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A MESH-FREE TECHNIQUE OF NUMERICAL SOLUTION OF

NEWLY DEFINED CONFORMABLE DIFFERENTIAL

EQUATIONS

FUAT USTA

Abstract. Motivated by the recently defined conformable derivatives pro-
posed in [2], we introduced a new approach of solving the conformable ordinary

differential equation with the mesh-free numerical method. Since radial basis

function collocation technique has outstanding feature in comparison with the
other numerical methods, we use it to solve non-integer order of differential

equation. We subsequently present the results of numerical experimentation

to show that our algorithm provide successful consequences.

1. Introduction

Until quite recently, the question of how to take non-integer order of derivative or
integration was phenomenon among the mathematicans. However together with the
development of mathematics knowledge, this question was answered via fractional
differentiation and integration [8], [9], [11], [12]. Although there are a number
of different type of definition of fractional derivatives or integrations, Riemann-
Liouville and Caputo are the most popular ones among them. Then Abdeljawad
[1] and Khalil et. al. [7] defined the limit based conformable derivative which
is another type of fractional derivative and integrations. In more recent times,
Anderson and Ulness [2] have described another precise definition of conformable
derivatives motivated by a proportional derivative controller. As a result of this new
definition of conformable derivatives, its differential equations need to be handled.

In this paper, we develop a meshless algorithm for the numerical solution of the
conformable differential equations by taking advantageous of radial basis function
(RBF) interpolation [3], [5], [10]. The goal of this approach is to acquire approxi-
mate solution of conformable differential equations with RBF collocation method.
Of course this approach would provide an insight the solution of more complex
cases.
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The remainder of this work is organized as follows: In Section 2, the conformable
derivatives are summarised, along with the newly defined type. In Section 3, the
RBF interpolation method is reviewed while in Section 4 the numerical scheme of
solving conformable ordinary differential equation using mesh-free method is intro-
duced and we also reviewed the RBF collocation technique. Numerical examples
are given in Section 5, while some conclusions and further directions of research are
discussed in Section 6.

2. A class of conformable derivatives

In [7] and [1], a new version of limit based fractional derivative called conformable
derivative have been defined via

(2.1) Dαu(x) = lim
ξ→0

u(x+ ξx1−α)− u(x)

ξ
,

on condition that limit exists. Another proposed limit based fractional derivative
is

(2.2) Dαu(x) = lim
ξ→0

u(xeξx
−α

)− u(x)

ξ
,

in [6]. For both approaches the conformable derivative can be summarised via

(2.3) Dαu(x) = x1−α
d

dx
u(x),

where d
dx denotes the classical derivative operators. In addition to this, Anderson

and Ulness [2] introduced a new class of conformable derivatives via proportional-
derivative controller.

Definition 2.1. [2] Let α ∈ [0, 1]. The conformable derivative operator Dα de-
scribe as

(2.4) Dαu(x) = κ1(α, x)u(x) + κ0(α, x)
d

dx
u(x)

where κ1, κ0 : [0, 1]× R→ [0,∞) are continuous function such that

lim
α→0+

κ1(α, x) = 1, lim
α→0+

κ0(α, x) = 0, for all x ∈ R,

lim
α→1−

κ1(α, x) = 0, lim
α→1−

κ0(α, x) = 1, for all x ∈ R,

κ1(α, x), κ0(α, x) 6= 0, α ∈ (0, 1], for all x ∈ R.

So, for instance, one can define the conformable derivative operator

(2.5) Dαu(x) = (1− α)eαu(x) + αe1−α
d

dx
u(x),

or

(2.6) Dαu(x) = cos(απ/2)eαu(x) + sin(απ/2)e1−α
d

dx
u(x).

This new definition of conformable derivative enables to compute the non-integer
order of derivatives via classical derivative operator. Thus, conformable differential
equations can be solved with the numerical methods after this transformation has
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been applied. In next section, we will summarised the RBF methods which is one
of the mesh-free techniques and then applied it to solve conformable differential
equations.

3. Radial basis function interpolation method

The history of the RBF approximation goes back to 1968 with Hardy who in-
troduced the multiquadric RBFs in academia [4]. Thereafter RBF method become
increasingly popular interpolation technique as it provides us delicately and accu-
rately results with no mesh. Not only interpolation or quadrature of any function,
but also solving partial differential equations is also an application area of RBFs
technique.

One can define the RBF interpolation as follows:

Definition 3.1. Consider a given data set f = (f1, ..., fN )T ∈ RN of function
values, taken from an unknown function f : Rd → R at scattered data points
xk ∈ Rd, k = 1, ..., N such that fk = f(xk) and d ≥ 1. The RBF interpolation is
given by

(3.1) Pf (x) =

N∑
k=1

akϕ(‖x− xk‖),

where ϕ(·) is a radial function and ‖ · ‖ is the Euclidean distance. The coefficient
aj can be determined from interpolation requirements Pf (xj) = fj by solving the
following symmetric linear system:

(3.2) Aa = f,

where the matrix A(N×N) is constructed for ϕjk such that ϕjk = ϕ(‖xj − xk‖),
j, k = 1, . . . , N .

Here the basis function ϕ must be choose as a positive definite function. Ad-
ditionally, radial basis functions can be divided into two major groups: piecewise
smooth and infinitely smooth which are given in Table 1 and Table 2. The rate
of convergence in the infinitely smooth RBFs is quicker in comparison with the
piecewise smooth RBFs which cause to an algebraical rate of convergence.

Piecewise Smooth RBFs ϕ(r)

Piecewise Polynomial (Rn) |r|n , n odd

Thin Plate Spline (TPSn) |r|nln|r| , n even

Table 1. Piecewise Smooth

Additionally, RBFs can be expressed by using a scaling parameter named the
shape parameter ε. This can be done in the manner that ϕ(r) is replaced by ϕ(εr).
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Infinitely Smooth RBFs ϕ(r)

Multiquadric (MQ)
√

1 + r2

Inverse Multiquadric (IMQ)
1√

1 + r2

Inverse Quadratic (IQ)
1

1 + r2

Gaussian (GA) e−r
2

Bessel (BE) J0(2r)

Table 2. Infinitely Smooth

In general shape parameter have been chosen arbitrarily since there are no exact
results about how to choose best shape parameter.

4. Numerical scheme using mesh-free technique

Together with the development of derivative concept, the question of how to
solve non-integer order differential equations have arisen in the scientific area. One
of the similar problem has been faced for the conformable differential equations
since it contains the non-integer order derivative terms. However through the defi-
nition of conformable derivative operator one can transform it to classical ordinary
differential equations that there are huge amount of literature about it. Thus by
applying the mesh-free numerical methods, we can find an approximation results of
conformable differential equations. The conformable ordinary differential equation
can be expressed via

(4.1) Dαu(x) + ϑ(x)u(x) = v(x), u0(x) = u(x0).

Then by substituting of equation (2.4) into equation (4.1), we get

(4.2) κ1(α, x)u(x) + κ0(α, x)
d

dx
u(x) + ϑ(x)u(x) = v(x).

Then by rearranging of equation (4.2), we obtain the below classical ordinary dif-
ferential equation, that is

(4.3)
d

dx
u(x) +A(α, x)u(x) = B(α, x), u0(x) = u(x0),

where

(4.4) A(α, x)u(x) =
κ1(α, x) + ϑ(x)

κ0(α, x)
and B(α, x) =

v(x)

κ0(α, x)
.
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Now the above equation can be solved easily by applying the RBF collocation
method which will present next section.

4.1. RBF collocation technique. In order to solve equation (4.3) by numerically
we use the RBF collocation method which is quite popular method in the engineer-
ing and applied mathematics. Let xNk=1 be the collocation points for interior and
boundary region. Then by using definition of RBF interpolation, we get

(4.5)

N∑
k=1

ak

[
d

dx
u(x) +A(α, x)

]
ϕ(‖x− xk‖) = B(α, x),

with the boundary condition

(4.6)

N∑
k=1

akϕ(‖x0 − xk‖) = u(x0).

Then by using the points xNk=1, we can collocate the equations (4.5) and (4.6) to
determine the unknown coefficients ak’s. Thus the unknown function value u(x)
can be calculated by using the determined coefficients with collocation method.

An algorithm for RBF collocation of conformable differential equation is as fol-
lows:

Algorithm 1: RBF collocation method for conformable differential equation

Require: Equally spaced grid data decomposition for 0,M .
1: Initialize the matrix A and f via collocation points xNk=1.
2: Construct and solve the matrix equality Aa = f to determine the unknown

values of ak’s.
3: By using the value of ak’s, calculate the solution of equation for each collocation

points.
4: return Approximation value

5. Numerical experiments

In this section, we presents some numerical results to verify proposed algorithm.
To do that, we take the first order conformable ODE which is solved by RBF
collocation technique.

5.1. Numerical solution of conformable ODE. For this example, we take the
below conformable ODE [2] to solve it via RBF method,

(5.1) Dαu(x) + u(x) = v(x)

with the boundary condition

(5.2) u0(x) = u(x0)
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Let xi be equally spaced grid points in the interval 0 ≤ xi ≤M such that 1 ≤ i ≤ N ,
x1 = 0 and xN = M . Additionally, because collocation approach has been used we
not only require an expression for the value of the function

(5.3) u(x) =

N∑
k=1

ajϕ(‖x− xk‖)

but also for the conformal derivative given in (5.1). Thus, by conformal differenti-
ating (5.3), we get

(5.4) Dαu(x) =
N∑
k=1

ajD
αϕ(‖x− xk‖)

where Dαdenotes the conformable derivative the with respect to x. In a particular
case of Multiquadric and Gaussian basis functions, we have

Dαϕ(‖x− xk‖) = κ1(α, x)
√
‖x− xk‖2 + ε2 + κ0(α, x)

x− xk√
‖x− xk‖2 + ε2

Dαϕ(‖x− xk‖) = κ1(α, x)e−‖x−xk‖
2/ε2 − κ0(α, x)

2(x− xk)

ε2
e−‖x−xk‖

2/ε2(5.5)

where κ0 and κ1 are given in Definition 3.1. So in order to determine the value of
aj ’s in equation (5.3), we need to solve

(5.6)

N∑
k=1

ajD
αϕ(‖xj − xk‖) +

N∑
k=1

ajϕ(‖xj − xk‖) = v(x)

by using

(5.7)

N∑
k=1

ajϕ(‖x1 − xk‖) = u(x0)

where j = 2, . . . , N . If we put the equations (5.5) into equation (5.6), we get the
classical ODE which can be solved easily. In other words, one need to solve below
algebraic systems

(5.8) φ[N×N ]a[N×1] = ν[N×1]

where
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φ =


Dαϕ1,1 + ϕ1,1 . . . Dαϕ1,N + ϕ1,N

Dαϕ2,1 + ϕ2,1 . . . Dαϕ2,N + ϕ2,N

...
. . .

...
DαϕN,1 + ϕN,1 . . . DαϕN,N + ϕN,N

 , a =


a1
a2
...
aN

 , ν =


v1
v2
...
vN


to determine ai’s. Then one can obtain the numerical solution using ai’s into RBF
method. The numerical experiment results has been presented for different left hand
side functions such as v1(x) = x

√
x + 1/2x2

√
x + x2, v2(x) = e−x(x +

√
x/2) and

v3(x) = (1−
√
x/2) cos(4

√
x)− sin(4

√
x) in Figures 1, 2 and 3 respectively. These

results confirm that RBF method converge the solution of ordinary conformable
differential equations.

Function Alpha ε Number of Nodes Max-Error RMS-Error

v1(x) 0.5 5 500 3.829195e-006 5.527372e-008
v2(x) 0.5 5 500 2.352912e-005 3.757950e-007
v3(x) 0.5 5 500 2.267579e-004 3.500312e-006

Table 3. Numerical results of conformable ordinary differential
equation via RBF using Multiquadric on the domain [0, 10].
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Figure 1. u(x) versus x using Multiquadric basis function with
ε = 5 for v1(x) = x

√
x+ 1/2x2

√
x+x2: Exact solution (Blue) and

Numerical solution (Red circle) on equally spaced evaluation grid.

In the numerical experiments, Max-Error represents the maximum modulus er-
ror, i.e., ‖f−g‖∞ and Rms-Error represents the standard root mean squared error,
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i.e.

(5.9)

√∑Neval
i=1 |fi − gi|2

Neval
,

where f is the exact solution, g is the approximate solution, and Neval is the
number of the test points.
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Figure 2. u(x) versus x using Multiquadric basis function with
ε = 5 for v2(x) = e−x(x +

√
x/2): Exact solution (Blue) and

Numerical solution (Red circle) on equally spaced evaluation grid.
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Figure 3. u(x) versus x using Multiquadric basis function with
ε = 5 for v3(x) = (1 −

√
x/2) cos(4

√
x) − sin(4

√
x): Exact solu-

tion (Blue) and Numerical solution (Red circle) on equally spaced
evaluation grid.
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6. Concluding remark

A new radial basis function collocation technique to solve conformable ordinary
differential equation is proposed and tested in this paper. To do that Gaussian or
Multiquadric basis functions can be used. In order to verify this methods stability,
we have presented some numerical results. Thus this study would help to solve
modelled non-integer order of differential equations.
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