let (X, M, *, K) be a fuzzy strong b-metric space. Then (X, τ_M) is Hausdorff.

Proof. Let $x, y \in X$ such that $x \neq y$. From the definition of fuzzy strong b-metric space, 1 > M(x, y, t) > 0 say M(x, y, t) = r. For all r_0 such that $1 > r_0 > r$ we can find $r_1 \in (0, 1)$ such that $r_1 * r_1 > r_0$. Now consider, the sets $B(x, 1 - r_1, \frac{t}{2})$ and $B(y, 1 - r_1, \frac{t}{2K})$. Clearly $B(x, 1 - r_1, \frac{t}{2}) \cap B(y, 1 - r_1, \frac{t}{2K}) = \emptyset$. Otherwise, if there exists $z \in B(x, 1 - r_1, \frac{t}{2}) \cap B(y, 1 - r_1, \frac{t}{2K})$. Then

$$r = M(x, y, t) \ge M(x, z, \frac{t}{2}) * M(z, y, \frac{t}{2K})$$
$$\ge r_1 * r_1 \ge r_0 > r$$

which is a contradiction.

Proposition 2.8. Let (X, M, *, K) be a fuzzy strong b-metric space. Then (X, τ_M) is first countable.

Proof. Let $x \in X$. We need to show that $\mathcal{B}_x = \{B(x, \frac{1}{n}, \frac{1}{n}) : n \in \mathbb{N}\}$ is a local basis for $x \in X$. Let $U \in \tau_M$ such that $x \in U$. Since U is open, then there exists $r \in (0, 1)$ and t > 0 such that $B(x, r, t) \subset U$. Choose $n \in \mathbb{N}$ such that $\frac{1}{n} < r$ and $\frac{1}{n} < t$. Now we need to show $B(x, \frac{1}{n}, \frac{1}{n}) \subset B(x, r, t)$. Let $z \in B(x, \frac{1}{n}, \frac{1}{n})$. Then

$$M(x, z, \frac{1}{n}) > 1 - \frac{1}{n} > 1 - r$$
. Since $\frac{1}{n} < t$, we have $1 - r < M(x, z, \frac{1}{n}) \le M(x, z, t)$.

Hence $z \in B(x, r, t)$ which implies $B(x, \frac{1}{n}, \frac{1}{n}) \subset B(x, r, t) \subset U$. Consequently, \mathcal{B}_x is countable local basis for x. Hence (X, τ_M) is first countable topological space. \Box

Definition 2.9. Let (X, M, *, K) be a fuzzy strong b-metric space, $x \in X$ and $\{x_n\}$ be a sequence in X. Then

i) $\{x_n\}$ is said to converge to x if for any t > 0 and any $r \in (0, 1)$ there exists a natural number n_0 such that $M(x_n, x, t) > 1 - r$ for all $n \ge n_0$. We denote this by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.

ii) $\{x_n\}$ is said to be a Cauchy sequence if for any $r \in (0, 1)$ and any t > 0 there exists a natural number n_0 such that $M(x_n, x_m, t) > 1 - r$ for all $n, m \ge n_0$.

iii) (X, M, *, K) is said to be a complete fuzzy strong b-metric space if every Cauchy sequence is convergent.

Theorem 2.10. Let (X, M, *, K) be a fuzzy strong b-metric space, $x \in X$ and $\{x_n\}$ be a sequence in X. $\{x_n\}$ converges to x if and only if $M(x_n, x, t) \to 1$ as $n \to \infty$, for each t > 0.

Proof. (\Rightarrow :) Suppose that, $x_n \to x$. Then, for each t > 0 and $r \in (0, 1)$, there exists a natural number n_0 such that $M(x_n, x, t) > 1 - r$ for all $n \ge n_0$. We have $1 - M(x_n, x, t) < r$. Hence $M(x_n, x, t) \to 1$ as $n \to \infty$.

(\Leftarrow :) Now, suppose that $M(x_n, x, t) \to 1$ as $n \to \infty$. Then, for each t > 0 and $r \in (0, 1)$, there exists a natural number n_0 such that $1 - M(x_n, x, t) < r$ for all $n \ge n_0$. In that case, $M(x_n, x, t) > 1 - r$. Hence $x_n \to x$ as $n \to \infty$.

Let X be a first countable space. Then X is Hausdorff if and only if sequential limits in X are unique [5]. Then the following is obvious.

Proposition 2.11. Let (X, M, *, K) be a fuzzy strong b-metric space and $\{x_n\} \subset X$. If $\{x_n\}$ is convergent, then the limit point of $\{x_n\}$ is unique.

Proposition 2.12. Let (X, M, *, K) be a fuzzy strong b-metric space and $\{x_n\} \subset X$. If $\{x_n\}$ is convergent, then $\{x_n\}$ is Cauchy.

Proof. Let r and t be arbitrary real number such that $r \in (0, 1)$, t > 0 and $\lim_{n \to \infty} x_n = x$ for $x \in X$. Since $r \in (0, 1)$, there exists $r_0 \in (0, 1)$ such that

$$(1 - r_0) * (1 - r_0) > 1 - r.$$

Since $\lim_{n\to\infty} x_n = x$, for $\frac{t}{2K} > 0$ and $r_0 \in (0,1)$ there exists $n_0 \in \mathbb{N}$ such that

$$n \ge n_0 \Longrightarrow M(x_n, x, \frac{t}{2K}) > 1 - r_0.$$

Therefore we have

$$M(x_n, x_m, t) \ge M(x_n, x, \frac{t}{2}) * M(x, x_m, \frac{t}{2K})$$

$$\ge M(x_n, x, \frac{t}{2K}) * M(x, x_m, \frac{t}{2K})$$

$$> (1 - r_0) * (1 - r_0) > 1 - r$$

for $m, n \ge n_0$ which means $\{x_n\}$ is Cauchy.

Definition 2.13. Let (X, M, *) be a fuzzy strong b-metric space. For t > 0, the closed ball B[x, r, t] with center x and radius $r \in (0, 1)$ is defined by $B[x, r, t] = \{y \in X : M(x, y, t) \ge 1 - r\}.$

Proposition 2.14. Let (X, M, *, K) be a fuzzy strong b-metric space. Then a closed ball is a closed set.

Proof. Let $y \in \overline{B[x, r, t]}$. We need to show that $y \in B[x, r, t]$. Since X is first countable space, there exists a sequence $\{y_n\}$ in B[x, r, t] such that $y_n \to y$. Hence $M(y_n, y, t) \to 1$ for all t > 0. For a given $\epsilon > 0$

$$M(x, y, t + \epsilon) \ge M(x, y_n, t) * M(y_n, y, \frac{\epsilon}{K}).$$

Hence

$$M(x, y, t + \epsilon) \geq \lim_{n \to \infty} M(x, y_n, t) * \lim_{n \to \infty} M(y_n, y, \frac{\epsilon}{K})$$

$$\geq (1 - r) * 1 = 1 - r.$$

(If $M(x, y_n, t)$ is bounded, the sequence $\{y_n\}$ has a subsequence, which we again denote by $\{y_n\}$ for which $\lim_{n\to\infty} M(x, y_n, t)$ exists.) In particular for $n \in \mathbb{N}$, take $\epsilon = \frac{t}{n}$. Then we have

$$M(x, y, t + \frac{t}{n}) \ge (1 - r)$$

and

$$M(x, y, t) \ge \lim_{n \to \infty} M(x, y, t + \frac{t}{n}) \ge 1 - r$$

Therefore $y \in B[x, r, t]$.

Proposition 2.15. Let (X, D, K) be a strong b-metric space and (X, M_D, \cdot, K) be the standard fuzzy strong b-metric space induced by D. Then the topology τ_D induced by D and the topology τ_{M_D} induced by M_D are the same.

Proof. (\Rightarrow) Let $A \in \tau_D$. For every $x \in A$, there exists $\epsilon > 0$ such that $B(x, \epsilon) \subset A$. For a fixed t > 0, we have

$$M_D(x, y, t) = \frac{t}{t + D(x, y)} > \frac{t}{t + \epsilon}$$

If we write $1 - r = \frac{t}{t+\epsilon}$, then we have $M_D(x, y, t) > 1 - r$ which means $B(x, r, t) \subset A$ and $A \in \tau_{M_D}$.

(\Leftarrow). Let $A \in \tau_{M_D}$. For every $x \in A$, there exists 0 < r < 1 and t > 0 such that $B(x, r, t) \subset A$. We have

$$M_D(x, y, t) = \frac{t}{t + D(x, y)} > 1 - r$$

$$t > (1 - r)t + (1 - r)D(x, y)$$

$$D(x, y) < \frac{rt}{1 - r}$$

If we write $\epsilon = \frac{rt}{1-r}$ where $0 < \epsilon < 1$, then we have $D(x, y) < \epsilon$ which means $B(x, \epsilon) \subset A$ and $A \in \tau_D$. Therefore $\tau = \tau_D$.

Theorem 2.16. Let (X, M, *, K) be a fuzzy strong b-metric space. If (X, τ_M) is separable then (X, τ_M) is second countable.

Proof. Let $A = \{a_n : n \in \mathbb{N}\}$ be a countable dense subset of X. Consider

$$\mathcal{B} = \{ B(a_j, \frac{1}{k}, \frac{1}{k}) : j, k \in \mathbb{N} \}.$$

We will show that B is a countable base for τ_M . Clearly B is countable. Let U be an open set in X. For any $x \in U$, there exists $r \in (0, 1)$ and t > 0 such that $B(x, r, t) \subset U$. For $r \in (0, 1)$, we can find an $s \in (0, 1)$ such that (1 - s) * (1 - s) > (1 - r). Let $m \in \mathbb{N}$ such that $\frac{1}{m} < s$ and $\frac{1}{m} < \frac{t}{2K}$. Since A is dense in X, there exists $a_j \in A$ such that $a_j \in B(x, \frac{1}{m}, \frac{1}{m})$. If $y \in B(a_j, \frac{1}{m}, \frac{1}{m})$ then,

$$\begin{split} M(x,y,t) &\geq M(x,a_{j},\frac{t}{2})*M(y,a_{j},\frac{t}{2K}) \\ &\geq M(x,a_{j},\frac{1}{m})*M(y,a_{j},\frac{1}{m}) \\ &\geq (1-\frac{1}{m})*(1-\frac{1}{m}) \\ &\geq (1-s)*(1-s) \\ &> (1-r) \,. \end{split}$$

Hence $y \in B(x, r, t)$ and \mathcal{B} is a basis.

Definition 2.17. Let X be a topological space, (Y, M, *, K) be a fuzzy strong bmetric space and $f_n : X \to Y$ be a sequence of functions. Then $\{f_n\}$ is said to converge uniformly to a function f from X to Y if for given $r \in (0, 1)$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $M(f_n(x), f(x), t) > 1 - r$ for all $n \ge n_0$ and for all $x \in X$.

Theorem 2.18. Let X be a topological space, (Y, M, *, K) be a fuzzy strong bmetric space and $f_n : X \to Y$ be a sequence of continuous functions. If $\{f_n\}$ converges uniformly to f then f is continuous.

Proof. Let V be an open set in $Y, x_0 \in f^{-1}(V)$ and let $y_0 = f(x_0)$. Then there exist $r \in (0, 1)$ and t > 0 such that $B(y_0, r, t) \subset V$. For $r \in (0, 1)$, we can find an $s \in (0, 1)$ such that (1-s)*(1-s)*(1-s)>1-r. Since $\{f_n\}$ converges uniformly to f, for given $s \in (0, 1)$ and t > 0, there exists $n_0 \in N$ such that $M(f_n(x), f(x), \frac{t}{4K^2}) > 1-s$ for all $n \ge n_0$ which also implies $M(f_n(x), f(x), \frac{t}{2}) > 1-s$. Since f_n is continuous for all $n \in \mathbb{N}$, we can find a neighborhood U of x_0 , for a fixed $n \ge n_0$, such that $f_n(U) \subset B(f_n(x_0), s, \frac{t}{4K})$. Therefore $M(f_n(x), f_n(x_0), \frac{t}{4K}) > 1-s$ for all x in U an we have

$$M(f(x), f(x_0), t) \geq M(f(x), f_n(x), \frac{t}{2}) * M(f_n(x), f_n(x_0), \frac{t}{4K}) * M(f_n(x_0), f(x_0), \frac{t}{4K^2}) \geq (1 - s) * (1 - s) * (1 - s) \geq 1 - r.$$

Hence, $f(x) \in B(f(x_0), r, t) \subset V$ for all $x \in U$ which means $f(U) \subset V$ and f is continuous.

Acknowledgement

This paper has been granted by the Mugla Sitki Kocman University Research Projects Coordination Office. Project Grant Number: 16/083 and title "On the topology of fuzzy strong b-metric spaces".

References

- [1] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994) 395-399.
- [2] B. Schweizer, A. Sklar, Statistical metric spaces, Pasific J. Maths. 10 (1960) 314-334.
- [3] I.A. Bakhtin, *The contraction mapping principle in quasimetric spaces* (*Russian*), Func An. Gos Ped Inst Unianowsk 30 (1989) 26-37.
- [4] J. Heinonen, *Lectures on analysis on metric spaces*, Springer Science & Business Media, 2012.
- [5] J. L. Kelley, *General Topology*, Springer Science & Business Media, 1975.
- [6] L. A. Zadeh, *Fuzzy sets*, Inform. and Control. 8 (1965) 338-353.
- [7] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979) 205-230.
- [8] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010) 3123-3129.
- [9] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975) 326-334.
- [10] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems 12 (1984) 215-229.
- [11] P. Kumam, N.V. Dung, V.T.L. Hang, Some equivalences between cone b-metric spaces and b-metric spaces, Abstr. Appl.Anal. 2013 (2013) 1-8.
- [12] R. Saadati, On the Topology of Fuzzy Metric Type Spaces, Filomat 29:1 (2015) 133-141.
- [13] R. Fagin, L. Stockmeyer, Relaxing the triangle inequality in pattern matching, Int. J. Comput. Vis. 30(3) (1998) 219-231.
- [14] S. Czerwik, *Contraction mappings in b-metric spaces*, Acta Math Inform Univ Ostraviensis 1(1) (1993) 5-11.
- [15] T. V. An, L. Q. Tuyen, N.V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. 185-186 (2015) 50-64.

- [16] W. Kirk, N. Shahzad, Fixed point theory in distance spaces, Springer, 2014.
- [17] Z. Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982) 74-95.