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ON SOME NEW DIFFERENCE SEQUENCE SPACES DERIVED

BY USING RIESZ MEAN AND A MUSIELAK-ORLICZ

FUNCTION

KULDIP RAJ AND RENU ANAND

Abstract. In this paper we introduce new difference sequence spaces rq(M,
∆m

n , u, p) by using Riesz mean and Musielak-Orlicz function. We also make an

effort to study some topological properties and compute α−, β− and γ− duals

of these spaces. Finally, we study matrix transformations on newly formed
spaces.

1. Introduction and Preliminaries

Let w be the vector space of all real or complex sequences. By l∞, c and c0;
we denote the classes of all bounded, convergent and null sequences; respectively.
Also, we write bs, cs and lp to denote the spaces of all bounded, convergent series
and p-absolutely summable sequences, respectively, where 1 ≤ p <∞. We use the
convention that any term with a negative subscript is equal to zero.
Let X and Y be two sequence spaces and let A = (ank) be an infinite matrix
of real or complex numbers ank, where n, k ∈ N. Then, the matrix A defines the
A−transformation from X into Y, if for every sequence x = (xk) ∈ X the sequence

Ax = {(Ax)n}, the A-transform of x exists and is in Y ; where (Ax)n =
∑
k

ankxk.

By A ∈ (X : Y ) we mean the characterizations of matrices A : X → Y . A sequence
x is said to be A-summable to l if Ax converges to l which is called the A-limit of x.
For a sequence space X, the matrix domain XA of an infinite matrix A is defined
as

(1.1) XA = {x = (xk) ∈ w : Ax ∈ X}.

The theory of matrix transformations is a wide field in summability theory. It deals
with the characterizations of classes of matrix mappings between sequence spaces
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by giving necessary and sufficient conditions on the entries of the infinite matrices.
The classical summability theory deals with a generalization of convergence of se-
quences and series. One original idea was to assign a limit to divergent sequences
or series. Toeplitz [29] was the first to study summability methods as a class of
transformations of complex sequences by complex infinite matrices.
Let A = (ank) be any matrix. Then a sequence x is said to be summable to l, writ-

ten xk → l, if and only if Anx =
∑
k

ankxk exists for each n and Anx→ l (n→∞).

For example, if An = I, the unit matrix for all n, then xk → l(I) means precisely
that xk → l (k →∞), in the ordinary sense of convergence.
An infinite matrix A = (ank) is said to be regular ([11], page:165) if and only if the
following conditions (or Toplitz conditions) hold:

(i) lim
n→∞

∞∑
k=0

ank = 1,

(ii) lim
n→∞

ank = 0, (k = 0, 1, 2, ...)

(iii) sup
n∈N

∞∑
k=0

|ank| <∞.

Let (qk) be a sequence of strictly positive numbers and let us write, Qn =

n∑
k=0

qk

for n ∈ N. Then the matrix Rq = (rqnk) of the Riesz mean (R, qn) is given by

rqnk =


qk
Qn
, if 0 ≤ k ≤ n,

0 if k > n.

The Riesz mean (R, qn) is regular if and only if Qn →∞ as n→∞ (see, Petersen
[22], p.10).
The sequence space rq(u, p) is introduced by Sheikh and Ganie [26] as:

rq(u, p) =
{
x = (xk) ∈ w :

∑
k

∣∣∣ 1

Qk

k∑
j=0

ujqjxj

∣∣∣pk <∞},
where 0 ≤ pk ≤ D <∞.
Let p = (pk) be a bounded sequence of strictly positive real numbers with sup

k
pk =

D and H = max{1, D}. Then, the linear spaces l(p) and l∞(p) were defined by
Maddox [13] (see also, [27],[30]) as follows:

l(p) = {x = (xk) :
∑
k

|xk|pk <∞}

and
l∞(p) = {x = (xk) : sup

k
|xk|pk <∞}

which are complete spaces paranormed by

g1(x) =
[∑

k

|xk|pk
] 1

H

and g2(x) = sup
k
|xk|

pk
H

if and only if inf pk > 0 for all k.
Throughout the paper we shall assume that pk

−1 + {p′

k}−1 = 1 provided 1 <



58 KULDIP RAJ AND RENU ANAND

inf pk ≤ D <∞ and we denote the collection of all finite subsets of N by F where
N = {0, 1, 2, ...}.

An Orlicz function M is a function, which is continuous, non-decreasing and convex
with M(0) = 0, M(x) > 0 for x > 0 and M(x) −→∞ as x −→∞.
Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the follow-
ing sequence space. Let w be the space of all real or complex sequences x = (xk),
then

`M =
{
x ∈ w :

∞∑
k=1

M
( |xk|
ρ

)
<∞, for some ρ > 0

}
which is called as an Orlicz sequence space. The space `M is a Banach space with
the norm

||x|| = inf
{
ρ > 0 :

∞∑
k=1

M
( |xk|
ρ

)
≤ 1
}
.

It is shown in [9] that every Orlicz sequence space `M contains a subspace isomorphic
to `p(p ≥ 1). The ∆2−condition is equivalent to M(Lx) ≤ kLM(x) for all values
of x ≥ 0, k > 0 and for L > 1.
A sequenceM = (Mk) of Orlicz functions is called a Musielak-Orlicz function (see
[14], [19]). A sequence N = (Nk) is defined by

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

is called the complementary function of a Musielak-Orlicz functionM. For a given
Musielak-Orlicz function M, the Musielak-Orlicz sequence space tM and its sub-
space hM are defined as follows

tM =
{
x ∈ w : IM(cx) <∞ for some c > 0

}
,

hM =
{
x ∈ w : IM(cx) <∞ for all c > 0

}
,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk)

and x = (xk) ∈ tM.
We consider tM equipped with the Luxemburg norm

||x|| = inf
{
k > 0 : IM

(x
k

)
≤ 1
}

or equipped with the Orlicz norm

||x||0 = inf
{1

k

(
1 + IM(kx)

)
: k > 0

}
.

The notion of difference sequence spaces was introduced by Kizmaz [8], who studied
the difference sequence spaces l∞(4), c(4) and c0(4). The notion was further gen-
eralized by Et and Çolak [5] by introducing the spaces l∞(4m), c(4m) and c0(4m).
Let n,m be non-negative integers, then for Z a given sequence space, we have

Z(4mn ) = {x = (xk) ∈ w : (4mn xk) ∈ Z}
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for Z = c, c0 and l∞ where 4mn x = (4mn xk) = (4m−1
n xk−4m−1

n xk+1) and 40xk =
xk for all k ∈ N, which is equivalent to the following binomial representation

∆m
n xk =

m∑
v=0

(−1)v
(
m
v

)
xk+nv.

Taking n = 1, we get the spaces l∞(4m), c(4m) and c0(4m) studied by Et and
Çolak [5]. Taking m = n = 1, we get the spaces l∞(4), c(4) and c0(4) introduced
and studied by Kizmaz [8]. Mursaleen et al. ([15], [16], [17], [18]) used the idea of
Orilcz function and study different sequence spaces. Esi et al. ([1], [3], [4]) work on
these type of sequence spaces. For more details about sequence spaces and matrix
transformations (see [2], [7], [12], [20], [21], [23], [24], [25], [28]) and references there
in.

2. The Riesz Sequence Space rq(M,∆m
n , u, p) of Non-absolute Type

Let X be a linear metric space. A function g : X → R is called paranorm, if

(1) g(x) ≥ 0, for all x ∈ X,
(2) g(−x) = g(x), for all x ∈ X,
(3) g(x+ y) ≤ g(x) + g(y), for all x, y ∈ X,
(4) if (λn) is a sequence of scalars with λn → λ as n→∞ and (xn) is a sequence

of vectors with g(xn−x)→ 0 as n→∞, then g(λnxn−λx)→ 0 as n→∞.

A paranorm g for which g(x) = 0 implies x = 0 is called total paranorm and the
pair (X, g) is called a total paranormed space. It is well known that the metric of
any linear metric space is given by some total paranorm (see [31], Theorem 10.4.2,
P-183).
Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence of strictly
positive real numbers and p = (pk) be a bounded sequence of positive real numbers.
Then we define new difference sequence space rq(M,∆m

n , u, p) as follows:

rq(M,∆m
n , u, p) =

{
x = (xk) ∈ w :

∑
k

∣∣∣ 1

Qk

k∑
j=0

Mj(|ujqj∆m
n xj |)

∣∣∣pk <∞},
where 0 < pk ≤ D <∞.
With the definition of matrix domain (1.1), the sequence space rq(M,∆m

n , u, p)
may be redefined as

rq(M,∆m
n , u, p) = {l(p)}Rq(M,∆m

n ,u)

where Rq(M,∆m
n , u) denotes the matrix Rq(M,∆m

n , u) = rqnk(M,∆m
n , u) defined

by

rqnk(M,∆m
n , u) =



1
Qn

(Mk(ukqk)−Mk+1(uk+1qk+1)), if 0 ≤ k ≤ n− 1

Mn(unqn)
Qn

, if k = n

0, if k > n.
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Define the sequence y = (yk) which will be used by the Rq(M,∆m
n , u)-transform of

a sequence x = (xk), we have

(2.1) yk =
1

Qk

k∑
j=0

Mj(|ujqj∆m
n xj |).

The main purpose of this paper is to study some new difference sequence spaces
generated by Riesz Mean and Musielak-Orlicz function. We shall show that these
spaces are complete and paranormed spaces. We have also discuss the α−, β−duals
of these spaces in section third of this paper. Finally, we discuss the matrix trans-
formations on these spaces in the last section of this paper.

Theorem 2.1. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers. Then rq(M,∆m

n , u, p) is a complete linear metric space paranormed by

g(x) =
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))xj +
Mk(ukqk)

Qk
xk

∣∣∣pk] 1
H

with 0 ≤ pk ≤ D <∞ and H = max{1, D}.

Proof. The linearity of rq(M,∆m
n , u, p) follows from the inequality. For x, y ∈

rq(M,∆m
n , u, p) (see [11], p.30)

(2.2)[∑
k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))(xj + yj) +
Mk(ukqk)

Qk
(xk + yk)

∣∣∣pk] 1
H

≤
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))xj +
Mk(ukqk)

Qk
xk

∣∣∣pk] 1
H

+
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))yj +
Mk(ukqk)

Qk
yk

∣∣∣pk] 1
H

and for any α ∈ R (See [12])

(2.3) |α|pk ≤ max(1, |α|H).

It is clear that g(θ) = 0 and g(x) = g(−x) for all x ∈ rq(M,∆m
n , u, p). Again the

inequality (2.2) and (2.3) yield the subadditivity of g and

g(αx) ≤ max(1, |α|)g(x).

Let {xn} be any sequence of points of the space rq(M,∆m
n , u, p) such that g(xn −

x) → 0 and (αn) is a sequence of scalars such that αn → α. Then since the
inequality,

g(xn) ≤ g(x) + g(xn − x)
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holds by subadditivity of g, {g(xn)} is bounded and we thus have

g(αnx
n − αx) =

[∑
k

∣∣∣ 1

Qk

k∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))(αnx
n
j + αxj)

∣∣∣pk] 1
H

≤ |αn − α|
1
H g(xn) + |α| 1H g(xn − x)

which tends to zero as n→∞. This proves that the scalar multiplication is contin-
uous. Hence g is paranorm on the space rq(M,∆m

n , u, p).

Now we prove the completeness of rq(M,∆m
n , u, p):

Let {xi} be any Cauchy sequence in the space rq(M,∆m
n , u, p), where xi = {xi0, xi1, ...}.

Then, for a given ε > 0 there exists a positive integer n0(ε) such that

(2.4) g(xi − xj) < ε ∀ i, j ≥ n0(ε).

Using definition of g and for each fixed k ∈ N that

|(Rq(M,∆m
n , u)xi)k − (Rq(M,∆m

n , u)xj)k|

≤
[∑

k

|(Rq(M,∆m
n , u)xi)k − (Rq(M,∆m

n , u)xj)k|pk
] 1

H

< ε for i, j ≥ n0(ε)

which yields that {(Rq(M,∆m
n , u)x0)k, (R

q(M,∆m
n , u)x1)k, ...} is a Cauchy se-

quence of real numbers for every fixed k ∈ N. Since R is complete, it converges
say

(Rq(M,∆m
n , u)xi)k → (Rq(M,∆m

n , u)x)k as i→∞.
Using these infinitely many limits (Rq(M,∆m

n , u)x)0, (R
q(M,∆m

n , u)x)1, ..., we de-
fine the sequence {(Rq(M,∆m

n , u)x)0, (R
q(M,∆m

n , u)x)1, ...}. From (2.4) for each
t ∈ N and i, j ≥ n0(ε),

(2.5)

t∑
k=0

|(Rq(M,∆m
n , u)xi)k − (Rq(M,∆m

n , u)xj)k|pk

≤ g(xi − xj)H

< εH .

Take any i, j ≥ n0(ε). First, let j →∞ in (2.5) and then t→∞, we obtain

g(xi − x) ≤ ε.

Finally, taking ε = 1 in (2.5) and letting i ≥ n0(1), we have by Minkowski’s
inequality for each t ∈ N that[ t∑

k=0

|(Rq(M,∆m
n , u)x)k|pk

] 1
H ≤ g(xi − x) + g(xi)

≤ 1 + g(xi)

which implies that x ∈ rq(M,∆m
n , u, p). Since g(x − xi) ≤ ε for all i ≥ n0(ε), it

follows that xi → x as i→∞. Hence, the space rq(M,∆m
n , u, p) is complete. �
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Theorem 2.2. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers. Then the sequence space rq(M,∆m

n , u, p) of non-absolute type is linearly
isomorphic to the space l(p), where 0 < pk ≤ D <∞.

Proof. To show that the spaces rq(M,∆m
n , u, p) and l(p) are linearly isomorphic,

we have to prove that there exists a linear bijection between these spaces. Define
a linear transformation T : rq(M,∆m

n , u, p)→ l(p) by x→ y = Tx by using equa-
tion (2.2). The linearity of T is trivial. Further, it is obvious that x = θ whenever
T (x) = T (θ) and hence T is injective. Let y ∈ l(p) and define the sequence x = (xk)
by

xk =

k−1∑
n=0

( 1

Mn(unqn)
− 1

Mn+1(un+1qn+1)

)
Qkyk +

Qk
Mk(ukqk)

yk

for k ∈ N. Then

g(x) =
[∑

k

∣∣∣ 1

Qk

k−1∑
j=0

(Mj(ujqj)−Mj+1(uj+1qj+1))xj +
Mk(ukqk)

Qk
xk

∣∣∣pk] 1
H

=
[∑

k

∣∣∣ k∑
j=0

δkjyj

∣∣∣pk] 1
H

=
[∑

k

∣∣∣yk∣∣∣pk] 1
H

= g1(y) <∞,

where

δkj =

{
1, if k = j
0, if k 6= j.

Thus, we have x ∈ rq(M,∆m
n , u, p). Consequently, T is surjective and paranorm pre-

serving. Hence, T is linear bijection and this shows that the spaces rq(M,∆m
n , u, p)

and l(p) are linearly isomorphic. �

3. Basis and α−, β− and γ− duals of the space rq(M,∆m
n , u, p)

In this section, we compute α−, β− and γ− duals of the space rq(M,∆m
n , u, p)

and finally we give the basis for the space rq(M,∆m
n , u, p).

For the sequence space X and Y , define the set

S(X : Y ) = {z = (zk) : xz = (xkzk) ∈ Y }.

The α−, β− and γ− duals of a sequence space X, respectively denoted by Xα, Xβ

and Xγ which are defined by

Xα = S(X : l1), Xβ = S(X : cs) and Xγ = S(X : bs).

Firstly, we state some lemmas which are required in proving our theorems:
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Lemma 3.1. [6] (i) Let 1 < pk ≤ D <∞. Then A ∈ (l(p) : l1) if and only if there
exists an integer B > 1 such that

sup
k∈F

∑
k

∣∣∣∑
n∈k

αnkB
−1
∣∣∣p′k <∞.

(ii) Let 0 < pk ≤ 1. Then A ∈ (l(p) : l1) if and only if

sup
k∈F

sup
k

∣∣∣∑
n∈k

αnkB
−1
∣∣∣pk <∞.

Lemma 3.2. [10] (i) Let 1 < pk ≤ D < ∞. Then A ∈ (l(p) : l∞) if and only if
there exists an integer B > 1 such that

(3.1) sup
n

∑
k

∣∣∣αnkB−1
∣∣∣p′k <∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then A ∈ (l(p) : l∞) if and only if

(3.2) sup
n,k

∣∣∣αnk∣∣∣pk <∞.
Lemma 3.3. [8] Let 0 < pk ≤ D <∞ for every k ∈ N . Then A ∈ (l(p) : c) if and
only if (3.1) and (3.2) hold along with

(3.3) lim
n
αnk = βk for k ∈ N

also holds.

Theorem 3.1. Let M = (Mj) be a Musielak-Orlicz function, u = (uj) be a se-
quence of strictly positive real numbers and p = (pk) be a bounded sequence of posi-
tive real numbers. Define the sets D1(M,∆m

n , u, p) and D2(M,∆m
n , u, p) as follows:

D1(M,∆m
n , u, p) =⋃

B>1

{
α = (αk) ∈ w : sup

k∈F

∑
k

∣∣∣∑
n∈k

[( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

)
Qkαn+

Qn
Mn(unqn))

αn

]
B−1

∣∣∣p′k <∞}
and

D2(M,∆m
n , u, p) =⋃

B>1

{
α = (αk) ∈ w :

∑
k

∣∣∣[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]
B−1

∣∣∣p′k <∞}
Then [

rq(M,∆m
n , u, p)

]α
= D1(M,∆m

n , u, p)
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and [
rq(M,∆m

n , u, p)
]β

= D2(M,∆m
n , u, p) ∩ cs.

Proof. Let us take any α = (αk) ∈ w. We can easily derive with (2.1) that

(3.4) αnxn =

n−1∑
k=0

( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

)
αnQkyk +

αn
Mn(unqn)

Qnyn

= (Cy)n,

where C = (cnk) is defined as

cnk =



(
1

Mk(ukqk) −
1

Mk+1(uk+1qk+1)

)
αnQk, if 0 ≤ k ≤ n− 1

αn

Mn(unqn)Qn, if k = n

0, if k > n,

for all n, k ∈ N . Thus, we observe by combining (3.4) with (i) of lemma (3.1) that
αx = (αnxn) ∈ l1 whenever x = (xn) ∈ rq(M,∆m

n , u, p) if and only if Cy ∈ l1

whenever y ∈ lp. This gives the result that
[
rq(M,∆m

n , u, p)
]α

= D1(M,∆m
n , u, p).

Further, consider the equation

(3.5)
n∑
k=0

αkxk =

n∑
k=0

[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]
yk

= (Dy)n,

where D = (dnk) is defined as

dnk =


(

αk

Mk(ukqk) +
(

1
Mk(ukqk) −

1
Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk, if 0 ≤ k ≤ n

0, if k > n.

Thus, we deduce from Lemma (3.3) with (3.5) that αx = (αnxn) ∈ cs whenever
x = (xn) ∈ rq(M,∆m

n , u, p) if and only if Dy ∈ c whenever y ∈ l(p). Therefore, we
derive from (3.1) that

(3.6)∑
k

∣∣∣[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]
B−1

∣∣∣p′k <∞
and lim

n
dnk exists and hence shows that

[
rq(M,∆m

n , u, p)
]β

= D2(M,∆m
n , u, p)∩cs.

From lemma (3.2) together with (3.5) that αx = (αkxk) ∈ bs whenever x =
(xn) ∈ rq(M,∆m

n , u, p) if and only if Dy ∈ l∞ whenever y = (yk) ∈ l(p). There-

fore, we again obtain the condition (3.6) which means that
[
rq(M,∆m

n , u, p)
]γ

=

D2(M,∆m
n , u, p) ∩ cs and the proof of theorem is complete. �
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Theorem 3.2. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers. Define the sets D3(M,∆m

n , u, p) and D4(M,∆m
n , u, p) as follows:

D3(M,∆m
n , u, p) ={

α = (αk) ∈ w : sup
k∈F

sup
k

∣∣∣∑
n∈k

[( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

)
Qkαn+

Qn
Mn(unqn)

αn

]∣∣∣pk <∞}
and

D4(M,∆m
n , u, p) ={

α = (αk) ∈ w : sup
k

∣∣∣[( αk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αi

)
Qk

]∣∣∣pk <∞}.
Then [

rq(M,∆m
n , u, p)

]α
= D3(M,∆m

n , u, p)

and [
rq(M,∆m

n , u, p)
]β

= D4(M,∆m
n , u, p) ∩ cs.

Proof. This is obtained by proceeding in proof of Theorem (3.1), by using second
parts of lemmas (3.1), (3.2) and (3.3) instead of the first parts so we exclude the
details. �

Theorem 3.3. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive

real numbers. Define the sequence b(k)(q) = {b(k)
n (q)} of the elements of the space

rq(M,∆m
n , u, p) for every fixed k ∈ N by

b(k)
n (q) =


(

1
Mn(unqn) −

1
Mn+1(un+1qn+1)

)
Qn + u−1

n
Qk

Mk(ukqk) , if 0 ≤ n ≤ k − 1

0, if n > k − 1.

Then the sequence {b(k)(q)} is a basis for the space rq(M,∆m
n , u, p) and any x ∈

rq(M,∆m
n , u, p) has a unique representation of the form

(3.7) x =
∑
k

λk(q)b(k)(q),

where λk(q) = (Rq(M,∆m
n , u)x)k for all k ∈ N and 0 < pk ≤ D <∞.

Proof. It is clear that {b(k)(q)} ⊂ rq(M,∆m
n , u, p), since

(3.8) Rq(M,∆m
n , u)b(k)(q) = e(k) ∈ l(p) for k ∈ N

and 0 < pk ≤ D <∞, where e(k) is the sequence whose only non-zero term is 1 in
kth place for each k ∈ N.
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Let x ∈ rq(M,∆m
n , u, p) be given. For every non-negative integer t, we put

(3.9) x[t] =

t∑
k=0

λk(q)b(k)(q).

Then, we obtain by applying Rq(M,∆m
n , u) to (3.9) with (3.8) that

Rq(M,∆m
n , u)x[t] =

t∑
k=0

λk(q)Rq(M,∆m
n , u)b(k)(q) =

t∑
k=0

(Rq(M,∆m
n , u)x)ke

(k)

and

(
Rq(M,∆m

n , u)(x− x[t])
)
i

=

 0, if 0 ≤ i ≤ t

(Rq(M,∆m
n , u)x)i, if i > t,

where i, t ∈ N. Given ε > 0, there exists an integer t0 such that

( ∞∑
i=t

∣∣∣(Rq(M,∆m
n , u)x)i

∣∣∣pk) 1
H

<
ε

2
∀ t ≥ t0.

Hence,

g(x− x[t]) =
( ∞∑
i=t

∣∣∣(Rq(M,∆m
n , u)x)i

∣∣∣pk) 1
H

≤
( ∞∑
i=t0

∣∣∣(Rq(M,∆m
n , u)x)i

∣∣∣pk) 1
H

<
ε

2
< ε,

for all t ≥ t0 which proves that x ∈ rq(M,∆m
n , u, p) is represented as equation

(3.7).
Let us show that the uniqueness of the representation for x ∈ rq(M,∆m

n , u, p) given
by equation (3.6). Suppose, on the contrary that there exists a representation x =∑
k

µk(q)b(k)(q). Since the linear transformation T from rq(M,∆m
n , u, p) to l(p)

used in the Theorem (2.2) is continuous, we have

(Rq(M,∆m
n , u)x)n =

∑
k

µk(q)(Rq(M,∆m
n , u)b(k)(q))n =

∑
k

µk(q)e(k)
n = µn(q)

for n ∈ N, which contradicts the fact that (Rq(M,∆m
n , u)x)n = λn(q) ∀ n ∈ N .

Hence, the representation (3.7) is unique. �

4. Matrix Mappings on the Space rq(M,∆m
n , u, p)

In this section, we characterize the matrix mappings from the space rq(M,∆m
n , u, p)

to the space l∞.
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Theorem 4.1. Let M = (Mj) be Musielak-Orlicz function, u = (uj) be a sequence
of strictly positive real numbers and p = (pk) be a bounded sequence of positive real
numbers.

(i) Let 1 < pk < D < ∞ for k ∈ N. Then A ∈ (rq(M,∆m
n , u, p) : l∞) if and

only if there exists an integer B > 1 such that
(4.1)

C(B) = sup
n

∑
k

∣∣∣[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αni

)
Qk

]
B−1

∣∣∣p′k <∞
and {αnk}k∈N ∈ cs for each n ∈ N.

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (rq(M,∆m
n , u, p) : l∞) if and

only if

(4.2) sup
n,k

∣∣∣[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) n∑
i=k+1

αni

)
Qk

]∣∣∣pk <∞
and {αnk}k∈N ∈ cs for each n ∈ N.

Proof. We shall prove only (i) and the proof of (ii) will follow on applying simi-
lar argument. Let A ∈ (rq(M,∆m

n , u, p) : l∞) and 1 < pk ≤ D < ∞ for every
k ∈ N. Then Ax exists for x ∈ rq(M,∆m

n , u, p) and implies that {αnk}k∈N ∈
{rq(M,∆m

n , u, p)}β for each n ∈ N. Hence necessity of (4.1) holds. Conversely, sup-
pose that (4.1) holds and x ∈ rq(M,∆m

n , u, p), since {αnk}k∈N ∈ {rq(M,∆m
n , u, p)}β

for every fixed n ∈ N, so the A− transform of x exists. Consider the following equal-
ity obtained by using the relation (3.4) that

(4.3)
t∑

k=0

αnkxk =

t∑
k=0

[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) t∑
i=k+1

αni

)
Qk

]
yk.

Taking into account the assumptions, we derive from (3.3) as t→∞ that

(4.4)∑
k

αnkxk =
∑
k

[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) ∞∑
i=k+1

αni

)
Qk

]
yk.

Now by combining (4.4) and the inequality which holds for any B > 0 and any
complex numbers a, b

|ab| ≤ B
(
|aB−1|p

′
+ |b|p

)
with p−1 + {p′}−1 = 1 [10], we can see that

sup
n∈N

∣∣∣∑
k

αnkxk

∣∣∣ ≤ sup
n∈N

∑
k

∣∣∣[( αnk
Mk(ukqk)

+
( 1

Mk(ukqk)
− 1

Mk+1(uk+1qk+1)

) ∞∑
i=k+1

αni

)
Qk

]∣∣∣|yk|
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≤ B[C(B) + hB1 (y)]

< ∞.

This shows that Ax ∈ l∞ whenever x ∈ rq(M,∆m
n , u, p). The proof is complete. �
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[17] M. Mursaleen, S. K Sharma, A. Kılıçman, New class of generalized seminormed sequence
spaces, Abstr. Appl. Anal., 2014, Article ID 461081, 7 pages.

[18] M. Mursaleen, S. K Sharma, S. A. Mohiuddine and A. Kılıçman, New difference sequence
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