Konuralp Journal of Mathematics
Volume 4 No. 2 Pp. $42-55$ (2016) ©KJM

# ON THE UNIQUENESS OF PRODUCT OF DIFFERENCE POLYNOMIALS OF MEROMORPHIC FUNCTIONS 

RENUKADEVI S. DYAVANAL AND ASHWINI M. HATTIKAL


#### Abstract

In this paper, we study the uniqueness of product of difference polynomials $f^{n}\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and $g^{n}\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$, which are sharing a fixed point $z$ and $f, g$ share $\infty$ IM. The result extends the previous results of Cao and Zhang[1] into product of difference polynomials.


## 1. Introduction, Definitions and Results

Let $\mathbb{C}$ denote the complex plane and $f$ be a non-constant meromorphic function in $\mathbb{C}$. We shall use the standard notations in the Nevanlinna's value distribution theory of meromorphic functions such as $T(r, f), N(r, f), \bar{N}(r, f)$ and $m(r, f)$, as explained in Yang and Yi[14], L.Yang[12] and Hayman[8]. The notation $S(r, f)$ is defined to be any quantity satisfying $S(r, f)=o(T(r, f))$, as $r \rightarrow \infty$ possibly outside a set $r$ of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$, provided that $T(r, a)=S(r, f)$. A point $z_{0} \in \mathbb{C}$ is called as a fixed point of $f(z)$ if $f\left(z_{0}\right)=z_{0}$.

The following definitions are useful in proving the results.
Definition 1.1. We denote $\rho(f)$ for order of $f(z)$.

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

And $\rho_{2}(f)$ is to denote hyper order of $f(z)$, defined by

$$
\rho_{2}(f)=\limsup _{r \rightarrow \infty} \frac{\log \log T(r, f)}{\log r}
$$

[^0]Definition 1.2. Let $a$ be a finite complex number and $k$ be a positive integer. We denote by $N_{k)}(r, 1 /(f-a))$ the counting function for the zeros of $f(z)-a$ in $|z| \leq r$ with multiplicity $\leq k$ and by $\bar{N}_{k)}(r, 1 /(f-a))$ the corresponding one for which multiplicity is not counted. Let $N_{(k}(r, 1 /(f-a))$ be the counting function for the zeros of $f(z)-a$ in $|z| \leq r$ with multiplicity $\geq k$ and by $\bar{N}_{(k}(r, 1 /(f-a))$ the corresponding one for which multiplicity is not counted. Then we have

$$
N_{k}(r, 1 /(f-a))=\bar{N}_{(1}(r, 1 /(f-a))+\bar{N}_{(2}(r, 1 /(f-a))+\ldots+\bar{N}_{(k}(r, 1 /(f-a))
$$

Definition 1.3. Let $f(z)$ and $g(z)$ be two meromorphic functions in the complex plane $\mathbb{C}$. If $f(z)-a$ and $g(z)-a$ assume the same zeros with the same multiplicities, then we say that $f(z)$ and $g(z)$ share the value ' $a^{\prime} \mathrm{CM}$, where ' $a$ ' is a complex number.

In 2010, J.F.Xu, F.Lu and H.X.Yi obtained the following result on meromorphic function sharing a fixed point.

Theorem A. ([11]) Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions and let $n, k$ be two positive integers with $n>3 k+10$. If $\left(f^{n}(z)\right)^{(k)}$ and $\left(g^{n}(z)\right)^{(k)}$ share $z C M, f$ and $g$ share $\infty I M$, then either $f(z)=c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$, where $c_{1}, c_{2}$ and $c$ are three constants satisfying $4 n^{2}\left(c_{1} c_{2}\right)^{n} c^{2}=-1$, or $f \equiv t g$ for a constant $t$ such that $t^{n}=1$.

Further, Fang and Qiu investigated uniqueness for the same functions as in the theorem $A$, when $k=1$.

Theorem B. ([7]) Let $f(z)$ and $g(z)$ be two non-constant meromorphic functions and let $n \geq 11$ be a positive integer. If $f^{n}(z) f^{\prime}(z)$ and $g^{n}(z) g^{\prime}(z)$ share $z C M$, then either $f(z)=c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$, where $c_{1}, c_{2}$ and $c$ are three constants satisfying $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$, or $f(z) \equiv \operatorname{tg}(z)$ for a constant $t$ such that $t^{n+1}=1$.

In 2012, Cao and Zhang replaced $f^{\prime}$ with $f^{(k)}$ and obtained the following theorem.
Theorem C. ([1]) Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions, whose zeros are of multiplicities atleast $k$, where $k$ is a positive integer. Let $n>$ $\max \{2 k-1,4+4 / k+4\}$ be a positive integer. If $f^{n}(z) f^{(k)}(z)$ and $g^{n}(z) g^{(k)}(z)$ share $z C M$, and $f$ and $g$ share $\infty I M$, then one of the following two conclusions holds.
(1) $f^{n}(z) f^{(k)}(z)=g^{n}(z) g^{(k)}(z)$
(2) $f(z)=c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$, where $c_{1}, c_{2}$ and $c$ are constants such that $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

Recently, X.B.Zhang reduced the lower bond of $n$ and relax the condition on multiplicity of zeros in theorem $C$ and proved the below result.

Theorem D. ([15]) Let $f(z)$ and $g(z)$ be two transcendental meromorphic functions and $n, k$ two positive integers with $n>k+6$. If $f^{n}(z) f^{(k)}(z)$ and $g^{n}(z) g^{(k)}(z)$ share $z C M$, and $f$ and $g$ share $\infty I M$, then one of the following two conclusions holds.
(1) $f^{n}(z) f^{(k)}(z)=g^{n}(z) g^{(k)}(z)$;
(2) $f(z)=c_{1} e^{c z^{2}}, g(z)=c_{2} e^{-c z^{2}}$, where $c_{1}, c_{2}$ and $c$ are constants such that $4\left(c_{1} c_{2}\right)^{n+1} c^{2}=-1$.

We define a difference product of meromorphic function $f(z)$ as follows.

$$
\begin{gather*}
F(z)=f(z)^{n}\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}  \tag{1.1}\\
F_{1}(z)=f(z)^{n} \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}} \tag{1.2}
\end{gather*}
$$

Where $c_{j} \in \mathbb{C} \backslash\{0\}(j=1,2, \ldots, d)$ are distinct constants. $n, k, d, s_{j}(j=$ $1,2, \ldots, d)$ are positive integers and $\lambda=\sum_{j=1}^{d} s_{j}$.
For $j=1,2,3 \ldots d, \lambda_{1}=\sum_{j=1}^{d} \alpha_{j} s_{j}$ and $\lambda_{2}=\sum_{j=1}^{d} \beta_{j} s_{j}$, where $f\left(z+c_{j}\right)$ and $g\left(z+c_{j}\right)$ have zeros with maximum orders $\alpha_{j}$ and $\beta_{j}$ respectively.

In this article, we prove the theorem on product of difference polynomials sharing a fixed point as follows.

Theorem 1.1. Let $f$ and $g$ be two transcendental meromorphic functions of hyper order $\rho_{2}(f)<1$ and $\rho_{2}(g)<1$. Let $k, n, d, \lambda$ be positive integers and $n>$ $\max \left\{2 d(k+2)+\lambda(k+3)+7, \lambda_{1}, \lambda_{2}\right\}$. If $F(z)$ and $G(z)$ share $z C M$ and $f, g$ share $\infty$ IM, then one of the following two conclusions holds.
(1) $F(z)=G(z)$
(2) $\prod_{j=1}^{d} f\left(z+c_{j}\right) s_{j}=C_{1} e^{C z^{2}}, \prod_{j=1}^{d} g\left(z+c_{j}\right) s_{j}=C_{2} e^{-C z^{2}}$, where $C_{1}, C_{2}$ and $C$ are constants such that $4\left(C_{1} C_{2}\right)^{n+1} C^{2}=-1$.

## 2. LEMMAS

We need following Lemmas to prove our results.
Lemma 2.1. ([13]) Let $f$ and $g$ be two non-constant meromorphic functions, ' $a^{\prime}$ be a finite non-zero constant. If $f$ and $g$ share ' $a^{\prime} C M$ and $\infty I M$, then one of the following cases holds.
(1) $T(r, f) \leq N_{2}\left(r, \frac{1}{f}\right)+N_{2}\left(r, \frac{1}{g}\right)+3 \bar{N}(r, f)+S(r, f)+S(r, g)$.

The same inequality holding for $T(r, g)$;
(2) $f g \equiv a^{2}$;
(3) $f \equiv g$.

Lemma 2.2. ([10]) Let $f(z)$ be a transcendental meromorphic functions of hyper order $\rho_{2}(f)<1$, and let $c$ be a non-zero complex constant. Then we have

$$
\begin{aligned}
T(r, f(z+c)) & =T(r, f(z))+S(r, f(z)) \\
N(r, f(z+c)) & =N(r, f(z))+S(r, f(z)) \\
N\left(r, \frac{1}{f(z+c)}\right) & =N\left(r, \frac{1}{f(z)}\right)+S(r, f(z))
\end{aligned}
$$

Lemma 2.3. ([14]) Let $f$ be a non-constant meromorphic function, let $P(f)=$ $a_{0}+a_{1} f+a_{2} f^{2}+\ldots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are constants and $a_{n} \neq 0$. Then

$$
T(r, P(f))=n T(r, f)+S(r, f)
$$

ON THE UNIQUENESS OF PRODUCT OF DIFFERENCE POLYNOMIALS OF ... 45

Lemma 2.4. ([14]) Let $f$ be a non-constant meromorphic function and $p, k$ be positive integers. Then

$$
\begin{gather*}
T\left(r, f^{(k)}\right) \leq T(r, f)+k \bar{N}(r, f)+S(r, f),  \tag{1}\\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq T\left(r, f^{(k)}\right)-T(r, f)+N_{p+k}\left(r, \frac{1}{f}\right)+S(r, f),  \tag{2}\\
N_{p}\left(r, \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f),  \tag{3}\\
N\left(r, \frac{1}{f^{(k)}}\right) \leq N\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) . \tag{4}
\end{gather*}
$$

Lemma 2.5. ([8]) Suppose that $f$ is a non-constant meromorphic function, $k \geq 2$ is an integer. If

$$
N(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}}\right)=S\left(r, \frac{f^{\prime}}{f}\right),
$$

then $f(z)=e^{a z+b}$, where $a \neq 0, b$ are constants.
Lemma 2.6. ([14]) Let $f$ be a transcendental meromorphic function of finite order. Then

$$
m\left(r, \frac{f^{\prime}}{f}\right)=S(r, f)
$$

Lemma 2.7. Let $f(z)$ be a transcendental meromorphic function of hyper order $\rho_{2}(f)<1$ and $F_{1}(z)$ be stated as in (1.2). Then

$$
(n-\lambda) T(r, f)+S(r, f) \leq T\left(r, F_{1}(z)\right) \leq(n+\lambda) T(r, f)+S(r, f)
$$

Proof: Since $f$ is a meromorphic function with $\rho_{2}(f)<1$. From Lemma 2.2 and Lemma 2.3, we have

$$
\begin{aligned}
T\left(r, F_{1}(z)\right) & \leq T\left(r, f(z)^{n}\right)+T\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+S(r, f) \\
& \leq(n+\lambda) T(r, f)+S(r, f)
\end{aligned}
$$

On the other hand, from Lemma 2.2 and Lemma 2.3, we have

$$
\begin{aligned}
(n+\lambda) T(r, f)= & T\left(r, f^{n} f^{\lambda}\right)+S(r, f) \\
= & m\left(r, f^{n} f^{\lambda}\right)+N\left(r, f^{n} f^{\lambda}\right)+S(r, f) \\
\leq & m\left(r, \frac{F_{1}(z) f^{\lambda}}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right)+N\left(r, \frac{F_{1}(z) f^{\lambda}}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right) \\
& +S(r, f) \\
\leq & m\left(r, F_{1}(z)\right)+N\left(r, F_{1}(z)\right)+T\left(r, \frac{f^{\lambda}}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right) \\
& +S(r, f) \\
\leq & T\left(r, F_{1}(z)\right)+2 \lambda T(r, f)+S(r, f) \\
\Rightarrow(n-\lambda) T(r, f)+S(r, f) \leq & T\left(r, F_{1}(z)\right)
\end{aligned}
$$

Hence we get Lemma 2.7.

## 3. Proof of theorem

Proof of the theorem 1.1

$$
\begin{equation*}
\text { Let, } \quad F^{*}=\frac{F}{z} \quad \text { and } \quad G^{*}=\frac{G}{z} \tag{3.1}
\end{equation*}
$$

From the hypothesis of the theorem 1.1, we have $F$ and $G$ share $z \mathrm{CM}$ and $f, g$ share $\infty \mathrm{IM}$. It follows that $F^{*}$ and $G^{*}$ share 1 CM and $\infty \mathrm{IM}$.

By Lemma 2.1, we arrive at 3 cases as follows.
Case 1. Suppose that case (1) of Lemma 2.1 holds.

$$
\begin{equation*}
T\left(r, F^{*}\right) \leq N_{2}\left(r, \frac{1}{F^{*}}\right)+N_{2}\left(r, \frac{1}{G^{*}}\right)+3 \bar{N}\left(r, F^{*}\right)+S\left(r, F^{*}\right)+S\left(r, G^{*}\right) \tag{3.2}
\end{equation*}
$$

We deduce from (3.2) and obtained the following

$$
\begin{equation*}
T(r, F) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}(r, F)+S(r, F)+S(r, G) \tag{3.3}
\end{equation*}
$$

From Lemma 2.2 and Lemma 2.7, we have $S(r, F)=S(r, f)$ and $S(r, G)=S(r, g)$. From (3.3), we have

$$
\begin{align*}
T(r, F) \leq & N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}(r, F)+S(r, f)+S(r, g) \\
\leq & N_{2}\left(r, \frac{1}{f^{n}}\right)+N_{2}\left(r, \frac{1}{\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}}\right)+N_{2}\left(r, \frac{1}{g^{n}}\right) \\
& +N_{2}\left(r, \frac{1}{\left(\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}}\right)+3 \bar{N}\left(r, f^{n}\right)+3 \bar{N}\left(r,\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}\right) \\
(3.4) \quad & +S(r, f)+S(r, g) \tag{3.4}
\end{align*}
$$

ON THE UNIQUENESS OF PRODUCT OF DIFFERENCE POLYNOMIALS OF ... 47
Using (2) of Lemma 2.4 in (3.4), we have

$$
\begin{aligned}
T(r, F) \leq & 2 \bar{N}_{(2}\left(r, \frac{1}{f^{n}}\right)+T\left(r,\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}\right)-T\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right) \\
& +N_{k+2}\left(r, \frac{1}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right)+2 \bar{N}_{(2}\left(r, \frac{1}{g^{n}}\right)+T\left(r,\left(\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}\right) \\
& -T\left(r, \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)+N_{k+2}\left(r, \frac{1}{\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}}\right)+3 N(r, f) \\
T(r, F) \leq & 2 T(r, f)+T\left(r,\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right){ }^{(k)}\right)+T\left(r, f^{n}\right)-T\left(r, f^{n}\right) \\
& +3 N\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+S(r, f)+S(r, g) \\
& -T\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+(k+2) d T(r, f)+2 T(r, g) \\
T\left(r, F_{1}\right) \leq & 2[T(r, f)+T(r, g)]+(k+2) d[T(r, f)+T(r, g)]+k \lambda T(r, g) \\
& +(3+3 \lambda) T(r, f)+S(r, f)+S(r, g)
\end{aligned}
$$

From Lemma 2.7, we have

$$
(n-\lambda) T(r, f) \leq((k+2) d+2)[T(r, f)+T(r, g)]+k \lambda T(r, g)+(3+3 \lambda) T(r, f)+S(r, f)
$$

$$
\begin{equation*}
+S(r, g) \tag{3.5}
\end{equation*}
$$

Similarly for $T(r, g)$, we obtain the following

$$
(n-\lambda) T(r, g) \leq(2+(k+2) d)[T(r, f)+T(r, g)]+k \lambda T(r, f)+(3+3 \lambda) T(r, g)+S(r, f)
$$

$$
\begin{equation*}
+S(r, g) \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6), we have

$$
\begin{gathered}
(n-\lambda)[T(r, f)+T(r, g)] \leq 2(2+(k+2) d))[T(r, f)+T(r, g)]+(k \lambda+3+3 \lambda)[T(r, f)+T(r, g)] \\
+S(r, f)+S(r, g)
\end{gathered}
$$

Which is contradiction to $n>2 d(k+2)+\lambda(k+3)+7$.
Case 2. Suppose that $F G \equiv z^{2}$ holds.

$$
\begin{equation*}
\text { i.e } \quad f^{n}\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)} g^{n}\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)} \equiv z^{2} \tag{3.7}
\end{equation*}
$$

Now, (3.7) can be written as

$$
f^{n} g^{n}=\frac{z^{2}}{\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}}
$$

By using Lemma 2.2, Lemma 2.3 and (4) of Lemma 2.4, we derive

$$
\begin{aligned}
n[N(r, f)+N(r, g)] \leq & \lambda\left[N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right] \\
& +k d[N(r, f)+N(r, g)]+S(r, f)+S(r, g)
\end{aligned}
$$

From (3.7), we can write

$$
\frac{1}{f^{n} g^{n}}=\frac{\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}}{z^{2}}
$$

Similarly, as (3.8), we obtain

$$
\begin{equation*}
n\left[N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right] \leq(\lambda+k d)[N(r, f)+N(r, g)]+S(r, f)+S(r, g) \tag{3.9}
\end{equation*}
$$

From (3.8) and (3.9), deduce

$$
(n-(\lambda+2 k d))[N(r, f)+N(r, g)]+(n-\lambda)\left[N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)\right] \leq S(r, f)+S(r, g)
$$

Since $n>2 d(k+2)+\lambda(k+3)+7$, we have

$$
N(r, f)+N(r, g)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{g}\right)<S(r, f)+S(r, g)
$$

Hence, we conclude that $f$ and $g$ have finitely many zeros and poles.

Let $z_{0}$ be a pole of $f$ of multiplicity $p$, then $z_{0}$ is pole of $f^{n}$ of multiplicity $n p$, since $f$ and $g$ share $\infty$ IM, then $z_{0}$ is pole of $g$ of multiplicity $q$.

If $z_{0}$ also zero of $\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and $\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ then we have from (3.7) that

$$
\begin{gathered}
n(p+q) \leq \sum_{j=1}^{d} \alpha_{j} s_{j}+\sum_{j=1}^{d} \beta_{j} s_{j}-2 k \\
\Rightarrow 2 n<n(p+q) \leq \sum_{j=1}^{d} \alpha_{j} s_{j}+\sum_{j=1}^{d} \beta_{j} s_{j}-2 k=\lambda_{1}+\lambda_{2}-2 k<\lambda_{1}+\lambda_{2} \leq 2 \max \left\{\lambda_{1}, \lambda_{2}\right\}
\end{gathered}
$$ $\Rightarrow n<\max \left\{\lambda_{1}, \lambda_{2}\right\}$, which is contradiction to $n>\max \{2 d(k+2)+\lambda(k+3)+$ $\left.7, \lambda_{1}, \lambda_{2}\right\}$. Therefore $f$ has no poles.

Similarly, we can get contradiction for other two cases namely, if $z_{0}$ is zero of $\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$, but not zero of $\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and other way. Therefore $f$ has no poles. Similarly, we get that $g$ also has no poles. By this we conclude that $f$ and $g$ are entire functions and hence $\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ and $\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}$ are entire functions.

Then from (3.7), we deduce that $f$ and $g$ have no zeros.
Therefore,

$$
\begin{gather*}
f=e^{\alpha(z)}, g=e^{\beta(z)} \quad \text { and } \\
\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}=\prod_{j=1}^{d}\left(e^{\alpha\left(z+c_{j}\right)}\right)^{s_{j}} \quad, \quad \prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}=\prod_{j=1}^{d}\left(e^{\beta\left(z+c_{j}\right)}\right)^{s_{j}} \tag{3.10}
\end{gather*}
$$

where $\alpha, \beta$ are entire functions with $\rho_{2}(f)<1$. Substitute $f$ and $g$ into (3.7), we get

$$
\begin{equation*}
e^{n \alpha(z)}\left[\prod_{j=1}^{d}\left(e^{\alpha\left(z+c_{j}\right)}\right)^{s_{j}}\right]^{(k)} e^{n \beta(z)}\left[\prod_{j=1}^{d}\left(e^{\beta\left(z+c_{j}\right)}\right)^{s_{j}}\right]^{(k)} \equiv z^{2} \tag{3.11}
\end{equation*}
$$

If $k=1$, then

$$
\begin{align*}
& e^{n \alpha(z)}\left[\prod_{j=1}^{d}\left(e^{\alpha\left(z+c_{j}\right)}\right)^{s_{j}}\right]^{\prime} e^{n \beta(z)}\left[\prod_{j=1}^{d}\left(e^{\beta\left(z+c_{j}\right)}\right)^{s_{j}}\right]^{\prime} \equiv z^{2}  \tag{3.12}\\
\Rightarrow & e^{n(\alpha+\beta)} e^{\sum_{j=1}^{d}\left(\alpha\left(z+c_{j}\right)+\beta\left(z+c_{j}\right)\right) s_{j}} \sum_{j=1}^{d}\left(\alpha^{\prime}\left(z+c_{j}\right)\right) s_{j} \sum_{j=1}^{d}\left(\beta^{\prime}\left(z+c_{j}\right)\right) s_{j} \equiv z^{2} \tag{3.13}
\end{align*}
$$

Since $\alpha(z)$ and $\beta(z)$ are non-constant entire functions, then we have

$$
T\left(r, \frac{\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{\prime}}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right)=T\left(r, \frac{\left(\prod_{j=1}^{d} e^{\alpha\left(z+c_{j}\right) s_{j}}\right)^{\prime}}{\prod_{j=1}^{d} e^{\alpha\left(z+c_{j}\right) s_{j}}}\right)
$$

$$
\begin{align*}
& \qquad=T\left(r, \frac{\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j} \prod_{j=1}^{d} e^{\alpha\left(z+c_{j}\right) s_{j}}}{\prod_{j=1}^{d} e^{\alpha\left(z+c_{j}\right) s_{j}}}\right)=T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)  \tag{3.14}\\
& \text { Let } n T(r, f)=T\left(r, f^{n}\right)=T\left(r, \frac{F}{\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{\left.s_{j}\right)^{(k)}}\right)}\right. \\
& \qquad \begin{aligned}
\leq & T(r, F)+T\left(r,\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}\right)+S(r, f) \\
\leq & T(r, F)+T\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+k \bar{N}\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right) \\
& +S(r, f) \\
n T(r, f) \leq & T(r, F)+(\lambda+k d) T(r, f)+S(r, f)
\end{aligned} \\
& \text { (3.15) }(n-\lambda-k d) T(r, f) \leq T(r, F)+S(r, f)
\end{align*}
$$

We obtain from (3.15) that

$$
\begin{equation*}
T(r, f)=O(T(r, F)) \tag{3.16}
\end{equation*}
$$

as $r \in E$ and $r \rightarrow \infty$, where $E \subset(0,+\infty)$ is some subset of finite linear measure.
On the other hand, we have

$$
\begin{align*}
T(r, F)=T\left(r, f^{n}\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}\right) \leq & n T(r, f)+\lambda T(r, f) \\
& +k \bar{N}\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+S(r, f) \\
\leq & (n+k d+\lambda) T(r, f)+S(r, f)
\end{aligned} \begin{aligned}
\Rightarrow T(r, F) & =O(T(r, f))
\end{align*}
$$

as $r \in E$ and $r \rightarrow \infty$, where $E \subset(0,+\infty)$ is some subset of finite linear measure.
Thus from (3.16), (3.17) and the standard reasoning of removing exceptional set we deduce $\rho(f)=\rho(F)$. Similarly, we have $\rho(g)=\rho(G)$. It follows from (3.7) that $\rho(F)=\rho(G)$. Hence we get $\rho(f)=\rho(g)$.

We deduce that either both $\alpha$ and $\beta$ are polynomials or both $\alpha$ and $\beta$ are transcendental entire functions. Moreover, we have

$$
\begin{equation*}
N\left(r, \frac{1}{\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}}\right) \leq N\left(r, \frac{1}{z^{2}}\right)=O(\log r) \tag{3.18}
\end{equation*}
$$

From (3.18) and (3.10), we have

$$
\begin{aligned}
& N\left(r, \prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)+N\left(r, \frac{1}{\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}}\right) \\
& \quad+N\left(r, \frac{1}{\left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}}\right)=O(\log r)
\end{aligned}
$$

If $k \geq 2$, then it follows from $(3.14),(3.18)$ and Lemma 2.5 that $\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}$ is a polynomial and therefore we have $\alpha(z)$ is a non- constant polynomial.

Similarly, we can deduce that $\beta(z)$ is also a non-constant polynomial. From this, we deduce from (3.10) that

$$
\begin{aligned}
& \left(\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}=e^{\sum_{j=1}^{d} \alpha\left(z+c_{j}\right) s_{j}}\left[P_{k-1}\left(\alpha^{\prime}\left(z+c_{j}\right)\right)+\left(\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)^{k}\right] \\
& \left(\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right)^{(k)}=e^{\sum_{j=1}^{d} \beta\left(z+c_{j}\right) s_{j}}\left[Q_{k-1}\left(\alpha^{\prime}\left(z+c_{j}\right)\right)+\left(\sum_{j=1}^{d} \beta^{\prime}\left(z+c_{j}\right) s_{j}\right)^{k}\right]
\end{aligned}
$$

Where $P_{k-1}$ and $Q_{k-1}$ are difference-differential polynomials in $\alpha^{\prime}\left(z+c_{j}\right)$ with degree at most $k-1$.

Then (3.11) becomes

$$
\begin{align*}
& e^{n(\alpha+\beta)} e^{\sum_{j=1}^{d}\left(\alpha\left(z+c_{j}\right)+\beta\left(z+c_{j}\right)\right) s_{j}}\left[\sum_{j=1}^{d} \alpha^{(k)}\left(z+c_{j}\right) s_{j}+\left(\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)^{k}\right] \\
& \text { 19) } \quad\left[\sum_{j=1}^{d} \beta^{(k)}\left(z+c_{j}\right) s_{j}+\left(\sum_{j=1}^{d} \beta^{\prime}\left(z+c_{j}\right) s_{j}\right)^{k}\right]=z^{2} \tag{3.19}
\end{align*}
$$

We deduce from (3.19) that $\alpha(z)+\beta(z) \equiv C$ for a constant $C$.
If $k=1$, from (3.13), we have

$$
\begin{equation*}
e^{n(\alpha+\beta)+\sum_{j=1}^{d}\left(\alpha\left(z+c_{j}\right)+\beta\left(z+c_{j}\right)\right) s_{j}}\left[\sum_{j=1}^{d}\left(\alpha^{\prime}\left(z+c_{j}\right)\right) s_{j} \sum_{j=1}^{d}\left(\beta^{\prime}\left(z+c_{j}\right)\right) s_{j}\right] \equiv z^{2} \tag{3.20}
\end{equation*}
$$

Next, we let $\alpha+\beta=\gamma$ and suppose that $\alpha, \beta$ both are transcendental entire functions.

If $\gamma$ is a constant, then $\alpha^{\prime}+\beta^{\prime}=0$ and $\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right)=-\sum_{j=1}^{d} \beta^{\prime}\left(z+c_{j}\right)$.

From (3.20) we have

$$
\begin{gather*}
e^{n(\alpha+\beta)+\sum_{j=1}^{d}\left(\alpha\left(z+c_{j}\right)+\beta\left(z+c_{j}\right)\right) s_{j}}\left\{-\left[\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right]^{2}\right\}=z^{2} \\
e^{n \gamma+d \gamma}\left\{-\left[\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right]^{2}\right\}=z^{2} \tag{3.21}
\end{gather*}
$$

Which implies that $\alpha^{\prime}$ is a non-constant polynomial of degree 1 . This together with $\alpha^{\prime}+\beta^{\prime}=0$ which implies that $\beta^{\prime}$ is also non-constant polynomial of degree 1 . Which is contradiction to $\alpha, \beta$ both are transcendental entire functions.

If $\gamma$ is not a constant, then we have

$$
\alpha+\beta=\gamma \quad \text { and } \quad \sum_{j=1}^{d} \alpha\left(z+c_{j}\right) s_{j}+\sum_{j=1}^{d} \beta\left(z+c_{j}\right) s_{j}=\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}
$$

From (3.20) we have

$$
\begin{equation*}
\left[\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right]\left[\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}-\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right] e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}=z^{2} \tag{3.22}
\end{equation*}
$$

Since $T\left(r, \sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right)=m\left(r, \sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right)+N\left(r, \sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right)$

$$
\begin{equation*}
\leq m\left(r, \frac{\left(e^{\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right)^{\prime}}{e^{\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}}\right)+O(1)=S\left(r, e^{\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right) \tag{3.23}
\end{equation*}
$$

And also we have

$$
\begin{align*}
& T\left(r, n \gamma^{\prime}+\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right)=m\left(r, n \gamma^{\prime}+\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right)+N\left(r, n \gamma^{\prime}+\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right) \\
& 3.24) \quad \leq m\left(r, \frac{\left(e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right)^{\prime}}{e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}}\right)+O(1)=S\left(r, e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right) \tag{3.24}
\end{align*}
$$

From (3.22), we have

$$
\begin{aligned}
& T\left(r, e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right) \leq T\left(r, \frac{z^{2}}{\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\left[\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}-\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right]}\right) \\
&+O(1) \\
& \leq T\left(r, z^{2}\right)+T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\left[\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}-\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right]\right)
\end{aligned}
$$

$$
\begin{gather*}
+O(1) \\
\leq 2 \log r+2 T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)+O(1) \\
\Rightarrow T\left(r, e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right) \leq O\left(T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)\right) \tag{3.25}
\end{gather*}
$$

Similarly, we have

$$
\begin{equation*}
T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right) \leq O\left(T\left(r, e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right)\right) \tag{3.26}
\end{equation*}
$$

Thus, from (3.23)-(3.26) we have
$T\left(r, n \gamma^{\prime}+\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}\right)=S\left(r, e^{n \gamma+\sum_{j=1}^{d} \gamma\left(z+c_{j}\right) s_{j}}\right)=S\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)$
By the second fundamental theorem and (3.22), we have

$$
\begin{aligned}
& T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right) \leq \bar{N}\left(r, \frac{1}{\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}}\right) \\
&+\bar{N}\left(r, \frac{1}{\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}-\sum_{j=1}^{d} \gamma^{\prime}\left(z+c_{j}\right) s_{j}}\right)+S\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right) \\
& \leq O(\log r)+S\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)
\end{aligned}
$$

This implies $\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}$ is a polynomial, which leads to $\alpha^{\prime}(z)$ is a polynomial. Which contradicts that $\alpha(z)$ is a trascendental entire function.
Thus $\alpha$ and $\beta$ are both polynomials and $\alpha(z)+\beta(z) \equiv C$ for a constant $C$.
Hence, from (3.19) and using $\alpha+\beta=C$ we get

$$
\begin{equation*}
(-1)^{k}\left(\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)^{2 k}=z^{2}+P_{2 k-1}\left(\alpha^{\prime}\left(z+c_{j}\right) s_{j}\right) \quad \text { for } j=1,2, \ldots, d \tag{3.27}
\end{equation*}
$$

Where $P_{2 k-1}$ is difference-differential polynomial in $\alpha^{\prime}\left(z+c_{j}\right) s_{j}$ of degree at most $2 k-1$. From (3.27), we have

$$
\begin{equation*}
2 k T\left(r, \sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right)=2 \log r+S\left(r, \alpha^{\prime}\left(z+c_{j}\right) s_{j}\right) \tag{3.28}
\end{equation*}
$$

From (3.28), we can see that $\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}$ is a non-constant polynomial of degree 1 and $k=1$.

Which implies,

$$
\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}=z l_{1}
$$

Since $\alpha^{\prime}+\beta^{\prime}=0$, we get $\sum_{j=1}^{d} \beta^{\prime}\left(z+c_{j}\right) s_{j}=-\sum_{j=1}^{d} \alpha^{\prime}\left(z+c_{j}\right) s_{j}$. Which implies $\sum_{j=1}^{d} \beta^{\prime}\left(z+c_{j}\right) s_{j}$ is also a non-constant polynomial of degree 1 . Hence we have

$$
\sum_{j=1}^{d} \beta^{\prime}\left(z+c_{j}\right) s_{j}=z l_{2}
$$

Hence, we get

$$
\prod_{j=1}^{d} f\left(z+c_{j}\right) s_{j}=C_{1} e^{C z^{2}}
$$

Similarly, we have

$$
\prod_{j=1}^{d} g\left(z+c_{j}\right) s_{j}=C_{2} e^{-C z^{2}}
$$

where $C_{1}, C_{2}$ and $C$ are constants such that $4\left(C_{1} C_{2}\right)^{n+1} C^{2}=-1$.
This proves the conclusion (2) of theorem 1.1.

Case 3. If $F \equiv G$

$$
\text { i.e } f^{n}\left[\prod_{j=1}^{d} f\left(z+c_{j}\right)^{s_{j}}\right]^{(k)} \equiv g^{n}\left[\prod_{j=1}^{d} g\left(z+c_{j}\right)^{s_{j}}\right]^{(k)}
$$

This proves the conclusion (1) of theorem 1.1.

## References

[1] Cao Y.H and Zhang X.B, Uniqueness of meromorphic functions sharing two values, J. Inequal. Appl. Vol:2012 (2012), 10 Pages.
[2] Dyavanal R.S and Desai R.V, Uniqueness of difference polynomials of entire functions, Appl. J. Math. Vol:8 No. 69 (2014), 3419-3424.
[3] Dyavanal R.S and Desai R.V, Uniqueness of $q$-shift difference and differential polynomials of entire functions, Far East J. Appl. Math. Vol:91 No. 3 (2015), 189-202.
[4] Dyavanal R.S and Hattikal A.M, Uniqueness of difference-differential polynomials of entire functions sharing one value, Tamkang J. Math. Vol:47 No. 2 (2016), 193-206.
[5] Dyavanal R.S and Hattikal A.M, Weighted sharing of uniqueness of difference polynomials of meromorphic functions, Far East J. Math. Sci. Vol:98 No. 3 (2015), 293-313.
[6] Dyavanal R.S and Hattikal A.M, Unicity theorems on difference polynomials of meromorphic functions sharing one value, Int. J. Pure Appl. Math. Sci. Vol:9 No. 2 (2016), 89-97.
[7] Fang M.L and Yi H.X, Meromorphic functions that share fixed-points, J. Math. Anal. Appl. Vol:268 No. 2 (2002), 426-439.
[8] Hayman W.K Meromorphic functions, Claredon Press, Oxford, 1964.
[9] Wang X.L, Xu H.Y and Zhan T.S Properties of $q$-shift difference-differential polynomials of meromorphic functions, Adv. Diff. Equ. Vol:294 No. 1 (2014), 16 Pages.
[10] Xu X.Y, On the value distribution and difference polynomials of meromorphic functions, Adv. Diff. Equ. Vol:90 No. 1 (2013), 13 Pages.
[11] Xu J.F, Lu F, Yi H.X, Fixed-points and uniqueness of meromorphic functions, Comp. Math. Appl. Vol:59 (2010), 9-17.
[12] Yang L, Value Distribution Theory, Springer-Verlag Berlin, 1993.
[13] Yang C.C, Hua H.X, Uniqueness and value sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Vol:22 (1997), 395-406.
[14] Yang C.C, Yi H.X, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht,2003; Chinese original: Science Press, Beijing, 1995.
[15] Zhang X.B, Further results on uniqueness of meromorphic functions concerning fixed points, Abst. Appl. Anal. Article ID 256032 (2014), 7 Pages.

Department of Mathematics, Karnatak University, Dharwad - 580003, India
E-mail address: renukadyavanal@gmail.com
Department of Mathematics, Karnatak University, Dharwad - 580003, India
E-mail address: ashwinimhmaths@gmail.com


[^0]:    2000 Mathematics Subject Classification. 30D35.
    Key words and phrases. Difference polynomials, Meromorphic functions, Product, Uniqueness. The first author is thankful to UGC-SAP DRS-III programme with ref. No. F-510/3/DRS-III/2016(SAP-I) for financial assistance and also second author is thankful to UGC's BSR Fellowship, New Delhi with ref. No.F.7-101/2007(BSR) for financial support.

