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ON THE UNIQUENESS OF PRODUCT OF DIFFERENCE

POLYNOMIALS OF MEROMORPHIC FUNCTIONS

RENUKADEVI S. DYAVANAL AND ASHWINI M. HATTIKAL

Abstract. In this paper, we study the uniqueness of product of difference

polynomials fn[
∏d
j=1 f(z + cj)

sj ](k) and gn[
∏d
j=1 g(z + cj)

sj ](k), which are

sharing a fixed point z and f , g share ∞ IM. The result extends the previous
results of Cao and Zhang[1] into product of difference polynomials.

1. Introduction, Definitions and Results

Let C denote the complex plane and f be a non-constant meromorphic function
in C. We shall use the standard notations in the Nevanlinna’s value distribution
theory of meromorphic functions such as T (r, f), N(r, f), N(r, f) and m(r, f), as
explained in Yang and Yi[14], L.Yang[12] and Hayman[8]. The notation S(r, f) is
defined to be any quantity satisfying S(r, f) = o(T (r, f)), as r → ∞ possibly out-
side a set r of finite linear measure. A meromorphic function a(z) is called a small
function with respect to f(z), provided that T (r, a) = S(r, f). A point z0 ∈ C is
called as a fixed point of f(z) if f(z0) = z0.

The following definitions are useful in proving the results.

Definition 1.1. We denote ρ(f) for order of f(z).

ρ(f) = lim sup
r→∞

log T (r, f)

log r

And ρ2(f) is to denote hyper order of f(z), defined by

ρ2(f) = lim sup
r→∞

log log T (r, f)

log r
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Definition 1.2. Let a be a finite complex number and k be a positive integer.
We denote by Nk)(r, 1/(f − a)) the counting function for the zeros of f(z) − a in

|z| ≤ r with multiplicity ≤ k and by Nk)(r, 1/(f − a)) the corresponding one for
which multiplicity is not counted. Let N(k(r, 1/(f − a)) be the counting function

for the zeros of f(z) − a in |z| ≤ r with multiplicity ≥ k and by N (k(r, 1/(f − a))
the corresponding one for which multiplicity is not counted. Then we have

Nk(r, 1/(f − a)) = N (1(r, 1/(f − a)) +N (2(r, 1/(f − a)) + . . .+N (k(r, 1/(f − a))

Definition 1.3. Let f(z) and g(z) be two meromorphic functions in the complex
plane C. If f(z)−a and g(z)−a assume the same zeros with the same multiplicities,
then we say that f(z) and g(z) share the value ′a′ CM, where ′a′ is a complex
number.

In 2010, J.F.Xu, F.Lu and H.X.Yi obtained the following result on meromorphic
function sharing a fixed point.

Theorem A. ([11]) Let f(z) and g(z) be two non-constant meromorphic functions
and let n, k be two positive integers with n > 3k + 10. If (fn(z))(k) and (gn(z))(k)

share z CM, f and g share ∞ IM, then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 ,
where c1, c2 and c are three constants satisfying 4n2(c1c2)nc2 = −1, or f ≡ tg for
a constant t such that tn = 1.

Further, Fang and Qiu investigated uniqueness for the same functions as in the
theorem A, when k = 1.

Theorem B. ([7]) Let f(z) and g(z) be two non-constant meromorphic functions
and let n ≥ 11 be a positive integer. If fn(z)f ′(z) and gn(z)g′(z) share z CM,

then either f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants
satisfying 4(c1c2)n+1c2 = −1, or f(z) ≡ tg(z) for a constant t such that tn+1 = 1.

In 2012, Cao and Zhang replaced f ′ with f (k) and obtained the following theorem.

Theorem C. ([1]) Let f(z) and g(z) be two transcendental meromorphic functions,
whose zeros are of multiplicities atleast k, where k is a positive integer. Let n >
max{2k − 1, 4 + 4/k + 4} be a positive integer. If fn(z)f (k)(z) and gn(z)g(k)(z)
share z CM, and f and g share ∞ IM, then one of the following two conclusions
holds.
(1) fn(z)f (k)(z) = gn(z)g(k)(z)

(2) f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are constants such that
4(c1c2)n+1c2 = −1.

Recently, X.B.Zhang reduced the lower bond of n and relax the condition on mul-
tiplicity of zeros in theorem C and proved the below result.

Theorem D. ([15]) Let f(z) and g(z) be two transcendental meromorphic functions
and n, k two positive integers with n > k+6. If fn(z)f (k)(z) and gn(z)g(k)(z) share
z CM, and f and g share ∞ IM, then one of the following two conclusions holds.
(1) fn(z)f (k)(z) = gn(z)g(k)(z);

(2) f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are constants such that
4(c1c2)n+1c2 = −1.

We define a difference product of meromorphic function f(z) as follows.
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(1.1) F (z) = f(z)n

 d∏
j=1

f(z + cj)
sj

(k)

(1.2) F1(z) = f(z)n
d∏
j=1

f(z + cj)
sj

Where cj ∈ C \ {0}(j = 1, 2, . . . , d) are distinct constants. n, k, d, sj(j =

1, 2, . . . , d) are positive integers and λ =
∑d
j=1 sj .

For j = 1, 2, 3 . . . d, λ1 =
∑d
j=1 αjsj and λ2 =

∑d
j=1 βjsj , where f(z + cj) and

g(z + cj) have zeros with maximum orders αj and βj respectively.

In this article, we prove the theorem on product of difference polynomials sharing
a fixed point as follows.

Theorem 1.1. Let f and g be two transcendental meromorphic functions of hy-
per order ρ2(f) < 1 and ρ2(g) < 1. Let k, n, d, λ be positive integers and n >
max{2d(k+ 2) +λ(k+ 3) + 7, λ1, λ2}. If F (z) and G(z) share z CM and f , g share
∞ IM, then one of the following two conclusions holds.

(1) F (z) = G(z)

(2)
∏d
j=1 f(z+cj)sj = C1e

Cz2 ,
∏d
j=1 g(z+cj)sj = C2e

−Cz2 , where C1, C2 and

C are constants such that 4(C1C2)n+1C2 = −1.

2. Lemmas

We need following Lemmas to prove our results.

Lemma 2.1. ([13]) Let f and g be two non-constant meromorphic functions, ′a′

be a finite non-zero constant. If f and g share ′a′ CM and ∞ IM, then one of the
following cases holds.

(1) T (r, f) ≤ N2

(
r, 1f

)
+N2

(
r, 1g

)
+ 3N(r, f) + S(r, f) + S(r, g).

The same inequality holding for T (r, g);
(2) fg ≡ a2;
(3) f ≡ g.

Lemma 2.2. ([10]) Let f(z) be a transcendental meromorphic functions of hyper
order ρ2(f) < 1, and let c be a non-zero complex constant. Then we have

T (r, f(z + c)) = T (r, f(z)) + S(r, f(z)),

N(r, f(z + c)) = N(r, f(z)) + S(r, f(z)),

N

(
r,

1

f(z + c)

)
= N

(
r,

1

f(z)

)
+ S(r, f(z)).

Lemma 2.3. ([14]) Let f be a non-constant meromorphic function, let P (f) =
a0 + a1f + a2f

2 + . . . + anf
n, where a0, a1, a2, . . . , an are constants and an 6= 0.

Then

T (r, P (f)) = nT (r, f) + S(r, f).
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Lemma 2.4. ([14]) Let f be a non-constant meromorphic function and p, k be
positive integers. Then

(1) T
(
r, f (k)

)
≤ T (r, f) + kN (r, f) + S(r, f),

(2) Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f),

(3) Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f),

(4) N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f).

Lemma 2.5. ([8]) Suppose that f is a non-constant meromorphic function, k ≥ 2
is an integer. If

N(r, f) +N

(
r,

1

f

)
+N

(
r,

1

f (k)

)
= S

(
r,
f ′

f

)
,

then f(z) = eaz+b, where a 6= 0, b are constants.

Lemma 2.6. ([14]) Let f be a transcendental meromorphic function of finite order.
Then

m

(
r,
f ′

f

)
= S(r, f)

Lemma 2.7. Let f(z) be a transcendental meromorphic function of hyper order
ρ2(f) < 1 and F1(z) be stated as in (1.2). Then

(n− λ)T (r, f) + S(r, f) ≤ T (r, F1(z)) ≤ (n+ λ)T (r, f) + S(r, f)

Proof : Since f is a meromorphic function with ρ2(f) < 1. From Lemma 2.2 and
Lemma 2.3, we have

T (r, F1(z)) ≤ T (r, f(z)n) + T

r, d∏
j=1

f(z + cj)
sj

+ S(r, f)

≤ (n+ λ)T (r, f) + S(r, f)

On the other hand, from Lemma 2.2 and Lemma 2.3, we have

(n+ λ)T (r, f) = T (r, fnfλ) + S(r, f)

= m(r, fnfλ) +N(r, fnfλ) + S(r, f)

≤ m

(
r,

F1(z)fλ∏d
j=1 f(z + cj)sj

)
+N

(
r,

F1(z)fλ∏d
j=1 f(z + cj)sj

)

+S(r, f)

≤ m(r, F1(z)) +N(r, F1(z)) + T

(
r,

fλ∏d
j=1 f(z + cj)sj

)
+S(r, f)

≤ T (r, F1(z)) + 2λT (r, f) + S(r, f)

(n− λ)T (r, f) ≤ T (r, F1(z)) + S(r, f)

⇒ (n− λ)T (r, f) + S(r, f) ≤ T (r, F1(z))
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Hence we get Lemma 2.7.

3. Proof of theorem

Proof of the theorem 1.1

(3.1) Let, F ∗ =
F

z
and G∗ =

G

z

From the hypothesis of the theorem 1.1, we have F and G share z CM and f, g
share ∞ IM. It follows that F ∗ and G∗ share 1 CM and ∞ IM.

By Lemma 2.1, we arrive at 3 cases as follows.

Case 1. Suppose that case (1) of Lemma 2.1 holds.

(3.2) T (r, F ∗) ≤ N2

(
r,

1

F ∗

)
+N2

(
r,

1

G∗

)
+ 3N(r, F ∗) + S(r, F ∗) + S(r,G∗)

We deduce from (3.2) and obtained the following

(3.3) T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 3N(r, F ) + S(r, F ) + S(r,G)

From Lemma 2.2 and Lemma 2.7, we have S(r, F ) = S(r, f) and S(r,G) = S(r, g).
From (3.3), we have

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 3N(r, F ) + S(r, f) + S(r, g)

≤ N2

(
r,

1

fn

)
+N2

r, 1(∏d
j=1 f(z + cj)sj

)(k)
+N2

(
r,

1

gn

)

+N2

r, 1(∏d
j=1 g(z + cj)sj

)(k)
+ 3N(r, fn) + 3N

r,
 d∏
j=1

f(z + cj)
sj

(k)


(3.4) +S(r, f) + S(r, g)
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Using (2) of Lemma 2.4 in (3.4), we have

T (r, F ) ≤ 2N (2

(
r,

1

fn

)
+ T

r,
 d∏
j=1

f(z + cj)
sj

(k)
− T

r, d∏
j=1

f(z + cj)
sj



+Nk+2

(
r,

1∏d
j=1 f(z + cj)sj

)
+ 2N (2

(
r,

1

gn

)
+ T

r,
 d∏
j=1

g(z + cj)
sj

(k)


−T

r, d∏
j=1

g(z + cj)
sj

+Nk+2

(
r,

1∏d
j=1 g(z + cj)sj

)
+ 3N(r, f)

+3N

r, d∏
j=1

f(z + cj)
sj

+ S(r, f) + S(r, g)

T (r, F ) ≤ 2T (r, f) + T

r,
 d∏
j=1

f(z + cj)
sj

(k)
+ T (r, fn)− T (r, fn)

−T

r, d∏
j=1

f(z + cj)
sj

+ (k + 2) d T (r, f) + 2T (r, g)

+T

r, d∏
j=1

g(z + cj)
sj

+ kN

r, d∏
j=1

g(z + cj)
sj


−T

r, d∏
j=1

g(z + cj)
sj

+ (k + 2) d T (r, g)

+3T (r, f) + 3λT (r, f) + S(r, f) + S(r, g)

T (r, F ) ≤ 2T (r, f) + T (r, F )− T (r, F1) + (k + 2) d T (r, f) + 2T (r, g) + kλT (r, g)

+(k + 2) d T (r, g) + (3 + 3λ)T (r, f) + S(r, f) + S(r, g)

T (r, F1) ≤ 2[T (r, f) + T (r, g)] + (k + 2) d [T (r, f) + T (r, g)] + kλT (r, g)

+(3 + 3λ)T (r, f) + S(r, f) + S(r, g)

From Lemma 2.7, we have
(n−λ)T (r, f) ≤ ((k+2)d+2)[T (r, f)+T (r, g)]+kλT (r, g)+(3+3λ)T (r, f)+S(r, f)

(3.5) +S(r, g)

Similarly for T (r, g), we obtain the following

(n−λ)T (r, g) ≤ (2+(k+2)d)[T (r, f)+T (r, g)]+kλT (r, f)+(3+3λ)T (r, g)+S(r, f)

(3.6) +S(r, g)
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From (3.5) and (3.6), we have

(n−λ)[T (r, f)+T (r, g)] ≤ 2(2+(k+2)d))[T (r, f)+T (r, g)]+(kλ+3+3λ)[T (r, f)+T (r, g)]

+S(r, f) + S(r, g)

Which is contradiction to n > 2d(k + 2) + λ(k + 3) + 7.

Case 2. Suppose that FG ≡ z2 holds.

(3.7) i.e fn

 d∏
j=1

f(z + cj)
sj

(k)

gn

 d∏
j=1

g(z + cj)
sj

(k)

≡ z2

Now, (3.7) can be written as

fngn =
z2[∏d

j=1 f(z + cj)sj
](k) [∏d

j=1 g(z + cj)sj
](k)

By using Lemma 2.2, Lemma 2.3 and (4) of Lemma 2.4, we derive

n [N(r, f) +N(r, g)] ≤ λ
[
N

(
r,

1

f

)
+N

(
r,

1

g

)]
(3.8)

+kd[N(r, f) +N(r, g)] + S(r, f) + S(r, g)

From (3.7), we can write

1

fngn
=

[∏d
j=1 f(z + cj)

sj
](k) [∏d

j=1 g(z + cj)
sj
](k)

z2

Similarly, as (3.8), we obtain

(3.9) n

[
N

(
r,

1

f

)
+N

(
r,

1

g

)]
≤ (λ+ kd) [N(r, f) +N(r, g)] + S(r, f) + S(r, g)

From (3.8) and (3.9), deduce

(n−(λ+2kd))[N(r, f)+N(r, g)]+(n−λ)

[
N

(
r,

1

f

)
+N

(
r,

1

g

)]
≤ S(r, f)+S(r, g)

Since n > 2d(k + 2) + λ(k + 3) + 7, we have

N(r, f) +N(r, g) +N

(
r,

1

f

)
+N

(
r,

1

g

)
< S(r, f) + S(r, g)

Hence, we conclude that f and g have finitely many zeros and poles.

Let z0 be a pole of f of multiplicity p, then z0 is pole of fn of multiplicity np, since
f and g share ∞ IM, then z0 is pole of g of multiplicity q.
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If z0 also zero of
[∏d

j=1 f(z + cj)
sj
](k)

and
[∏d

j=1 g(z + cj)
sj
](k)

then we have from

(3.7) that

n(p+ q) ≤
d∑
j=1

αjsj +

d∑
j=1

βjsj − 2k

⇒ 2n < n(p+q) ≤
d∑
j=1

αjsj+

d∑
j=1

βjsj−2k = λ1+λ2−2k < λ1+λ2 ≤ 2 max{λ1, λ2}

⇒ n < max{λ1, λ2}, which is contradiction to n > max{2d(k + 2) + λ(k + 3) +
7, λ1, λ2}. Therefore f has no poles.

Similarly, we can get contradiction for other two cases namely, if z0 is zero of[∏d
j=1 f(z + cj)

sj
](k)

, but not zero of
[∏d

j=1 g(z + cj)
sj
](k)

and other way. There-

fore f has no poles. Similarly, we get that g also has no poles. By this we

conclude that f and g are entire functions and hence
[∏d

j=1 f(z + cj)
sj
](k)

and[∏d
j=1 g(z + cj)

sj
](k)

are entire functions.

Then from (3.7), we deduce that f and g have no zeros.
Therefore,

f = eα(z), g = eβ(z) and

d∏
j=1

f(z + cj)
sj =

d∏
j=1

(eα(z+cj))sj ,

d∏
j=1

g(z + cj)
sj =

d∏
j=1

(eβ(z+cj))sj
(3.10)

where α, β are entire functions with ρ2(f) < 1. Substitute f and g into (3.7), we
get

(3.11) enα(z)

 d∏
j=1

(eα(z+cj))sj

(k)

enβ(z)

 d∏
j=1

(eβ(z+cj))sj

(k)

≡ z2

If k = 1, then

(3.12) enα(z)

 d∏
j=1

(eα(z+cj))sj

′ enβ(z)
 d∏
j=1

(eβ(z+cj))sj

′ ≡ z2

(3.13) ⇒ en(α+β)e
∑d

j=1(α(z+cj)+β(z+cj))sj

d∑
j=1

(α′(z + cj))sj

d∑
j=1

(β′(z + cj))sj ≡ z2

Since α(z) and β(z) are non-constant entire functions, then we have

T

r,
(∏d

j=1 f(z + cj)
sj
)′

∏d
j=1 f(z + cj)sj

 = T

r,
(∏d

j=1 e
α(z+cj)sj

)′
∏d
j=1 e

α(z+cj)sj
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(3.14)

= T

(
r,

∑d
j=1 α

′(z + cj)sj
∏d
j=1 e

α(z+cj)sj∏d
j=1 e

α(z+cj)sj

)
= T

r, d∑
j=1

α′(z + cj)sj



Let nT (r, f) = T (r, fn) = T

(
r,

F

(
∏d
j=1 f(z + cj)sj )(k)

)

≤ T (r, F ) + T

r,
 d∏
j=1

f(z + cj)
sj

(k)
+ S(r, f)

≤ T (r, F ) + T

r, d∏
j=1

f(z + cj)
sj

+ kN

r, d∏
j=1

f(z + cj)
sj


+S(r, f)

nT (r, f) ≤ T (r, F ) + (λ+ kd)T (r, f) + S(r, f)

(3.15) (n− λ− kd)T (r, f) ≤ T (r, F ) + S(r, f)

We obtain from (3.15) that

(3.16) T (r, f) = O(T (r, F ))

as r ∈ E and r →∞, where E ⊂ (0,+∞) is some subset of finite linear measure.

On the other hand, we have

T (r, F ) = T

r, fn
 d∏
j=1

f(z + cj)
sj

(k)
 ≤ nT (r, f) + λT (r, f)

+kN

r, d∏
j=1

f(z + cj)
sj

+ S(r, f)

≤ (n+ kd+ λ)T (r, f) + S(r, f)

(3.17) ⇒ T (r, F ) = O(T (r, f))

as r ∈ E and r →∞, where E ⊂ (0,+∞) is some subset of finite linear measure.

Thus from (3.16), (3.17) and the standard reasoning of removing exceptional set
we deduce ρ(f) = ρ(F ). Similarly, we have ρ(g) = ρ(G). It follows from (3.7) that
ρ(F ) = ρ(G). Hence we get ρ(f) = ρ(g).

We deduce that either both α and β are polynomials or both α and β are transcen-
dental entire functions. Moreover, we have
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(3.18) N

(
r,

1

(
∏d
j=1 f(z + cj)sj )(k)

)
≤ N

(
r,

1

z2

)
= O(log r)

From (3.18) and (3.10), we have

N

r, d∏
j=1

f(z + cj)
sj

+N

(
r,

1∏d
j=1 f(z + cj)sj

)

+N

(
r,

1

(
∏d
j=1 f(z + cj)sj )(k)

)
= O(log r)

If k ≥ 2, then it follows from (3.14),(3.18) and Lemma 2.5 that
∑d
j=1 α

′(z + cj)sj
is a polynomial and therefore we have α(z) is a non- constant polynomial.

Similarly, we can deduce that β(z) is also a non-constant polynomial. From this,
we deduce from (3.10) that d∏
j=1

f(z + cj)
sj

(k)

= e
∑d

j=1 α(z+cj)sj

Pk−1(α′(z + cj)) +

 d∑
j=1

α′(z + cj)sj

k


 d∏
j=1

g(z + cj)
sj

(k)

= e
∑d

j=1 β(z+cj)sj

Qk−1(α′(z + cj)) +

 d∑
j=1

β′(z + cj)sj

k


Where Pk−1 and Qk−1 are difference-differential polynomials in α′(z+ cj) with de-
gree at most k − 1.

Then (3.11) becomes

en(α+β)e
∑d

j=1(α(z+cj)+β(z+cj))sj

 d∑
j=1

α(k)(z + cj)sj +

 d∑
j=1

α′(z + cj)sj

k


(3.19)

 d∑
j=1

β(k)(z + cj)sj +

 d∑
j=1

β′(z + cj)sj

k
 = z2

We deduce from (3.19) that α(z) + β(z) ≡ C for a constant C.
If k = 1, from (3.13), we have

(3.20) en(α+β)+
∑d

j=1(α(z+cj)+β(z+cj))sj

 d∑
j=1

(α′(z + cj))sj

d∑
j=1

(β′(z + cj))sj

 ≡ z2
Next, we let α+ β = γ and suppose that α, β both are transcendental entire func-
tions.

If γ is a constant, then α′ + β′ = 0 and
∑d
j=1 α

′(z + cj) = −
∑d
j=1 β

′(z + cj).
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From (3.20) we have

en(α+β)+
∑d

j=1(α(z+cj)+β(z+cj))sj

−
 d∑
j=1

α′(z + cj)sj

2
 = z2

(3.21) enγ+dγ

−
 d∑
j=1

α′(z + cj)sj

2
 = z2

Which implies that α′ is a non-constant polynomial of degree 1. This together
with α′+ β′ = 0 which implies that β′ is also non-constant polynomial of degree 1.
Which is contradiction to α, β both are transcendental entire functions.

If γ is not a constant, then we have

α+ β = γ and
∑d
j=1 α(z + cj)sj +

∑d
j=1 β(z + cj)sj =

∑d
j=1 γ(z + cj)sj

From (3.20) we have

(3.22)

 d∑
j=1

α′(z + cj)sj

 d∑
j=1

γ′(z + cj)sj −
d∑
j=1

α′(z + cj)sj

 enγ+∑d
j=1 γ(z+cj)sj = z2

Since T

r, d∑
j=1

γ′(z + cj)sj

 = m

r, d∑
j=1

γ′(z + cj)sj

+N

r, d∑
j=1

γ′(z + cj)sj


(3.23) ≤ m

(
r,

(e
∑d

j=1 γ(z+cj)sj )′

e
∑d

j=1 γ(z+cj)sj

)
+O(1) = S

(
r, e

∑d
j=1 γ(z+cj)sj

)
And also we have

T

r, nγ′ + d∑
j=1

γ′(z + cj)sj

 = m

r, nγ′ + d∑
j=1

γ′(z + cj)sj

+N

r, nγ′ + d∑
j=1

γ′(z + cj)sj


(3.24) ≤ m

(
r,

(enγ+
∑d

j=1 γ(z+cj)sj )′

enγ+
∑d

j=1 γ(z+cj)sj

)
+O(1) = S

(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
From (3.22), we have

T
(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
≤ T

r, z2∑d
j=1 α

′(z + cj)sj

[∑d
j=1 γ

′(z + cj)sj −
∑d
j=1 α

′(z + cj)sj

]


+O(1)

≤ T (r, z2)+T

r, d∑
j=1

α′(z + cj)sj

 d∑
j=1

γ′(z + cj)sj −
d∑
j=1

α′(z + cj)sj
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+O(1)

≤ 2 log r + 2T

r, d∑
j=1

α′(z + cj)sj

+O(1)

(3.25) ⇒ T
(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
≤ O

T
r, d∑

j=1

α′(z + cj)sj


Similarly, we have

(3.26) T

r, d∑
j=1

α′(z + cj)sj

 ≤ O (T (r, enγ+∑d
j=1 γ(z+cj)sj

))
Thus, from (3.23)-(3.26) we have

T
(
r, nγ′ +

∑d
j=1 γ

′(z + cj)sj

)
= S

(
r, enγ+

∑d
j=1 γ(z+cj)sj

)
= S

(
r,
∑d
j=1 α

′(z + cj)sj

)
By the second fundamental theorem and (3.22), we have

T

r, d∑
j=1

α′(z + cj)sj

 ≤ N (r, 1∑d
j=1 α

′(z + cj)sj

)

+N

(
r,

1∑d
j=1 α

′(z + cj)sj −
∑d
j=1 γ

′(z + cj)sj

)
+ S

r, d∑
j=1

α′(z + cj)sj


≤ O(log r) + S

r, d∑
j=1

α′(z + cj)sj


This implies

∑d
j=1 α

′(z+cj)sj is a polynomial, which leads to α′(z) is a polynomial.

Which contradicts that α(z) is a trascendental entire function.
Thus α and β are both polynomials and α(z) + β(z) ≡ C for a constant C.
Hence, from (3.19) and using α+ β = C we get

(3.27) (−1)k
(

d∑
j=1

α′(z + cj)sj

)2k

= z2 + P2k−1(α
′(z + cj)sj) for j = 1, 2, . . . , d.

Where P2k−1 is difference-differential polynomial in α′(z + cj)sj of degree at
most 2k − 1. From (3.27), we have

(3.28) 2kT

r, d∑
j=1

α′(z + cj)sj

 = 2 log r + S(r, α′(z + cj)sj)

From (3.28), we can see that
∑d
j=1 α

′(z + cj)sj is a non-constant polynomial of
degree 1 and k = 1.
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Which implies,
d∑
j=1

α′(z + cj)sj = zl1

Since α′ + β′ = 0, we get
∑d
j=1 β

′(z + cj)sj = −
∑d
j=1 α

′(z + cj)sj . Which implies∑d
j=1 β

′(z + cj)sj is also a non-constant polynomial of degree 1. Hence we have

d∑
j=1

β′(z + cj)sj = zl2

Hence, we get
d∏
j=1

f(z + cj)sj = C1e
Cz2

Similarly, we have
d∏
j=1

g(z + cj)sj = C2e
−Cz2

where C1, C2 and C are constants such that 4(C1C2)n+1C2 = −1.

This proves the conclusion (2) of theorem 1.1.

Case 3. If F ≡ G

i.e fn
[∏d

j=1 f(z + cj)
sj
](k)
≡ gn

[∏d
j=1 g(z + cj)

sj
](k)

This proves the conclusion (1) of theorem 1.1.
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