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SOME ESTIMATES FOR THE GENERALIZED FOURIER-DUNKL
TRANSFORM IN THE SPACE Lin

R. DAHER AND S. EL OUADIH

ABSTRACT. Some estimates are proved for the generalized Fourier-Dunkl trans-

form in the space L2 ,, on certain classes of functions characterized by the

generalized continuity modulus.

1. INTRODUCTION

In [5], Abilov et al. proved two useful estimates for the Fourier transform in the
space of square integrable functions on certain classes of functions characterized by
the generalized continuity modulus, using a translation operator.

In this paper, we consider a first-order singular differential-difference operator A
on R which generalizes the Dunkl operator A,, we prove some estimates in cer-
tain classes of functions characterized by a generalized continuity modulus and
connected with the generalized Fourier-Dunkl transform associated to A in L2
analogs of the statements proved in [5]. For this purpose, we use a generalized
translation operator.

In section 2, we give some definitions and preliminaries concerning the generalized
Fourier-Dunkl transform. The some estimates are proved in section 3.

2. PRELIMINARIES

In this section, we develop some results from harmonic analysis related to the
differential-difference operator A. Further details can be found in [1] and [6]. In all
what follows assume where o > —1/2 and n a non-negative integer.

Consider the first-order singular differential-difference operator on R defined by

) fe)=fen) g, I

2 T x

() = F(a) + (a n
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For n = 0, we regain the differential-difference operator

Aaf(a) = J'(2) + (a+ ;) fr) I

which is referred to as the Dunkl operator of index a + 1/2 associated with the re-
flection group Zs on R. Such operators have been introduced by Dunkl (see [3], [4])
in connection with a generalization of the classical theory of spherical harmonics.
Let M be the map defined by

Mf(x)=2*"f(z), n=0,1,..
1 < p < o0, be the class of measurable functions f on R for which

1 llp.ace = 1M~ fllp.at2n < oo,

1/p
1llpa = ( / |f<x>p|x2a+1dx> |

If p = 2, then we have L2, = L*(R, |x|?**1).

a,n
The one-dimensional Dunkl kernel is defined by

(2.1) eal2) = jaliz) +

)

Let LP

a,n?

where

z
YR 'a i ’ C?
2(Oé+ 1).7 +1(ZZ) z €

where

N (D™ (/27
(2.2) Ja(2) = T(a+ 1);::0 mD(m+a+1)’

z € C,

is the normalized spherical Bessel function of index a. It is well-known that the
functions e, (\.), A € C, are solutions of the differential-difference equation

Aqu = du,u(0) = 1.

In the terms of j,(z), we have (see [2])

(2.3) 1—ja(z) = OQ1),z>1,
(2.4) 1—jo(z) = O@@*,0<x <1,
(2.5) Vhado(hz) = O(1),hz >0,

where J, () is Bessel function of the first kind, which is related to j,(z) by the
formula

Jo(z), RT.
" (x),z €
For A € C, and =z € R, put

ox(z) = $2"6a+2n(i)\az)7

where €419, is the Dunkl kernel of index a + 2n given by (1).
Proposition 2.1. (i) ¢, satisfies the differential equation
A(p,\ = i/\gO)\.

(i) For all A € C, and z € R

[oa(@)] < [af*reltmAlel.
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The generalized Fourier-Dunkl transform we call the integral transform

Faf(A /f z)p_x(x)|z[**Tdx, A € R, feL

Let f € L}, ,, such that Fa(f) € La+2n = LY(R, |x[?**t47F1dz). Then the inverse
generalized Fourier-Dunkl transform is given by the formula

z) = / FafNor(@)dpiasan(N).
R

where
1
220+2(T( 4 1))2°

dﬂa+2n()\) = a)a+2n|A|2a+4n+1dA; Qo =

Proposition 2.2. (i) For every f € L2,

Fa(AS)(N) = iAFA(F)(N)-

(i) For every f € Ly, ,, N L2 ,, we have the Plancherel formula

/ (@) Plaferdr = / Faf )P dpiasan(N).
R R

(iii) The generalized Fourier-Dunkl transform Fy extends uniquely to an isometric

isomorphism from L2 . onto L*(R, ftat2n).

The generalized translation operators 7, & € R, tied to A are defined by

) = / f(Va? +y? = 2yt <1+ Ty )A(t)dt

(22 + y? — 2zyt)" Va2 4y — 2yt

+

2 _ 2 —
/ = 2”“’ Va2 ty? = 2eyt) [ i A(t)dt,
(22 +y2 — 2zyt)" 2% 4 y? — 2wyt
where

MNa+2n+1)
Val(a +2n+1/2)

Proposition 2.3. Let x € R and f € L2

At) = (141)(1 — t?)o+n=1/2,

,n°

Then 7°f € LZ,,, and

17 fll2,0m < 22

Furthermore,

(2.7) FA(TTH)N) = 22" earon(iA2) FA(F)(N).

The generalized modulus of continuity of function f € La is defined as

n

w(fa 5)2,04,71 = Ssup HThf({E) + T_hf(‘r) - 2h2nf(x)”2,a,nv 0 >0.

0<h<é
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3. MAIN RESULTS

The goal of this work is to prove some estimates for the integral
Blf) = [ SO dbaran (),
(A[>N

in certain classes of functions in Li)n.

Lemma 3.1. For f € L2, , we have,

a,n’

17" f (@) + 77" f (@) = 207" f (@) 3 0 = 4h4”/R [a+2n (M) = 12| Faf (V) Pdpatzn(N),
where r =0,1,2, ...

Proof. By using the formulas (2.1), (2.2) and (2.7), we conclude that

(3.1)  Fa(r"f 77" = 202" F)(N) = 20" (jas2n (M) — DFAF(N).

Now by formula (3.1) and Plancherel equality, we have the result. [

Theorem 3.1. Given f € L2 ,,. Then there exist a constant C > 0 such that, for
all N >0,

‘]N(f) = O(NQHW(fv CN_l)Q,a,n)'

Proof. Firstly, we have
(32) R <[
[A[=N

with j = j,(AR), p=a+ 2n and dp = |Faf(N)[*dpia+2,(N). The parameter h > 0
will be chosen in an instant.
In view of formulas (2.5) and (2.6), there exist a constant C; > 0 such that

] < CL(IA[R) P2,

Ijldu+/ |1 — jldpu,
IAI>N

Then
/ ldi < CLN) P I3 (6).
>N

_p_1
Choose a constant C'y such that the number C3 =1 — C1C, P72 i positif.
Setting h = Co/N in the inequality (3.2), we have

(3.3) C3J2(f) < /M>N 11— jldp.

By Hoélder inequality the second term in (3.3) satisfies

[ e = [ gl
[AI>N IA|I>N
1/2 1/2
(/ |1j|2du> (/ du)
A>N [A[>N
1/2
[ =itde) ).
[A[>N

IN

IN
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From Lemma 3.1, we conclude that
/ 1= 1% du < b= |7 f (@) + 77" f (2) = 207" f(2) 13 0,0
(AI=N
Therefore
/ 1= jldu < 72" f (@) + 77" f () = 207" f (@) | 2,0m I (f)-

IAI>N

For h = C3/N, we obtain
C3JR(f) < C7"N*™w(f, C2/N)2,amJn(f).
Consequently
C3"CsJIn(f) < N*"w(f,C2/N)2,a.n-

for all N > 0. The theorem is proved with C' = Cs. O
Theorem 3.2. Let f € LZ,,. Then, for all N >0,

N—-1 2
W(f, N Vgan =0 [ N72FD (Z 1+ 1)3Jf<f>>

=0

Proof. From Lemma 3.1, we have
17" f () +77" f(2) = 20°" f ()13 0.n = 4h4"/R\ja+2n(/\h)—1|2\}'Af(/\)|2dua+2n(>\)~

This integral is divided into two

[ Lo en
R Iy Jpzw

where N = [h™1]. We estimate them separately.
From (2.3), we have the estimate

I, < C4/ |FAf V) Pdiaran(N) = CaJX (f).
AZN

Now, we estimate I;. From formula (2.4), we have
N-1

L o< Gt / NI FFO) Pdjtason(A) = C5h? / NI FfO) Pdptaszn (M)
AI<N I<|A|<I4+1

=0

N-1
Csh* > ar (JF(f) = T (f)) s
1=0

with a; = (l + 1)4.
For all integers m > 1, the Abel transformation shows

m

Zaz (le(f) - J12+1(f)) = ang(f) + Z (a1 —a;-1) Jzz(f) - amJiH(f)
1=0

=1

(a1 — ar—1) J2(f),

NE

IA

aoJ5(f) +

=1
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because amJ2 1 (f) > 0.

Hence N1
< Csh* | JG(H) + Y ((F+ 1) =1 JE(f) = NUIR(f)
1=1
Moreover by the finite increments theorem, we have (14 1)* — 14 < 4(1 4 1)3. Then
N-1
L<CNTHJg(f) +4 Y I+ 1P = NYIR () |

=1

since N < % Combining the estimates for I; and Iy gives

N-1
17" f () + 77" f(2) = 207" f (@[30 = O | NT44 Y1+ DETE(S) |
1=0
which implies
N-1 3
W(f;, N Naan =0 [ N2 LN 0+ 1277 (f) | |,
1=0
and this ends the proof. |
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