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ON ALMOST IDEAL CONVERGENCE WITH RESPECT TO AN

ORLICZ FUNCTION

EMRAH EVREN KARA, MAHMUT DAŞTAN, AND MERVE İLKHAN

Abstract. In this article, we define new classes of ideal convergent and ideal

bounded sequence spaces combining an infinite matrix, an Orlicz function and

invariant mean. We investigate some linear topological structures and alge-
braic properties of the resulting spaces. Also we find out some relations related

to these spaces.

1. Introduction

By ω and `∞, we denote the space of all complex valued sequences and bounded
sequences, respectively. N and C stand for the set of natural numbers and complex
numbers and e = (1, 1, 1, ...).

The notion of ideal convergence which is a generalization of statistical conver-
gence (see [1, 2]) was introduced by Kostyrko et al. [3].

A family I of subsets of a non-empty set X is called an ideal on X if for each
A,B ∈ I, we have A ∪ B ∈ I and for each B ∈ I and B ⊆ A, we have B ∈ I. If
X /∈ I, it is called a non-trivial ideal. A non-trivial ideal is said to be admissible if
it contains all the finite subsets of X.

A sequence x = (xk) in R is called ideal convergent to a real number l if for
every ε > 0 the set {k ∈ N : |xk − l| ≥ ε} belongs to the ideal [3].

A sequence x = (xk) of real numbers is said to be ideal bounded if there is a
K > 0 such that {k ∈ N : |xk| > K} ∈ I [4].

Later, many authors studied on ideal convergence. See for example [5, 6, 7].
Also, ideal convergence is studied on normed spaces and topological spaces in [8, 9,
10, 11, 12].

Let σ be an injective mapping from the set of the positive integers to itself such
that σp(n) 6= n for all positive integers n and p, where σp(n) = σ(σp−1(n)). An
invariant mean or a σ-mean is a continuous linear functional defined on the space
`∞ such that for all x = (xn) ∈ `∞:

(1) If xn ≥ 0 for all n, then ϕ(x) ≥ 0,
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(2) ϕ(e) = 1,
(3) ϕ(Sx) = ϕ(x), where Sx = (xσ(n)).

Vσ denotes the set of bounded sequences all of whose invariant means are equal
which is also called as the space of σ-convergent sequences. In [13], it is defined by

Vσ = {x ∈ `∞ : lim
k
tkn(x) = l, uniformly in n, l = σ − limx},

where tkn(x) =
xn+xσ1(n)+...+xσk(n)

k+1 .
σ-mean is called a Banach limit if σ is the translation mapping n → n + 1. In

this case, Vσ becomes the set of almost convergent sequences which is denoted by
ĉ and defined in[14] as

ĉ = {x ∈ `∞ : lim
k
dkn(x) exists uniformly in n},

where dkn(x) = xn+xn+1+...+xn+k

k+1 .
The space of strongly almost convergent sequences was introduced by Maddox

[15] as follow:

[ĉ] = {x ∈ `∞ : lim
k
dkn(|x− le|) exists uniformly in n for some l}.

A function M : [0,∞) → [0,∞) is called an Orlicz function if M is continuous,
nondecreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and M(x) → ∞
as x → ∞. By convexity of M and M(0) = 0, we have M(λx) ≤ λM(x) for all
λ ∈ (0, 1).

It is said that M satisfies ∆2-condition for all x ∈ [0,∞) if there exists a constant
K > 0 such that M(Lx) ≤ KLM(x), where L > 1 (see [16]).

By using the idea of Orlicz function, Lindenstrauss and Tzafriri [17] defined
Orlicz sequence space

`M =

{
x ∈ ω :

∞∑
k=1

M

(
|xk|
ρ

)
<∞, for some ρ > 0

}
which is a Banach space with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

Several authors used the concept of an Orlicz function to define a new sequence
space. For some of the related papers, one can see [19, 20, 21, 22].

Let p = (pk) be a sequence of positive real numbers such that 0 < h = inf pk ≤
pk ≤ H = sup pk <∞. For each k ∈ N the inequalities

(1.1) |αk + βk|pk ≤ D {|αk|pk + |βk|pk}
and

|α|pk ≤ max{1, |α|H}
hold, where α, αk, βk ∈ C and D = max

{
1, 2H−1

}
.

Let A = (aij) be an infinite matrix of complex numbers aij , where i, j ∈ N. We

write Ax = (Ai(x)) if Ai(x) =
∞∑
j=1

aijxj converges for each i ∈ N. Throughout the

text, by tkn(Ax), we mean

tkn(Ax) =
An(x) +Aσ1(n)(x) + ...+Aσk(n)(x)

k + 1
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for all k, n ∈ N.
A sequence space X is called as solid (or normal) if (γkxk) ∈ X whenever

(xk) ∈ X and (γk) is a sequence of scalars such that |γk| ≤ 1 for all k ∈ N.
Let X be a sequence space and K = {k1 < k2 < ...} ⊆ N. The sequence space

ZXK = {(xkn) ∈ ω : (xn) ∈ X} is called K-step space of X.
A canonical preimage of a sequence (xkn) ∈ ZXK is a sequence (yn) ∈ ω defined

by

yn =

{
xn, if n ∈ N,
0, otherwise.

A sequence space X is monotone if it contains the canonical preimages of all its
step spaces.

Lemma 1.1. ([18],p.53) If a sequence space X is solid, then X is monotone.

Recently, strongly almost ideal convergent sequence spaces in 2-normed spaces
defined via an Orlicz function was introduced by Esi [23]. Quite recently, Hazarika
[24] defined a new class of strongly almost ideal convergent sequence spaces using an
infinite matrix, Orlicz functions and a new generalized difference matrix in locally
convex spaces and proved some results about this notion. Further in [25, 26, 27],
the authors defined new spaces by combining ideal convergence, Orlicz functions
and infinite matrices.

The purpose of this paper is to introduce and study some new ideal convergent
sequence spaces with respect to an Orlicz function and an infinite matrix.

2. Main results

In this section, by combining ideal convergence, an infinite matrix, an Orlicz
function and invariant means, we define some new sequence spaces.

From now on, by I, we denote an admissible ideal of N.
Let M be an Orlicz function, A be an infinite matrix and p = (pk) be a bounded

sequence of positive real numbers.
For every ε > 0 and some ρ > 0, we introduce the spaces as follows:

I−cσ0 (M,A, p) =

{
u ∈ ω :

{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
∈ I for all n ∈ N

}
,

I−cσ(M,A, p) =

{
u ∈ ω :

{
k ∈ N :

[
M

(
|tkn(Au− le)|

ρ

)]pk
≥ ε
}
∈ I for all n ∈ N and some l ∈ C

}
,

I−`σ∞(M,A, p) =

{
u ∈ ω : ∃K > 0 such that

{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
> K

}
∈ I for all n ∈ N

}
.

If we take pk = 1 for all k ∈ N, then the above spaces are denoted by I−cσ0 (M,A),
I − cσ(M,A), I − `σ∞(M,A), respectively.

Theorem 2.1. The spaces I − cσ0 (M,A, p), I − cσ(M,A, p) and I − `σ∞(M,A, p)
are linear spaces.

Proof. The result will be proved only for I−cσ0 (M,A, p). The others follow similarly.
Take any u, v ∈ I − cσ0 (M,A, p). Then for given ε > 0 the sets

S1 =

{
k ∈ N :

[
M

(
|tkn(Au)|

ρ1

)]pk
≥ ε

2D

}
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and

S2 =

{
k ∈ N :

[
M

(
|tkn(Av)|

ρ2

)]pk
≥ ε

2D

}
are contained in I for some ρ1, ρ2 > 0.

By using the inequality (1.1) and the fact that M is nondecreasing and convex,
one can see the following inequality:[
M

(
|tkn(A(λu+ µv)|

ρ

)]pk
≤
[
M

(
|tkn(A(u)|

ρ1

)
+M

(
|tkn(A(v)|

ρ2

)]pk
≤ D

{[
M

(
|tkn(A(u)|

ρ1

)]pk
+

[
M

(
|tkn(A(v)|

ρ2

)]pk}
,

where ρ = max{2|λ|ρ1, 2|µ|ρ2} and λ, µ ∈ C.
If we choose a positive integer k′ from N\S1 ∪ S2, we obtain[

M

(
|tkn(A(λu+ µv)|

ρ

)]pk
< ε.

Hence the set {
k ∈ N :

[
M

(
|tkn(A(λu+ µv))|

ρ

)]pk
≥ ε
}

belongs to the ideal which implies λu + µv ∈ I − cσ0 (M,A, p). This completes the
proof.

�

Theorem 2.2. The inclusions

I − cσ0 (M1, A, p) ∩ I − cσ0 (M2, A, p) ⊆ I − cσ0 (M1 +M2, A, p),

I − cσ(M1, A, p) ∩ I − cσ(M2, A, p) ⊆ I − cσ(M1 +M2, A, p),

I − `σ∞(M1, A, p) ∩ I − `σ∞(M2, A, p) ⊆ I − `σ∞(M1 +M2, A, p)

hold for any Orlicz functions M1 and M2.

Proof. Let u belong to the intersection of I − cσ0 (M1, A, p) and I − cσ0 (M2, A, p).
Since the inequality[
(M1 +M2)

(
|tkn(A(u)|

ρ

)]pk
=

[
M1

(
|tkn(A(u)|

ρ

)
+M2

(
|tkn(A(u)|

ρ

)]pk
≤ D

{[
M1

(
|tkn(A(u)|

ρ

)]pk
+

[
M2

(
|tkn(A(u)|

ρ

)]pk}
holds, the result is obvious.

The other inclusions can be shown similarly. �

Theorem 2.3. Let M2 satisfy ∆2 condition. Then the inclusions

I − cσ0 (M1, A, p) ⊆ I − cσ0 (M1 ◦M2, A, p),

I − cσ(M1, A, p) ⊆ I − cσ(M1 ◦M2, A, p),

I − `σ∞(M1, A, p) ⊆ I − `σ∞(M1 ◦M2, A, p)

hold for any Orlicz functions M1 and M2.
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Proof. We prove the theorem in two parts. Firstly, let M1

(
|tkn(A(u)|

ρ

)
> δ. By us-

ing the properties of an Orlicz function and the fact that M2 satisfies ∆2 condition,
we have[

M2

(
M1

(
|tkn(Au)|

ρ

))]pk
≤ (Kδ−1M2(2))pk

[
M1

(
|tkn(Au)|

ρ

)]pk
≤ max

{
1, (Kδ−1M2(2))H

} [
M1

(
|tkn(Au)|

ρ

)]pk
,

where K ≥ 1 and δ < 1. From the last inequality, the inclusion{
k ∈ N :

[
M2

(
M1

(
|tkn(Au)|

ρ

))]pk
≥ ε
}
⊆
{
k ∈ N :

[
M1

(
|tkn(Au)|

ρ

)]pk
≥ ε

max {1, (Kδ−1M2(2))H}

}
is obtained. If u ∈ I − cσ0 (M1, A, p), then the set in the right side of the above

inclusion belongs to the ideal and so
{
k ∈ N :

[
M2

(
M1

(
|tkn(Au)|

ρ

))]pk
≥ ε
}
∈ I.

Secondly, Suppose that M1

(
|tkn(A(u)|

ρ

)
≤ δ. Since M2 is continuous, we have

M2

(
M1

(
|tkn(Au)|

ρ

))
< ε for all ε > 0 which implies I−limk

[
M2

(
M1

(
|tkn(Au)|

ρ

))]pk
=

0 as ε→ 0. This completes the proof.
The other inclusions can be shown similarly. �

Theorem 2.4. If supk[M(t)]pk <∞ for all t > 0, then we have

I − cσ(M,A, p) ⊆ I − `σ∞(M,A, p).

Proof. Let x ∈ I − cσ(M,A, p). The inequality[
M

(
|tkn(A(u)|

ρ

)]pk
≤ D

{[
M

(
|tkn(Au− le)|

ρ1

)]pk
+

[
M

(
|tkn(le)|
ρ1

)]pk}
holds by (1.1), where ρ = 2ρ1. Hence we have{

k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ K

}
⊆
{
k ∈ N :

[
M

(
|tkn(Au− le)|

ρ1

)]pk
≥ ε
}

for all n and some K > 0. Since the set in the right side of the above inclusion
belogs to the ideal, all of its subsets are in the ideal. So{

k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ K

}
∈ I

which completes the proof. �

Theorem 2.5. Let 0 < pk ≤ qk < ∞ for each k ∈ N and ( qkpk ) be bounded. Then

we have
I −W (M,A, q) ⊆ I −W (M,A, p),

where W = cσ0 , c
σ.

Proof. Suppose that u ∈ I − cσ0 (M,A, q). Write αk = pk
qk

. By hypothesis, we have

0 < α ≤ αk ≤ 1. If
[
M
(
|tkn(Au)|

ρ

)]qk
≥ 1, the inequality

[
M
(
|tkn(Au)|

ρ

)]pk
≤[

M
(
|tkn(Au)|

ρ

)]qk
holds. This implies the inclusion{

k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]qk
≥ ε
}
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and so the result is obvious. Conversely, if
[
M
(
|tkn(Au)|

ρ

)]qk
< 1, we obtain the

following inclusion{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]qk
≥ ε1/α

}
since then the inequality

[
M
(
|tkn(Au)|

ρ

)]pk
≤
([
M
(
|tkn(Au)|

ρ

)]qk)α
holds. Hence

we conclude that u ∈ I − cσ0 (M,A, p). �

Theorem 2.6.

(1) If 0 < inf pk ≤ pk ≤ 1 for each k ∈ N, then I−W (M,A, p) ⊆ I−W (M,A),
where W = cσ0 , c

σ.
(2) If 1 ≤ pk ≤ sup pk < ∞ for each k ∈ N, then I − W (M,A) ⊆ I −

W (M,A, p), where W = cσ0 , c
σ.

Proof.

(1) Let u ∈ I−cσ0 (M,A, p). Suppose that k /∈
{
k ∈ N :

[
M
(
|tkn(Au)|

ρ

)]pk
≥ ε
}

for 0 < ε < 1. By hypothesis, the inequalityM
(
|tkn(Au)|

ρ

)
≤
[
M
(
|tkn(Au)|

ρ

)]pk
holds. Then we have k /∈

{
k ∈ N : M

(
|tkn(Au)|

ρ

)
≥ ε
}

which implies{
k ∈ N : M

(
|tkn(Au)|

ρ

)
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au)|

ρ

)]pk
≥ ε
}
.

Hence u ∈ I − cσ0 (M,A) since the set
{
k ∈ N : M

(
|tkn(Au)|

ρ

)
≥ ε
}

in I.

(2) The proof is similar to the first part.

�

Theorem 2.7. The spaces I − cσ0 (M,A, p) and I − `σ∞(M,A, p) are solid.

Proof. Let u ∈ I−cσ0 (M,A, p). Then we have
{
k ∈ N :

[
M
(
|tkn(Au)|

ρ

)]pk
≥ ε
}
∈ I

for all n. If γ = (γk) is a sequence of scalars such that |γk| ≤ 1 for all k ∈ N, then
the following holds:[

M

(
|tkn(Aγu)|

ρ

)]pk
≤
[
M

(
|tkn(Au)|

ρ

)]pk
.

Hence we obtain
{
k ∈ N :

[
M
(
|tkn(Aγu)|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M
(
|tkn(Au)|

ρ

)]pk
≥ ε
}

and so
{
k ∈ N :

[
M
(
|tkn(Aγu)|

ρ

)]pk
≥ ε
}
∈ I which means γu ∈ I − cσ0 (M,A, p).

We conclude that the space I − cσ0 (M,A, p) is solid.
�

Corollary 2.1. The spaces I − cσ0 (M,A, p) and I − `σ∞(M,A, p) are monotone.

Proof. The proof follows from Lemma 1.1. �

Theorem 2.8. If limk pk > 0 and u→ u0(I − cσ(M,A, p)), then u0 is unique.
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Proof. Let limk pk = p0 > 0. We assume that u → u0(I − cσ(M,A, p)) and
u→ v0(I − cσ(M,A, p)). Then there exist ρ1, ρ2 > 0 such that{

k ∈ N :

[
M

(
|tkn(Au− u0e)|

ρ1

)]pk
≥ ε

2D

}
∈ I

and {
k ∈ N :

[
M

(
|tkn(Au− v0e)|

ρ2

)]pk
≥ ε

2D

}
∈ I

for all n ∈ N. Put ρ = max{2ρ1, 2ρ2}. Then the inequality[
M

(
|u0 − v0|

ρ

)]pk
≤ D

{[
M

(
|tkn(Au− u0e)|

ρ1

)]pk
+

[
M

(
|tkn(Au− v0e)|

ρ2

)]pk}
holds. Hence we have for all n ∈ N{
k ∈ N :

[
M

(
|u0 − v0|

ρ

)]pk
≥ ε
}
⊆
{
k ∈ N :

[
M

(
|tkn(Au− u0e)|

ρ1

)]pk
≥ ε

2D

}
∪
{
k ∈ N :

[
M

(
|tkn(Au− v0e)|

ρ2

)]pk
≥ ε

2D

}
.

By this inclusion, we obtain
{
k ∈ N :

[
M
(
|u0−v0|

ρ

)]pk
≥ ε
}
∈ I which means

I − lim
[
M
(
|u0−v0|

ρ

)]pk
= 0. Also we have[

M

(
|u0 − v0|

ρ

)]pk
→
[
M

(
|u0 − v0|

ρ

)]p0
as k → ∞ since the limit of the sequence (pk) is p0 and so

[
M
(
|u0−v0|

ρ

)]p0
= 0.

This implies that u0 = v0.
�
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