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Abstract

In this paper, we study the boundary value problem of a class of fractional differential
equations involving the Riemann-Liouville fractional derivative with nonlocal integral
boundary conditions. To establish the existence results for the given problems, we use
the properties of the Green’s function and the monotone iteration technique, one shows
the existence of positive solutions and constructs two successively iterative sequences to
approximate the solutions. The results are illustrated with an example.

1. Introduction

In this paper, we are interested in the existence of solutions for the nonlinear fractional differential equation

Dα
0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1) , (1.1)

subject to the boundary conditions

u(i) (0) = 0, 0≤ i≤ 2, Dβ

0+u(1) = λ Iβ

0+u(η) , (1.2)

where Dα
0+ , Dβ

0+ are the standard Riemann-Liouville fractional derivative of order α ∈ (3,4] , β ∈ (0,2], Iβ

0+ is the standard Riemann-Liouville

fractional integral of order β ∈ (0,2] and 0≤ λΓ(α−β )ηα+β−1

Γ(α+β )
< 1.

The first definition of fractional derivative was introduced at the end of the nineteenth century by Liouville and Riemann, but the concept
of non-integer derivative and integral, as a generalization of the traditional integer order differential and integral calculus, was mentioned
already in 1695 by Leibniz and L’Hospital. In fact, fractional derivatives provide an excellent tool for the description of memory and
hereditary properties of various materials and processes. The mathematical modelling of systems and processes in the fields of physics,
chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, Bode’s analysis of feedback amplifiers, capacitor theory,
electrical circuits, electro-analytical chemistry, biology, control theory, fitting of experimental data, involves derivatives (or q-derivatives) of
fractional order see for example [5, 6]. For more details we refer the reader to [2, 11] and the references cited therein.
Many mathematicians show strong interest in fractional differential equations and many wonderful results have been obtained. The techniques
of nonlinear analysis, as the main method to deal with the problems of nonlinear fractional differential equations, plays an essential role
in the research of this field, such as establishing the existence and the uniqueness or the multiplicity of solutions to nonlinear fractional
differential equations boundary value problems, see [4, 7, 9, 10, 11, 12, 15, 16, 17, 18, 19] and the references therein.
In [3], the authors studied the boundary value problems of the fractional order differential equation:{

Dα
0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1) ,

u(0) = 0, Dβ

0+u(1) = aDβ

0+u(η) ,
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where 1 < α ≤ 2, 0 < η < 1, 0 < a, β < 1, f ∈C
(
[0,1]×R2,R

)
and Dα

0+ , Dβ

0+ are the standard Riemann-Liouville fractional derivative
of order α, β respectively. They obtained the multiple positive solutions by the Leray-Schauder nonlinear alternative and the fixed point
theorem on cones.
The monotone iteration scheme is an interesting and effective way to investigate the existence of solutions to nonlinear fractional problem
(see for example [8, 13, 14]). Inspired and motivated by the works mentioned above, we focus on the existence of positive solutions for the
nonlocal boundary value problem (1.1)− (1.2) by using the fixed point theorem for increasing operators on the order intervals, we also
establish two iterative sequences to approximate the solutions. The paper is organized as follows. In Section 2, we recall some preliminary
facts that we need in the sequel, for more details; see [1]. The existence of the positive solutions to the problem (1.1)− (1.2), is proved and
two successively iterative sequences to approximate the solutions are constructed and we give an example to illustrate our results in Section 3.

2. Preliminaries

In this section, we recall some definitions and facts which will be used in the later analysis.

Definition 2.1. Let E be a real Banach space. A nonempty closed set K ⊂ E is said to be a cone provided that
(i) c1u+ c2v ∈ K for all c1 ≥ 0, c2 ≥ 0, and
(ii) u ∈ K, −u ∈ K implies u = 0.
Every cone K induces an ordering in E given by u≤ v if and only if v−u ∈ K.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a function u : (0,∞)→ R is given by

Iα
0+u(t) =

1
Γ(α)

t∫
0

(t− s)α−1 u(s)ds, t > 0,

where Γ(·) is the Euler Gamma function, provided that the right side is pointwise defined on (0,∞).

Definition 2.3. [1]. The Riemann-Liouville fractional derivative order α > 0 of a continuous function u : (0,∞)→ R is defined by

Dα
0+u(t) =

1
Γ(n−α)

dn

dtn

t∫
0

(t− s)n−α−1 u(s)ds, t > 0,

where n = dαe+1, dαe denotes the integer part of number α , provided that the right side is pointwise defined on (0,∞).

Lemma 2.4. [1] (i) If u ∈ Lp (0,1) , 1≤ p≤+∞, β > α > 0, then Dα
0+ Iβ

0+u(t) = Iβ−α

0+ u(t) , Dα
0+ Iα

0+u(t) = u(t) , Iα
0+ Iβ

0+u(t) = Iα+β

0+ u(t).

(ii) If β > α > 0, then Dα tβ−1 =
Γ(β )tβ−α−1

Γ(β−α)
.

(iii) If α > 0 and γ ∈ (−1,+∞), then Iα
0+ tγ =

Γ(γ+1)
Γ(α+γ+1) tα+γ .

Lemma 2.5. [1] Let α > 0 and for any y ∈ L1 (0,1). Then, the general solution of the fractional differential equation Dα
0+u(t)+ y(t) =

0, 0 < t < 1 is given by

u(t) =− 1
Γ(α)

t∫
0

(t− s)α−1 y(s)ds+ c1tα−1 + c2tα−2 + · · ·+ cntα−n,

where c0,c1, ...,cn−1 are real constants and n = dαe+1.

Lemma 2.6. Let y ∈C [0,1]. Then the solution of the fractional boundary value problem
Dα

0+u(t)+ y(t) = 0,
u(i) (0) = 0, 0≤ i≤ 2,

Dβ

0+u(1) = λ Iβ

0+u(η) ,

(2.1)

is given by

u(t) =
1∫

0

G(t,s)y(s)ds, (2.2)

where

G(t,s) =



−PΓ(α−β )Γ(α+β )(t−s)α−1+∆

PΓ(α)Γ(α−β )Γ(α+β )
, 0≤ s≤ t ≤ 1, s≤ η ,

∆

PΓ(α)Γ(α−β )Γ(α+β )
, 0≤ t ≤ s≤ η ≤ 1,

−PΓ(α−β )Γ(α+β )(t−s)α−1+Λ

PΓ(α)Γ(α−β )Γ(α+β )
, 0≤ η ≤ s≤ t ≤ 1,

Γ(α)Γ(α+β )(1−s)α−β−1tα−1

PΓ(α)Γ(α−β )Γ(α+β )
, 0≤ t ≤ s≤ 1, s≥ η ,

(2.3)

where ∆ = tα−1
[
Γ(α)Γ(α +β )(1− s)α−β−1−λΓ(α)Γ(α−β )(η− s)α+β−1

]
,

Λ = Γ(α +β )Γ(α)(1− s)α−β−1 tα−1.

and P =
Γ(α)

Γ(α−β )
− λΓ(α)

Γ(α+β )
ηα+β−1.
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Proof. In view of Lemma 2.5, the general solution for the above equation is

u(t) =− 1
Γ(α)

t∫
0

(t− s)α−1 y(s)ds+ c1tα−1 + c2tα−2 + c3tα−3 +C4tα−4,

where c1, c2, c3, c4 ∈ R.
The boundary conditions u(0) = u′ (0) = u′′ (0) = 0, implies that c2 = c3 = c4 = 0. Thus

u(t) =− 1
Γ(α)

t∫
0

(t− s)α−1 y(s)ds+ c1tα−1. (2.4)

By (2.4) and Lemma 2.4, we get

Dβ

0+u(t) =
1

Γ(α−β )

c1Γ(α) tα−β−1−
t∫

0

(t− s)α−β−1 y(s)ds

 .
In view of boundary condition Dβ

0+u(1) = λ Iβ

0+u(η), we conclude that

c1 =
1
P

 1
Γ(α−β )

1∫
0

(1− s)α−β−1 y(s)ds− λ

Γ(α +β )

η∫
0

(η− s)α+β−1 y(s)ds

 .
Therefore, the unique solution of the problem (2.1) is given by

u(t) =
tα−1

PΓ(α−β )

1∫
0

(1− s)α−β−1 y(s)ds− λ tα−1

PΓ(α +β )

η∫
0

(η− s)α+β−1 y(s)ds

− 1
Γ(α)

t∫
0

(t− s)α−1 y(s)ds.

For t ≤ η , one has

u(t) =
tα−1

PΓ(α−β )

 t∫
0

(1− s)α−β−1 y(s)ds+

η∫
t

(1− s)α−β−1 y(s)ds+
1∫

η

(1− s)α−β−1 y(s)ds



− λ tα−1

PΓ(α +β )

 t∫
0

(η− s)α+β−1 y(s)ds+

η∫
t

(η− s)α+β−1 y(s)ds

− 1
Γ(α)

t∫
0

(t− s)α−1 y(s)ds,

=

t∫
0

−PΓ(α−β )Γ(α +β )(t− s)α−1 +∆

PΓ(α)Γ(α +β )Γ(α−β )
y(s)ds+

η∫
t

∆

PΓ(α)Γ(α +β )Γ(α−β )
y(s)ds

+

1∫
η

Γ(α)Γ(α +β )(1− s)α−β−1 tα−1

PΓ(α)Γ(α +β )Γ(α−β )
y(s)ds,

=

1∫
0

G(t,s)y(s)ds. .

For t ≥ η , one has

u(t) =

η∫
0

−PΓ(α−β )Γ(α +β )(t− s)α−1 +∆

PΓ(α)Γ(α +1)Γ(α−β )
y(s)ds

+

t∫
η

−PΓ(α−β )Γ(α +β )(t− s)α−1 +Γ(α)Γ(α +β )(1− s)α−β−1 tα−1

PΓ(α)Γ(α +β )Γ(α−β )
y(s)ds

+

1∫
t

Γ(α)Γ(α +β )(1− s)α−β−1 tα−1

PΓ(α)Γ(α +β )Γ(α−β )
y(s)ds, ..

=

1∫
0

G(t,s)y(s)ds. .

The proof is complete.
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We need some properties of function G(t,s) to establish the existence of positive solutions.

Lemma 2.7. The Green’s function G(t,s) has the following properties:
(i) The function G(t,s) is continuous and G(t,s)> 0 for all t, s ∈ (0,1).
(ii) For all t, s ∈ (0,1), we have

tα−1w2 (s)≤ G(t,s)≤ tα−1w1 (s) , (2.5)

where

w1 (s) =
ληα+β−1

[
(1− s)α−β−1− (1− s)α+β−1

]
PΓ(α +β )

,

and

w2 (s) =
(1− s)α−β−1

PΓ(α−β )
.

Proof. It is easy to prove (i). Now, we prove (ii), assume that 0≤ λΓ(α−β )ηα+β−1

Γ(α+β )
< 1, then for 0≤ s≤ t ≤ 1, s≤ η , we get

PΓ(α)Γ(α +β )Γ(α−β )G(t,s) =−PΓ(α−β )Γ(α +β )(t− s)α−β−1

+Γ(α)Γ(α +β )(1− s)α−β−1 tα−1−λΓ(α)Γ(α−β )(η− s)α+β−1 tα−1,

= λΓ(α)Γ(α−β )
{

η
α+β−1 (t− s)α−1− (η− s)α+β−1 tα−1

}
+Γ(α)Γ(α +β )

{
−(t− s)α−1 +(1− s)α−β−1 tα−1

}
,

≥ λη
α+β−1

Γ(α)Γ(α−β ) tα−1
[
(1− s)α−β−1− (1− s)α+β−1

]
,

and

PΓ(α)Γ(α +β )Γ(α−β )G(t,s) = Γ(α)Γ(α +β )(1− s)α−β−1 tα−1−λΓ(α)Γ(α−β )(η− s)α+β−1 tα−1,

≤ Γ(α)Γ(α +β )(1− s)α−β−1 tα−1.

For 0≤ η ≤ s≤ t ≤ 1, we have

PΓ(α)Γ(α +β )Γ(α−β )G(t,s) =−PΓ(α−β )Γ(α +β )(t− s)α−1 +Γ(α)Γ(α +β )(1− s)α−β−1 tα−1,

=−Γ(α)Γ(α +β )(t− s)α−1 +λΓ(α)Γ(α−β )η
α+β−1 (t− s)α−1

+Γ(α)Γ(α +β )(1− s)α−β−1 tα−1,

≥ λΓ(α)Γ(α−β )η
α+β−1 (t− s)α−1−Γ(α)Γ(α−β )η

α+β−1 (t− s)α−1

+Γ(α)Γ(α−β )η
α+β−1 (1− s)α−β−1 tα−1,

≥ λΓ(α)Γ(α−β )η
α−β−1 (1− s)α−β−1 tα−1

≥ λΓ(α)Γ(α−β )η
α+β−1tα−1

[
(1− s)α−β−1− (1− s)α+β−1

]
,

and

PΓ(α)Γ(α +β )Γ(α−β )G(t,s) =−PΓ(α−β )Γ(α +β )(t− s)α−1 +Γ(α)Γ(α +β )(1− s)α−β−1 tα−1,

=−Γ(α)Γ(α +β )(t− s)α−1 tα−1 +λΓ(α)Γ(α−β )η
α+β−1 (t− s)α−1

+Γ(α)Γ(α +β )(1− s)α−β−1 tα−1,

≤ Γ(α)Γ(α +β )(1− s)α−β−1 tα−1.

For 0≤ t ≤ s≤ 1, s≥ η , we get

PΓ(α)Γ(α +β )Γ(α−β )G(t,s) = Γ(α)Γ(α +β )(1− s)α−β−1 tα−1,

≥ λΓ(α)Γ(α−β )η
α+β−1tα−1

[
(1− s)α−β−1− (1− s)α+β−1

]
.
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3. Existence results

We shall consider the Banach space E = C [0,1] equipped with the norm ‖u‖ = max
0≤t≤1

|u(t)| and let a closed cone K ⊂ E by K =

{u ∈ E : u≥ 0} where 0 is the the zero function. Then K is normal.

Set Ka = {u ∈ E : ‖u‖ ≤ a}. Define the operator T : Ka→ E as

(Tu)(t) =
1∫

0

G(t,s) f (s,u(s))ds, t ∈ [0,1] , (3.1)

where G(t,s) is given by (2.3). It is not hard to see that fixed points of operator T coincide with the solutions to the problem (1.1)− (1.2).

Lemma 3.1. [9] Let E be a Banach space ordered by a normal cone K ⊂ E. Assume that T : [x1,x2]→ E is completely continuous operator
such that x1 ≤ T x2, x2 ≥ T x2. Then T has a minimal fixed point x∗ and a maximal fixed point x∗ such that x1 ≤ x∗ ≤ x∗ ≤ x2. Moreover,
x∗ = lim

n→∞
T nx1, x∗ = T nx2, where {T nx1}∞

n=1 is an increasing sequence and {T nx2}∞

n=1 is a decreasing sequence.

First, for the existence results of problem (1.1)− (1.2), we need the following assumptions.
(A1) f : [0,1]× [0,a]→ [0,∞) is continuous and f (t,0) 6= 0,
(A2) There exists a nonnegative function q ∈C [0,1]⊆ L1 [0,1] such that | f (t,u)| ≤ q(t) , (t,u) ∈ [0,1]× [0,a],
(A3) f (t,u)≤ f (t,u) , t ∈ [0,1] , 0≤ u≤ u≤ a.

Lemma 3.2. Assume that (A1)− (A3) hold. Then the operator T defined in (3.1) is a completely continuous increasing operator.

Proof. Firstly, the operator T is continuous in view of the continuity of functions f (t,u(t)) and G(t,s). Secondly, we will show that T (Ka)
is bounded. Let

L =

1∫
0

q(t)dt < ∞.

Then, for any u ∈ Ka, we have

‖(Tu)(t)‖= max
t∈[0,1]

1∫
0

G(t,s) | f (s,u(s))|ds≤ L
PΓ(α−β )

, t ∈ [0,1] .

For each u ∈ Ka, one can show that

∣∣(Tu)′ (t)
∣∣=
∣∣∣∣∣∣ (α−1) tα−2

PΓ(α−β )

1∫
0

(1− s)α−β−1 f (s,u(s))ds

−λ (α−1) tα−2

PΓ(α +β )

η∫
0

(η− s)α+β−1 f (s,u(s))ds− α−1
Γ(α)

t∫
0

(t− s)α−2 f (s,u(s))ds

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣ (α−1) tα−2

PΓ(α−β )

1∫
0

(1− s)α+β−1 f (s,u(s))ds

−λ (α−1) tα−2

PΓ(α +β )

η∫
0

(η− s)α+β−1 f (s,u(s))ds− 1
Γ(α−1)

t∫
0

(t− s)α−2 f (s,u(s))ds

∣∣∣∣∣∣ ,
≤ (α−1) tα−2

PΓ(α−β )

1∫
0

(1− s)α+β−1 | f (s,u(s))|ds

+
λ (α−1) tα−2

PΓ(α +β )

η∫
0

(η− s)α+β−1 | f (s,u(s))|ds+
1

Γ(α−1)

t∫
0

(t− s)α−2 | f (s,u(s))|ds,

≤ (α−1)L
PΓ(α−β )

+
λ (α−1)L
PΓ(α +β )

+
L

Γ(α−1)
= L̄.

Therefore, for any t1, t2 ∈ [t1, t2]≤ L(t2− t1) . with t1 < t2, we have

|(Tu)(t1)− (Tu)(t2)| ≤
t2∫

t1

∣∣(Tu)′ (s)
∣∣ds≤ L(t2− t1)→ 0 as t2→ t1,

The Arzela-Ascoli theorem implies that the operator T : Ka→ E is completely continuous. The assumption (A3) provides that the operator
T : Ka→ E is an increasing operator. The proof is completed.
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Theorem 3.3. Assume that (A1)− (A3) hold, and
1∫

0

w1 (s) f (s,0)ds≥ 0,
1∫

0

w2 (s) f
(

a,asα−1
)
≤ a, s ∈ [0,1] . (3.2)

Then the problem (1.1)− (1.2) has two positive solutions u∗, v∗ satisfying 0 < u∗ ≤ v∗ ≤ a. Moreover, there exist a non-decreasing iterative
sequence {un}∞

n=0 with

lim
n→∞

un = u∗, u0 = 0, un+1 = Tun, n = 0,1,2, . . . , (3.3)

and a non-decreasing iterative sequence {vn}∞

n=0 with

lim
n→∞

vn = u∗, v0 = atα−1, vn+1 = T vn, n = 0,1,2, . . . . (3.4)

Proof. We only need to prove that Tu0 ≥ u0 and T v0 ≤ u0.

(Tu0)(t) =
1∫

0

G(t,s) f (s,u0)ds =
1∫

0

G(t,s) f (s,0)ds,

≥ tα−1
1∫

0

w1 (s) f (s,0)ds≥ 0 = u0, t ∈ [0,1] , (3.5)

this implies u1 ≥ u0, wich combined with (A3) gives

u2 = (Tu1)(t) =
1∫

0

G(t,s) f (s,u1 (t))ds≥ u1, t ∈ [0,1]

Similarly, we have

v1 = T v0 =

1∫
0

G(t,s) f (s,v0)ds,

≤ tα−1
1∫

0

w2 (s) f
(

s,atα−1
)

ds,

≤ atα−1 = v0, t ∈ [0,1]

(3.6)

Then, by (3.5)− (3.6) and induction, the iterative sequences {un} , {vn} satisfy

u0 (t)≤ u1 (t)≤ . . .≤ un (t)≤ . . .≤ vn (t)≤ . . .≤ v1 (t)≤ v0 (t) , ∀t ∈ [0,1] .

By induction, one can prove that un+1 ≥ un and vn+1 ≤ vn.
Lemma 3.1 shows that the operator T has a minimal fixed point u∗ and a maximal fixed point v∗ satisfying 0≤ u∗ ≤ v∗ ≤ a. From (A1) we
find that the zero function is not the solution to the problem (1.1)− (1.2). Thus 0 < u∗ ≤ v∗ ≤ a. The proof is complete.

We construct an example to illustrate the applicability of the results presented.

Example 3.4. Consider the following boundary value problem

D
7
2
0+u(t)+

1√
t

(
t +u

1
3 (t) tanh(u(t))+u

1
3 (t)

)
= 0, t ∈ (0,1) ,

u(0) = u′ (0) = u′′ (0) = 0, D
5
2 u(1) =

1
2

I
5
2

0+u
(

1
2

)
,

where α = 7
2 , β = 5

2 , λ = 1
2 , η = 1

2 and f (t,u(t)) = 1√
t

(
t +u

1
3 (t) tanh(u(t))+u

1
3 (t)

)
.

We take a = 10. By simple calculation we have
P = 3,3229182, f (t,0) = t√

t
and f

(
t,10t

5
2

)
= 1√

t

(
t +(10)

1
3 t

5
6 + t

5
6

)
.

A simple calculation leads to

1∫
0

w1 (s) f (s,0)ds' 0,0000239≥ 0,

and
1∫

0

w2 (s) f
(

s,10s
5
2

)
ds' 0,9124781≤ 10.

Hence, all the assumptions of Theorem 3.3 are satisfied. Which implies that the boundary value (1.1)− (2.1) has two nontrivial solutions
u∗, v∗ with 0≤ u∗ ≤ v∗ ≤ 10, and the two monotone iterative sequences {un}∞

n=1 can be taken as

u0 = 0, un+1 = Tun, v0 = 10tα−1, vn+1 = T vn, n = 0,1,2, . . . .
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