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SOME SPACES OF A-IDEAL CONVERGENT SEQUENCES

DEFINED BY MUSIELAK-ORLICZ FUNCTION

SELMA ALTUNDAG AND MERVE ABAY

Abstract. We introduce basic properties of some sequence spaces using ideal

convergent and Musielak Orlicz function M = (Mk). Including relations re-

lated to these spaces are investigated in this paper.

1. Introduction, Definitions and Notations

Throughout this article w, c, c0, l∞, lp denote the spaces of all, convergent,
null, bounded and p -absolutely summable sequences, where 1 ≤ p <∞.

Firstly, the notion of I -convergence was introduced by Kostryrko et all [1] and
it is the generalization of statistical convergence.
A = (ank) be an infinite matrix of complex entries ank and x = (xk) be a sequence

in w. If An(x) =
∞∑
k=1

ankxk converges for each, then we write n ∈ N.

Definition 1.1. If X is a non-empty set then a family of sets I ⊆ 2X is ideal if
and only if for each A,B ∈ I we have A∪B ∈ I and for each A ∈ I and each B ⊂ A
we have B ∈ I.[1]

Definition 1.2. A non-empty family of sets F ⊂ 2X is said to be a filter on X if
and only if ∅ /∈ F , for each A,B ∈ F we have A ∩ B ∈ F and for each A ∈ F and
each B ⊃ A we have B ∈ F .[1]

Definition 1.3. An ideal I 6= ∅ is called non-trivial if I 6= ∅ and X /∈ I.[1]

Definition 1.4. A non-trivial I ⊆ 2X is called admissible ideal if and only if
{{x} : x ∈ X} ⊂ I.[1]

Definition 1.5. A sequence x = (xn) ∈ w is said to be I -convergent to L if there
exists L ∈ C such that for all ε > 0 , the set {n ∈ N : |xn − L| ≥ ε} ∈ I. We say x,
I − convergent to L and we write I − limx = L. The number L is called I − limit
of x.[2]
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Definition 1.6. An Orlicz function M is a function which is continuous, nonde-
creasing, and convex with M(0) = 0, for x > 0 and M(x)→∞ as x→∞.
Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct the
sequence space

lM =

{
x ∈ w :

∞∑
k=1

M

(
|xk|
ρ

)
<∞ for some ρ> 0

}
which is called an Orlicz sequence space. The space lM becomes a Banach space
with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}
.

The space lM is closely related to the space lp which is an Orlicz sequence space
with M(x) = xp for 1 ≤ p <∞. Orlicz sequence spaces were introduced and studied
by Parashar and Choudhary [5], Bhardwaj and Singh [6] and many others. It is
well known that since M is a convex function and M(0) = 0 then M(tx) ≤ tM(x)
for all t with 0 < t < 1. Dutta and Bas.ar [18] have recently introduced and stud-

ied the Orlicz sequence spaces l
′

M (C,Λ) and hM (C,Λ) generated by Cesàro mean
of order one associated with a fixed multiplier sequence of non-zero scalars. The
readers may refer to [17] for relevant terminology and details on the algebraic and
topological properties on sequence spaces. An Orlicz function M is said to sat-
isfy ∆2 − condition for all values of u, if there exists constant K > 0 such that
M(2u) ≤ KM(u) (u ≥ 0). The ∆2 − condition is equivalent to the inequality
M(Lu) ≤ KLM(u) satisfying for all values of u and for L > 1 [7]. A sequence
M = (Mk) of Orlicz function is called a Musielak-Orlicz function see [8], [9]. The
sequence N = (Nk) defined by

Nk(v) = sup {|v|u− (Mk) : u ≥ 0} , k = 1, 2, ...

is called the complementary function of a Musileak-Orlicz functionM = (Mk). For
a given Musileak-Orlicz function M = (Mk), the Musileak-Orlicz sequence space
tM and its subspace hM are defined as follows:

tM = {x ∈ ω : IM(cx) <∞ for some c > 0} ,
hM = {x ∈ ω : IM(cx) <∞ for all c > 0} ,

where IM is a convex modular defined by

IM(x) =

∞∑
k=1

Mk(xk), x = (xk) ∈ tM.

We consider tM equipped with the Luxemburg norm

‖x‖ = inf

{
ρ > 0 : IM

(
x

ρ

)
≤ 1

}
or equipped with the Orlicz norm
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‖x‖0 = inf

{
1

ρ
(1 + IM (ρx)) : ρ > 0

}
.

The following inequality will be used throughout this paper. Let p = (pk) be a
sequence of positive real numbers with 0 < h = inf pn ≤ pn ≤ H = sup pn < ∞
and let D = max

{
1, 2H−1

}
. Then for ak, bk ∈ C, the set of complex numbers for

all k ∈ N, we have

(1.1) |ak + bk|pk ≤ D {|ak|pk + |bk|pk} .

Also, |a|pk ≤ max
{

1, |a|H
}

for all a ∈ C.

The notion of paranormed space was introduced by Nakano [10] and Simons [11]
and many others.

Definition 1.7. Let X be a linear metric space. A function g : X → R is called
paranorm if
(1) g (x) ≥ 0, for all x ∈ X,
(2) g (−x) = g (x), for all x ∈ X,
(3) g (x+ y) ≤ g (x) + g (y), for all x, y ∈ X,
(4) if (λn) be a sequence of scalars with λn → λ as n→∞ and (xn) is a sequence
of vectors with g (xn − x)→ 0 as n→∞, then g (λnxn − λx)→ 0 as n→∞.

Definition 1.8. A sequence space X is solid (or normal) if (αnxn) ∈ X whenever
(xn) ∈ X for all sequences (αn) of scalars with |αn| ≤ 1 for all n ∈ N.

Definition 1.9. A sequence space X is said to be monotone if it contains the
canonical preimages of its step spaces.[19]

Lemma 1.1. If a sequence space X is solid, then X is monotone.[12]

Definition 1.10. A sequence space X is sequence algebra if xy = (xnyn) ∈ X
whenever x = (xn) , y = (yn) ∈ X.

We define the following sequence spaces in this article,

cI(M,A, p) =

{
x ∈ w : I − lim

k

[
Mk

(
|Ak(x)− L|

ρ

)]pk
= 0 for some L and ρ > 0

}
,

cI0(M, A, p) =

{
x ∈ w : I− lim

k

[
Mk

(
|Ak(x)|

ρ

)]pk
= 0 for some ρ > 0

}
,

l∞(M, A, p) =

{
x ∈ w : sup

k

[
Mk

(
|Ak(x)|

ρ

)]pk
<∞ for some ρ > 0

}
.

Also we write
mI(M, A, p) = cI(M, A, p) ∩ l∞(M, A, p)

mI
0(M, A, p) = cI0(M, A, p) ∩ l∞(M, A, p).

If we take A = λ, these spaces are respectively reduced to the spaces cI0(M, λ, p),
cI(M, λ, p), l∞(M, λ, p), mI

0(M, λ, p), mI(M, λ, p) defined by Mursaleen and Sharma
[19]. If we take pk = 1 for all k,M(x) = M(x) and A = I, we get the spaces cI0(M),
cI(M), l∞(M), mI

0(M), mI(M) which were studied by Tripathy and Hazarika [14].

Our aim is to define the paranormed space of ideal convergent sequence space
with matrix transformation and Musielak-Orlicz function.
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2. Main Results

Theorem 2.1. Let M = (Mk) be a Musielak-Orlicz function and p = (pk) be a
bounded sequence of positive real numbers. Then, the spaces cI(M, A, p), cI0(M, A, p),
mI(M, A, p) and mI

0(M, A, p) are linear.

Proof. Let x, y ∈ cI (M, A, p) and α, β be scalars. So, there exist positive numbers
ρ1, ρ2 and for given ε > 0, we have

A1 =

{
k ∈ N :

[
Mk

(
|Ak(x)− L1|

ρ1

)]pk
≥ ε

2D

}
∈ I,

A2 =

{
k ∈ N :

[
Mk

(
|Ak(x)− L2|

ρ2

)]pk
≥ ε

2D

}
∈ I.

Let ρ3 = max {2 |α| ρ1, 2 |β| ρ2}. Since M = (Mk) is nondecreasing and convex
function, we can obtain

Mk

(
|Ak (αx+ βy)− (αL1 + βL2)|

ρ3

)
< Mk

(
|Ak(x)− L1|

ρ1

)
+Mk

(
|Ak(y)− L2|

ρ2

)
.

So, we have[
Mk

(
|Ak (αx+ βy)− (αL1 + βL2)|

ρ3

)]pk
< D

{[
Mk

(
|Ak(x)− L1|

ρ1

)]pk
+

[
Mk

(
|Ak(y)− L2|

ρ2

)]pk}
.

Suppose that k /∈ A1 ∪A2. So,
[
Mk

(
|Ak(αx+βy)−(αL1+βL2)|

ρ3

)]pk
< ε and hence

k /∈
{
k ∈ N :

[
Mk

(
|Ak (αx+ βy)− (αL1 + βL2)|

ρ3

)]pk
≥ ε
}
⊂ A1 ∪A2.

Therefore, I−lim
k

[
Mk

(
|Ak(αx+βy)−(αL1+βL2)|

ρ3

)]pk
= 0. Hence αx+βy ∈ cI (M, A, p)

and so cI (M, A, p) is a linear space. Similarly, we can prove that cI0(M, A, p),
mI

0(M, A, p) and mI(M, A, p) are linear spaces. �

Theorem 2.2. l∞(M, A, p) is a paranormed space with the paranorm g defined by

g(x) = inf

{
ρ
pk
S : sup

k

[
Mk

(
|Ak(x)|

ρ

)] pk
S

≤ 1, k = 1, 2, ...

}
,

where S = max {1, H}.

Proof. It is clear that g (x) = g (−x). Since Mk(0) = 0, we get g(0) = 0. Let us
take x = (xk) and y = (yk) in l∞(M, A, p). We denote,

B(x) =

{
ρ1 : sup

k

[
Mk

(
|Ak (x)|
ρ1

)] pk
S

≤ 1

}

B(y) =

{
ρ2 : sup

k

[
Mk

(
|Ak (y)|
ρ2

)] pk
S

≤ 1

}
.

Let ρ = ρ1 +ρ2. Then using the convexity of Mursielak-Orlicz functionM = (Mk),
we obtain

Mk

(
|Ak (x+ y)|

ρ

)
≤ ρ1

ρ
Mk

(
|Ak (x)|
ρ1

)
+
ρ2
ρ
Mk

(
|Ak (x)|
ρ2

)
≤ ρ1

ρ
+
ρ2
ρ

= 1.
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Therefore,

sup
k

[
Mk

(
|Ak (x+ y)|

ρ

)] pk
S

≤ 1.

We can see that

g (x+ y) = inf
{

(ρ1 + ρ2)
pk
S : ρ1 ∈ B (x) , ρ2 ∈ B (y)

}
≤ inf

{
(ρ1)

pk
S : ρ1 ∈ B (x)

}
+ inf

{
(ρ2)

pk
S : ρ2 ∈ B (y)

}
= g (x) + g (y) .

LetB(xn) =

{
ρ : sup

k

[
Mk

(
|Ak(xn)|

ρ

)] pk
S ≤ 1

}
, B(xn−x) =

{
ρ : sup

k

[
Mk

(
|Ak(xn−x)|

ρ

)] pk
S ≤ 1

}
and ρn ∈ B (xn), ρ′n ∈ B (xn − x). We can obtain,

Mk

(
|Ak(γnxn−γx)|
ρn|γn−γ|+ρ′n|γ|

)
≤ |γn−γ|ρn

ρn|γn−γ|+ρ′n|γ|
Mk

(
|Ak(xn)|

ρn

)
+

|γ|ρ′n
ρn|γn−γ|+ρ′n|γ|

Mk

(
|Ak(xn−x)|

ρ′n

)
≤ |γn−γ|ρn

ρn|γn−γ|+ρ′n|γ|
+

|γ|ρ′n
ρn|γn−γ|+ρ′n|γ|

= 1.

Taking supremum over k on both sides,

sup
k

[
Mk

(
|Ak (γnx

n − γx)|
ρn |γn − γ|+ ρ′n |γ|

)] pk
S

≤ 1

and so,

{ρn |γn − γ|+ ρ′n |γ| : ρn ∈ B(xn), ρ′n ∈ B(xn − x)} ⊂
{
ρ > 0 : sup

k

[
Mk

(
|Ak (γnx

n − γx)|
ρ

)]pk
≤ 1

}
.

Therefore,

g (γnx
n − γx) = inf

{
(ρn |γn − γ|+ ρ′n |γ|)

pk
S : ρn ∈ B(xn), ρ′n ∈ B(xn − x)

}
≤ |γn − γ|

pk
S inf

{
(pn)

pk
S : ρn ∈ B(xn), k = 1, 2, ...

}
+ max {1, |γ|s} inf

{
(ρ′n)

pk
S : ρ′n ∈ B(xn − x), k = 1, 2, ...

}
where s = sup

k

(
pk
S

)
= min {1, H}. Since |γn − γ| → 0 and g (xn − x) → 0 as

n→∞, we obtain that g (γnx
n − γx)→ 0 as n→∞. �

Theorem 2.3. Let (Mk) and (M ′k) be Musielak-Orlicz functions that ∆2−condition
satisfies. Then,
(i) W (Mk, A, p) ⊆W (M ′k ◦Mk, A, p)
(ii) W (Mk, A, p) ∩W (M ′k, A, p) ⊆W (Mk +M ′k, A, p)
where W = cI0, c

I,mI
0,m

I.

Proof. (i) Since W ∈
{
cI,mI

0,m
I
}

can be proved similarly, we give the prove only

for W = cI0. Let x ∈ cI0 (M, A, p). So, we have ρ > 0 for every ε > 0,

B =

{
k ∈ N :

(
Mk

(
|Ak (x)|

ρ

))pk
≥ ε
}
∈ I.

Since (M ′k) is continuous, given for ε > 0 chosen δ with 0 < δ < 1 such that

M ′k(t) < ε for 0 ≤ t ≤ δ. We define yk = Mk

(
|Ak(x)|

ρ

)
. For yk > δ,

yk <
yk
δ
< 1 +

yk
δ

Therefore;

(2.1) M ′k (yk) < M ′k

(
1 +

yk
δ

)
= M ′k

(
1

2
2 +

1

2

yk
δ

2

)
≤ 1

2
M ′k (2) +

1

2
M ′k

(yk
δ

2
)
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Since (M ′k) satisfies ∆2 − condition, we can write that

(2.2) M ′k

(yk
δ

2
)
≤ Kyk

δ
M ′k (2) forK ≥ 1.

From (2.1) and (2.2), we have

M ′k (yk) < 1
2M

′
k (2) + 1

2K
yk
δ M

′
k (2)

≤ 1
2K

yk
δ M

′
k (2) + 1

2K
yk
δ M

′
k (2)

= K yk
δ M

′
k (2) .

Hence;[M ′k (yk)]
pk <

[
K 1
δM
′
k (2)

]pk (yk)
pk ≤ max

{
1,
(
K 1
δM
′
k (2)

)H}
(yk)

pk . Since

yk = Mk

(
|Ak(x)|

ρ

)
, we have I − lim

k
(yk)

pk = 0. So,

C =

k : (yk)
pk ≥ ε

max
{

1,
(
K yk

δ M
′
k (2)

)H}
 ∈ I.

Suppose that k /∈ C. Then, (yk)
pk < ε

max
{
1,(K yk

δ M
′
k(2))

H
} . Hence,

(M ′k (yk))
pk < max

{
1,
(
K
yk
δ
M ′k (2)

)H} ε

max
{

1,
(
K yk

δ M
′
k (2)

)H} = ε.

Therefore, k /∈
{
k : (M ′k (yk))

pk ≥ ε, yk > δ
}

= D. Thus D ⊆ C and D ∈ I. Since
M ′k(yk) < ε for yk ≤ δ, we have

[Mk(yk)]
pk < εpk ≤ max

{
εh, εH

}
.

From this inequality, we have I− lim [M ′k(yk)]
pk = 0 for yk ≤ δ. Therefore

E =
{
k : (M ′k(yk))

pk ≥ ε, yk ≤ δ
}
∈ I. So D ∪ E ∈ I and x ∈ cI0 (M ′k ◦Mk, A, p).

(ii) Let x ∈ cI0 (Mk, A, p) ∩ cI0 (M ′k, A, p). So, there exists ρ > 0 such that

B =

{
k ∈ N :

(
Mk

(
|Ak (x)|

ρ

))pk
≥ ε

2D

}
∈ I,

C =

{
k ∈:

(
M ′k

(
|Ak (x)|

ρ

))pk
≥ ε

2D

}
∈ I.

Let k /∈ B ∪ C. Hence k /∈
{
k :
(

(Mk +M ′k)
(
|Ak(x)|

ρ

))pk
≥ ε
}

. Therefore{
k :
(

(Mk +M ′k)
(
|Ak(x)|

ρ

))pk
≥ ε
}
∈ I. This completes the proof. �

Corollary 2.1. Let M= (Mk) be a Musielak-Orlicz functions which satisfies ∆2 −
condition. Then W (A, p) ⊆W (M, A, p) where W = cI0, c

I,mI
0,m

I.

Proof. We can obtain W (A, p) ⊆W (M, A, p) from Theorem 2.3 by taking
Mk(x) = x and M′k(x) = Mk (x) for all x ∈ [0,∞). �

Theorem 2.4. The spaces cI0 (M, A, p) and mI
0 (M, A, p) are solid for A = I.
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Proof. We will prove for the space cI0 (M, A, p).
Let x ∈ cI0 (M, A, p). So, for every ε > 0

B =

{
k ∈ N :

(
Mk

(
|Ak (x)|

ρ

))pk
≥ ε
}
∈ I (ρ > 0) .

Let α = (αk) be a sequence of scalars with |αk| ≤ 1 for all k ∈ N. Suppose that
k /∈ B. Therefore, we obtain[

Mk

(
|Ak(αx)|

ρ

)]pk
=
[
Mk

(
|Ik(αx)|

ρ

)]pk
=
[
Mk

(
|αkxk|
ρ

)]pk
≤
[
Mk

(
|xk|
ρ

)]pk
=
[
Mk

(
|Ik(x)|
ρ

)]pk
=
[
Mk

(
|Ak(x)|

ρ

)]pk
.

Hence, k /∈
{
k ∈ N :

(
Mk

(
|Ak(αx)|

ρ

))pk
≥ ε
}

. Therefore, we obtain

I− lim
k

(
Mk

(
|Ak(αx)|

ρ

))pk
= 0. �

Corollary 2.2. The spaces cI0 (M, A, p) and mI
0 (M, A, p) are monotone for A = I.

Proof. This is clear from Lemma 1.1. �

Theorem 2.5. The spaces cI0 (M, A, p) and cI (M, A, p) are sequence algebra for
A = I.

Proof. Let x, y ∈ cI0 (M, A, p) . Then there exists ρ1, ρ2 > 0 such that for every
ε > 0, we have

A1 =

{
k ∈ N :

[
Mk

(
|xk|
ρ1

)]pk
≥ ε

2D

}
∈ I,

A2 =

{
k ∈ N :

[
Mk

(
|yk|
ρ2

)]pk
≥ ε

2D

}
∈ I.

Let ρ = ρ2 |xk|+ ρ1 |yk| > 0. By using this fact one can see that

Mk

(
|xkyk|
ρ

)
≤ ρ2 |xk|

2ρ
Mk

(
|yk|
ρ2

)
+
ρ1 |yk|

2ρ
Mk

(
|yk|
ρ2

)
< Mk

(
|yk|
ρ2

)
+Mk

(
|yk|
ρ2

)
,

which shows that A3 =
{
k ∈ N :

[
Mk

(
|xkyk|
ρ

)]pk
≥ ε
}
∈ I.

Thus (xkyk) ∈ cI0 (M,A, p) for A = I. �
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