UJMA

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma

Some remarks regarding the (p,q)-Fibonacci and Lucas octonion polynomials

Arzu Özkoç Öztürk^{a*} and Ayhan Porsuk^a

^aDepartment of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey ^{*}Corresponding author E-mail: arzuozkoc@duzce.edu.tr

Keywords: Fibonacci Polynomials, Fi
bonacci Octonions, Generating Func-
tions
2010 AMS: 05A15, 11B39, 11R52
Received: 30 January 2018
Accepted: 16 February 2018
Available online: 11 March 2018

We investigate the (p,q)-Fibonacci and Lucas octonion polynomials. The main purpose of this paper is using of some properties of the (p,q)-Fibonacci and Lucas polynomials. Also for present some results involving these octonion polynomials, we obtain some interesting computational formulas.

1. Introduction

Article Info

Fibonacci, Lucas, Pell and the other special numbers are the special case of the second order linear recurrence $R = \{R_i\}_{i=0}^{\infty}$ if the recurrence relation for $i \ge 2$, $R_i = PR_{i-1} - QR_{i-2}$ holds for its terms, where *P* and *Q* are integers such that $D = P^2 - 4Q \ne 0$ (to exclude a degenerate case) and R_0, R_1 are fixed integers. Define the sequences

$$U_{n} = PU_{n-1} - QU_{n-2}$$

$$V_{n} = PV_{n-1} - QV_{n-2}$$
(1.1)

for $n \ge 2$. The characteristic equation of them is $x^2 - Px + Q = 0$ and hence the roots of it are $\alpha = \frac{P + \sqrt{D}}{2}$ and $\beta = \frac{P - \sqrt{D}}{2}$. So by Binet's formula, $U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$ and $V_n = \alpha^n + \beta^n$. Further the generating function for U_n and V_n is

$$\sum_{n=0}^{\infty} U_n x^n = \frac{x}{1 - Px + Qx^2} \text{ and } \sum_{n=0}^{\infty} V_n x^n = \frac{2 - Px}{1 - Px + Qx^2}$$

Abstract

[<mark>8, 9</mark>].

Polynomials can be defined by Fibonacci-like recursion relations are called Fibonacci polynomials. More mathematicians were involved in the study of Fibonacci polynomials. Let p(x) and q(x) be polynomials with real coefficients. The (p,q)-Fibonacci polynomials are defined by the recurrence relation

$$F_{p,q,n+1}(x) = p(x)F_{p,q,n}(x) + q(x)F_{p,q,n-1}(x)$$
(1.2)

with the initial conditions $F_{p,q,0}(x) = 0$, $F_{p,q,1}(x) = 1$. Also for the p(x) and q(x) polynomials with real coefficients the (p,q)-Lucas polynomials are defined by the recurrence relation

$$L_{p,q,n+1}(x) = p(x)L_{p,q,n}(x) + q(x)L_{p,q,n-1}(x)$$

with the initial conditions $L_{p,q,0}(x) = 2$, $L_{p,q,1}(x) = p(x)$. Let $\alpha_1(x) = \frac{p(x) + \sqrt{p^2(x) + 4q(x)}}{2}$ and $\alpha_2(x) = \frac{p(x) - \sqrt{p^2(x) + 4q(x)}}{2}$ denote the roots of the characteristic equation

Email addresses: arzuozkoc@duzce.edu.tr (A. Özkoç Öztürk), ayhanporsuk@gmail.com (A. Porsuk)

$$\alpha^2 - p(x)\alpha - q(x) = 0$$

on the recurrence relation of (1.2). Binet formulas for the (p,q)-Fibonacci polynomials and (p,q)-Lucas polynomials are

$$F_{p,q,n}(x) = \frac{\alpha_1^n(x) - \alpha_2^n(x)}{\alpha_1(x) - \alpha_2(x)} \text{ and } L_{p,q,n}(x) = \alpha_1^n(x) + \alpha_2^n(x).$$

[10]

Note that

$$\begin{aligned} \alpha_{1}(x) + \alpha_{2}(x) &= p(x) \\ \alpha_{1}(x) - \alpha_{2}(x) &= \sqrt{p^{2}(x) + 4q(x)} \\ \alpha_{1}(x) \cdot \alpha_{2}(x) &= -q(x) \\ \frac{\alpha_{1}(x)}{\alpha_{2}(x)} &= \frac{-\alpha_{1}^{2}(x)}{q(x)}, q(x) \neq 0 \\ \frac{\alpha_{2}(x)}{\alpha_{1}(x)} &= \frac{-\alpha_{2}^{2}(x)}{q(x)}, q(x) \neq 0. \end{aligned}$$
(1.3)

In [5], they introduce (p,q)-Fibonacci quaternion polynomials that generalize h(x)-Fibonacci quaternion polynomials. Division algebras are defined on real numbers \mathbb{R} , complex numbers \mathbb{C} , quaternions **H**, and octonions \mathbb{Q} . There are different types of sequences of quaternions like Fibonacci Quaternions, Split Fibonacci Quaternions and Complex Fibonacci Quaternions [1].

The octonions in Clifford algebra are a normed division algebra with eight dimensions over the real numbers larger than the quaternions. The field $\mathbb{Q} \cong \mathbb{C}^4$ of octonions

$$\boldsymbol{\alpha} = \sum_{s=0}^{7} \alpha_s \boldsymbol{e}_s, \quad \boldsymbol{\alpha}_i \in \mathbb{R} (i = 0, 1, \cdots, 7)$$

is an eight-dimensional non-commutative and non-associative \mathbb{R} -field generated by eight base elements e_0, e_1, \dots, e_6 and e_7 which satisfy the non-commutative and non-associative multiplication rules are listed in below Table.

×	e	$e_0 e_1$	e_2	<i>e</i> ₃	e_4	e_5	e_6	<i>e</i> 7
<i>e</i> ₀	e_0	e_1	e_2	e_3	e_4	e_5	e_6	<i>e</i> ₇
<i>e</i> ₁	<i>e</i> ₁	$-e_0$	e_3	$-e_2$	e_5	$-e_4$	$-e_{7}$	e_6
<i>e</i> ₂	<i>e</i> ₂	$-e_3$	$-e_0$	e_1	e_6	e_7	$-e_4$	$-e_5$
<i>e</i> ₃	<i>e</i> ₃	e_2	$-e_1$	$-e_0$	e_7	$-e_6$	e_5	$-e_4$
<i>e</i> ₄	e_4	$-e_5$	$-e_6$	$-e_{7}$	$-e_0$	e_1	e_2	e_3
<i>e</i> 5	<i>e</i> ₅	e_4	$-e_{7}$	e_6	$-e_1$	$-e_0$	$-e_3$	e_2
<i>e</i> ₆	<i>e</i> ₆	e_7	e_4	$-e_5$	$-e_2$	e_3	$-e_0$	$-e_1$
<i>e</i> ₇	<i>e</i> ₇	$-e_6$	e_5	e_4	$-e_3$	$-e_2$	e_1	$-e_0$

The multiplication table for the basis of \mathbb{Q}

For $n \ge 0$, the Fibonacci octonion numbers that are given for the n - th classic Fibonacci F_n number are defined by the following recurrence relations:

$$\mathbb{Q}_n = \sum_{s=0}^7 F_{n+s} e_s.$$

Besides h(x) –Fibonacci octonion polynomials can be defined by [6] that generalized both Catalan's Fibonacci octonion polynomials $\Psi_n(x)$ and Byrd's Fibonacci octonion polynomials and also k – Fibonacci octonion numbers. Moreover in [2] they derived the Binet formula and generating function of h(x) –Fibonacci octonion polynomial sequence.

Let h(x) be a polynomial with real coefficients. The h(x)-Fibonacci octonion polynomials $\{O_{h,n}(x)\}_{n=0}^{\infty}$ are defined by the recurrence relation

$$O_{h,n}(x) = \sum_{s=0}^{7} F_{h,n+s}(x) e_s$$

where $F_{h,n}(x)$ is the *n*-th h(x)-Fibonacci polynomial in [2].

2. Main theorems of the (p,q)-Fibonacci and Lucas octonion polynomials

In the main section, we introduce the (p,q)-Fibonacci and Lucas octonion polynomials and formulate the Binet-style formula, the generating function and some identities of the (p,q)-Fibonacci octonion and Lucas octonion polynomial sequence. In [7], the authors obtained similar results for the (p,q)-Fibonacci and Lucas quaternion polynomials.

For $n \ge 0$ the Fibonacci octonion numbers that are given for the *n*-th classic Fibonacci F_n number are defined in [4]. Also (p,q)-Fibonacci octonions are investigated by [3].

So (p,q)-Fibonacci octonion polynomials $OF_{p,q,n}(x)$ are defined by the recurrence relation

$$OF_{p,q,n}(x) = \sum_{k=0}^{7} F_{p,q,n+k}(x)e_k$$

where $F_{p,q,n+k}(x)$ is the (n+k) - th(p,q)-Fibonacci polynomial. The initial conditions of this sequence are given by

$$OF_{p,q,0}(x) = \sum_{k=0}^{7} F_{p,q,k}(x)e_k = e_1 + p(x)e_2 + (p^2(x) + q(x))e_3 + (p^3(x) + 2p(x)q(x))e_4 + (p^4(x) + 3p^2(x)q(x) + q^2(x))e_5 + (p^5(x) + 4p^3(x)q(x) + 3p(x)q^2(x))e_6 + (p^6(x) + 5p^4(x)q(x) + 6p^2(x)q^2(x) + q^3(x))e_7$$

and

$$OF_{p,q,1}(x) = \sum_{k=0}^{7} F_{p,q,1+k}(x)e_k = e_0 + p(x)e_1 + (p^2(x) + q(x))e_2 + (p^3(x) + 2p(x)q(x))e_3 + (p^4(x) + 3p^2(x)q(x) + q^2(x))e_4 + (p^5(x) + 4p^3(x)q(x) + 3p(x)q^2(x))e_5 + (p^6(x) + 5p^4(x)q(x) + 6p^2(x)q^2(x) + q^3(x))e_6 + (p^7(x) + 6p^5(x)q(x) + 10p^3(x)q^2(x) + 4p(x)q^3(x))e_7.$$

Also $OF_{p,q,n}(x)$ is written by a recurrence relation of order two;

$$OF_{p,q,n+1}(x) = \sum_{k=0}^{7} F_{p,q,n+1+k}(x)e_k$$

= $\sum_{k=0}^{7} (p(x)F_{p,q,n+k}(x) + q(x)F_{p,q,n-1+k}(x))e_k$
= $p(x)\sum_{k=0}^{7} F_{p,q,n+k}(x)e_k + q(x)\sum_{k=0}^{7} F_{p,q,n-1+k}(x)e_k$

and thus,

$$OF_{p,q,n+1}(x) = p(x)OF_{p,q,n}(x) + q(x)OF_{p,q,n-1}(x).$$

For the n - th (p,q)-Lucas octonion polynomials $OL_{p,q,n}(x) = \sum_{k=0}^{7} L_{p,q,n+k}(x)e_k$, where $L_{p,q,n+k}$ is the (n+k) - th (p,q)-Lucas polynomial. For $n \ge 1$

$$OL_{p,q,n+1}(x) = p(x)OL_{p,q,n}(x) + q(x)OL_{p,q,n-1}(x)$$

with the initial conditions.

Theorem 2.1. The generating functions for the (p,q)-Fibonacci octonion polynomials $OF_{p,q,n}(x)$ and the (p,q)-Lucas octonion polynomials $OL_{p,q,n}(x)$ are

$$g_{OF}(t) = \frac{OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t}{1 - p(x)t - q(x)t^2}$$

and

$$g_{OL}(t) = \frac{OL_{p,q,0}(x) + [OL_{p,q,1}(x) - p(x)OL_{p,q,0}(x)]t}{1 - p(x)t - q(x)t^2}$$

respectively.

Proof. The generating function $g_{OF}(t)$ for $OF_{p,q,n}(x)$ is to be of the form

$$\sum_{n=0}^{\infty} OF_{p,q,n}(x)t^n = OF_{p,q,0}(x) + OF_{p,q,1}(x)t + OF_{p,q,2}(x)t^2 + \dots + OF_{p,q,n}(x)t^n + \dots$$
(2.1)

The formal power series expansions of $g_{OF}(t), -p(x)tg_{OF}(t)$ and $-q(x)t^2g_{OF}(t)$ are

$$g_{OF}(t) = \sum_{n=0}^{\infty} OF_{p,q,n}(x)t^{n} = OF_{p,q,0}(x) + OF_{p,q,1}(x)t + OF_{p,q,2}(x)t^{2} + \dots + OF_{p,q,n}(x)t^{n} + \dots - p(x)tg_{OF}(t) = -p(x)OF_{p,q,0}(x)t - p(x)OF_{p,q,1}(x)t^{2} - p(x)OF_{p,q,2}(x)t^{3} - \dots - p(x)OF_{p,q,n}(x)t^{n+1} - \dots - q(x)t^{2}g_{OF}(t) = -q(x)OF_{p,q,0}(x)t^{2} - q(x)OF_{p,q,1}(x)t^{3} - q(x)OF_{p,q,2}(x)t^{4} - \dots - q(x)OF_{p,q,n}(x)t^{n+2} - \dots$$

respectively. So the expansion for $g_{OF}(t) - g_{OF}(t)p(x)t - g_{OF}(t)q(x)t^2$ is

$$\begin{split} g_{OF}(t)[1-p(x)t-q(x)t^2] &= OF_{p,q,0}(x) + OF_{p,q,1}(x)t - p(x)OF_{p,q,0}(x)t \\ &+ [OF_{p,q,2}(x) - p(x)OF_{p,q,1}(x) - q(x)OF_{p,q,0}(x)]t^2 \\ &+ [OF_{p,q,3}(x) - p(x)OF_{p,q,2}(x) - q(x)OF_{p,q,1}(x)]t^3 \\ &+ \dots + [OF_{p,q,n}(x) - p(x)OF_{p,q,n-1}(x) - q(x)OF_{p,q,n-2}(x)]t^n \\ &+ \dots \\ &= OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t. \end{split}$$

Hence $OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t$ is a finite series, so we can rewrite $[1 - p(x)t - q(x)t^2]g_{OF}(t) = OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t$ and hence

$$g_{OF}(t) = \frac{OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t}{1 - p(x)t - q(x)t^2}$$
(2.2)

as we claimed.

Similarly, it can be also proved that $g_{OL}(t) = \frac{OL_{p,q,0}(x) + [OL_{p,q,1}(x) - p(x)OL_{p,q,0}(x)]t}{1 - p(x)t - q(x)t^2}$.

Lemma 2.2. For the generating function given in Theorem 2.1, we have

$$g_{OF}(t) = \frac{1}{\alpha_1(x) - \alpha_2(x)} \left(\frac{OF_{p,q,1}(x) - \alpha_2(x)OF_{p,q,0}(x)}{1 - \alpha_1(x)t} - \frac{OF_{p,q,1}(x) - \alpha_1(x)OF_{p,q,0}(x)}{1 - \alpha_2(x)t} \right)$$
$$g_{OL}(t) = \frac{1}{\alpha_1(x) - \alpha_2(x)} \left(\frac{OL_{p,q,1}(x) - \alpha_2(x)OL_{p,q,0}(x)}{1 - \alpha_1(x)t} - \frac{OL_{p,q,1}(x) - \alpha_1(x)OL_{p,q,0}(x)}{1 - \alpha_2(x)t} \right)$$

Proof. Using the expression of $g_{OF}(t)$ in Teorem 2.1 and (1.3), we found

$$\frac{OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t}{1 - p(x)t - q(x)t^2} = \frac{OF_{p,q,0}(x) + [OF_{p,q,1}(x) - p(x)OF_{p,q,0}(x)]t}{(1 - \alpha_1(x)t)(1 - \alpha_2(x)t)}$$
$$= \left(\frac{OF_{p,q,0}(x) + [OF_{p,q,1}(x) - (\alpha_1(x) + \alpha_2(x))OF_{p,q,0}(x)]t}{(1 - \alpha_1(x)t)(1 - \alpha_2(x)t)}\right) \times \left(\frac{\alpha_1(x) - \alpha_2(x)}{\alpha_1(x) - \alpha_2(x)}\right)$$
$$\int_{-\alpha_1(x)OF_{p,q,0}(x) + \alpha_1(x)OF_{p,q,1}(x)t - \alpha_1^2(x)OF_{p,q,0}(x)t}{(1 - \alpha_1(x)OF_{p,q,0}(x) + \alpha_1(x)OF_{p,q,1}(x)t - \alpha_1^2(x)OF_{p,q,0}(x)t}\right)$$

$$= \frac{\left\{\begin{array}{c} -\alpha_{1}(x)\alpha_{2}(x)OF_{p,q,0}(x)t - \alpha_{2}(x)OF_{p,q,0}(x) - \alpha_{2}(x)OF_{p,q,1}(x)t\right\}}{+\alpha_{1}(x)\alpha_{2}(x)OF_{p,q,0}(x)t + \alpha_{2}^{2}(x)OF_{p,q,0}(x)t + OF_{p,q,1}(x) - OF_{p,q,1}(x)t\right)}{(\alpha_{1}(x) - \alpha_{2}(x))(1 - \alpha_{1}(x)t)(1 - \alpha_{2}(x)t)}$$

$$= \frac{\left\{\begin{array}{c} OF_{p,q,1}(x)(1 - \alpha_{2}(x)t) + \alpha_{2}(x)OF_{p,q,0}(x)(-1 + \alpha_{2}(x)t) \\+OF_{p,q,1}(x)(-1 + \alpha_{1}(x)t) + \alpha_{1}(x)OF_{p,q,0}(x)(1 - \alpha_{1}(x)t) \right\}}{(\alpha_{1}(x) - \alpha_{2}(x))(1 - \alpha_{1}(x)t)(1 - \alpha_{2}(x)t)}$$

$$= \frac{\left\{\begin{array}{c} (1 - \alpha_{2}(x)t)(OF_{p,q,1}(x) - \alpha_{2}(x)OF_{p,q,0}(x)) \\-(1 - \alpha_{1}(x)t)(OF_{p,q,1}(x) - \alpha_{1}(x)OF_{p,q,0}(x)) \\(\alpha_{1}(x) - \alpha_{2}(x))(1 - \alpha_{1}(x)t)(1 - \alpha_{2}(x)t) \end{array}\right\}}{(\alpha_{1}(x) - \alpha_{2}(x))(1 - \alpha_{1}(x)t)(1 - \alpha_{2}(x)t)}$$

Lemma 2.3. Let $F_{p,q,n}(x)$ and $L_{p,q,n}(x)$ be the (p,q)-Fibonacci and Lucas polynomials respectively. We have 1.

 $F_{p,q,k+1}(x) - \alpha_2(x)F_{p,q,k}(x) = \alpha_1^k(x)$ $F_{p,q,k+1}(x) - \alpha_1(x)F_{p,q,k}(x) = \alpha_2^k(x)$

2.

$$\frac{L_{p,q,k+1}(x) - \alpha_2(x)L_{p,q,k}(x)}{\alpha_1(x) - \alpha_2(x)} = \alpha_1^k(x)$$
$$\frac{\alpha_1(x)L_{p,q,k}(x) - L_{p,q,k+1}(x)}{\alpha_1(x) - \alpha_2(x)} = \alpha_2^k(x).$$

Proof. 1. We prove it by induction. Let k = 1

$$F_{p,q,2}(x) - \alpha_2(x)F_{p,q,1}(x) = p(x) - \alpha_2(x) = \alpha_1(x).$$

So the hypothesis is right for k = 1. Let us assume that the equation is $F_{p,q,n}(x) - \alpha_2(x)F_{p,q,n-1}(x) = \alpha_1^{n-1}(x)$ for k = n - 1. For k = n it becomes

$$\begin{aligned} \alpha_1^n(x) &= \alpha_1^{n-1}(x)\alpha_1(x) \\ &= (F_{p,q,n}(x) - \alpha_2(x)F_{p,q,n-1}(x))\alpha_1(x) \\ &= \alpha_1(x)F_{p,q,n}(x) - \alpha_1(x)\alpha_2(x)F_{p,q,n-1}(x) \\ &= (p(x) - \alpha_2(x))F_{p,q,n}(x) - (-q(x))F_{p,q,n-1}(x) \\ &= p(x)F_{p,q,n}(x) + q(x)F_{p,q,n-1}(x) - \alpha_2(x)F_{p,q,n}(x) \\ &= F_{p,q,n+1}(x) - \alpha_2(x)F_{p,q,n}(x). \end{aligned}$$

So we get the desired result for the (p,q)-Fibonacci polynomials. 2. The (p,q)-Lucas polynomials can be proved similarly.

To derive the Binet Formulas for $OF_{p,q,n}(x)$ and $OL_{p,q,n}(x)$, we can give the following theorems.

Theorem 2.4. For $n \ge 0$, the Binet formula for the (p,q)-Fibonacci octonion polynomials $OF_{p,q,n}(x)$ and also $OL_{p,q,n}(x)$ is as follows

$$OF_{p,q,n}(x) = \frac{\alpha_1^*(x)\alpha_1^n(x) - \alpha_2^*(x)\alpha_2^n(x)}{\alpha_1(x) - \alpha_2(x)}$$
$$OL_{p,q,n}(x) = \alpha_1^*(x)\alpha_1^n(x) + \alpha_2^*(x)\alpha_2^n(x)$$
where $\alpha_1^*(x) = \sum_{k=0}^7 \alpha_1^k(x)e_k$ and $\alpha_2^*(x) = \sum_{k=0}^7 \alpha_2^k(x)e_k$.

1

Proof. From Lemma 2.1, we get

$$\begin{split} g_{OF}(t) &= \frac{1}{\alpha_1(x) - \alpha_2(x)} [(OF_{p,q,1}(x) - \alpha_2(x)OF_{p,q,0}(x)) \\ &\sum_{n=0}^{\infty} \alpha_1^n(x)t^n - (OF_{p,q,1}(x) - \alpha_1(x)OF_{p,q,0}(x)) \sum_{n=0}^{\infty} \alpha_2^n(x)t^n] \\ &= \frac{1}{\alpha_1(x) - \alpha_2(x)} \left\{ \begin{array}{c} \sum_{k=0}^7 (F_{p,q,1+k}(x) - \alpha_2(x)F_{p,q,k}(x))e_k \sum_{n=0}^{\infty} \alpha_1^n(x)t^n \\ -\sum_{k=0}^7 (F_{p,q,1+k}(x) - \alpha_1(x)F_{p,q,k}(x))e_k \sum_{n=0}^{\infty} \alpha_1^n(x)t^n \end{array} \right\} \\ &= \frac{1}{\alpha_1(x) - \alpha_2(x)} \left[\sum_{k=0}^7 \alpha_1^k(x)e_k \sum_{n=0}^{\infty} \alpha_1^n(x)t^n - \sum_{k=0}^7 \alpha_2^k(x)e^k \sum_{n=0}^{\infty} \alpha_2^n(x)t^n \right] \\ &= \sum_{n=0}^{\infty} \frac{\alpha_1^*(x)\alpha_1^n(x) - \alpha_2^*(x)\alpha_2^n(x)}{\alpha_1(x) - \alpha_2(x)} t^n. \end{split}$$

Similarly, it can be also proved that $OL_{p,q,n}(x) = \alpha_1^*(x)\alpha_1^n(x) + \alpha_2^*(x)\alpha_2^n(x)$.

Theorem 2.5. (*Catalan identity*) Let the (p,q)-Fibonacci and Lucas octonion polynomials $OF_{p,q,n}(x)$ and $OL_{p,q,n}(x)$. For n and α , nonnegative integer numbers, such that $\alpha \leq n$, we have

$$OF_{p,q,n+r}(x)OF_{p,q,n-r}(x) - OF_{p,q,n}^2(x) = \frac{(-1)^{r+n+1}\alpha_1^*(x)\alpha_2^*(x)q^{n-r}(x)(\alpha_1^r(x) - \alpha_2^r(x))^2}{(\alpha_1(x) - \alpha_2(x))^2}$$
$$OL_{p,q,n+r}(x)OL_{p,q,n-r}(x) - OL_{p,q,n}^2(x) = (-1)^{r+n}\alpha_1^*(x)\alpha_2^*(x)q^{n-r}(x)(\alpha_1^r(x) - \alpha_2^r(x))^2.$$

Proof. Using the identity (1.3), Lemma 2.2 and Theorem 2.2, we have

.

$$\begin{split} & OF_{p,q,n+r}(x) OF_{p,q,n-r}(x) - OF_{p,q,n}^2(x) \\ &= \left(\frac{\alpha_1^*(x)\alpha_1^{n+r}(x) - \alpha_2^*(x)\alpha_2^{n+r}(x)}{\alpha_1(x) - \alpha_2(x)}\right) \left(\frac{\alpha_1^*(x)\alpha_1^{n-r}(x) - \alpha_2^*(x)\alpha_2^{n-r}(x)}{\alpha_1(x) - \alpha_2(x)}\right) \\ &- \left(\frac{\alpha_1^*(x)\alpha_1^n(x) - \alpha_2^*(x)\alpha_2^n(x)}{\alpha_1(x) - \alpha_2(x)}\right)^2 \\ &= \frac{\left\{\begin{array}{c} -\alpha_1^*(x)\alpha_2^*(x)\alpha_1^{n-r}(x)\alpha_2^{n+r}(x) \\ -\alpha_1^*(x)\alpha_2^*(x)\alpha_1^{n+r}(x)\alpha_2^{n-r}(x) \\ +2\alpha_1^*(x)\alpha_2^*(x)\alpha_1^n(x)\alpha_2^n(x) \end{array}\right\} \\ &= \frac{\left(-\alpha_1^*(x)\alpha_2^*(x)\alpha_1^n(x)\alpha_2^n(x)\right)^r + \left(-\frac{\alpha_1^2(x)}{q(x)}\right)^r - 2\frac{(\alpha_1(x)\alpha_2(x))^r}{q^r(x)}\right]}{(\alpha_1(x) - \alpha_2(x))^2} \\ &= \frac{\left(-1\right)^{r+n+1}\alpha_1^*(x)\alpha_2^*(x)q^{n-r}(x)(\alpha_1^r(x) - \alpha_2^r(x))^2}{(\alpha_1(x) - \alpha_2(x))^2}. \end{split}$$

The other case can be proved similarly.

Theorem 2.6. (*Cassini identity*) For the (p,q)-Fibonacci octonion polynomials $OF_{p,q,n}(x)$ and (p,q)-Lucas octonion polynomials $OL_{p,q,n}(x)$, we have

$$OF_{p,q,n+1}(x)OF_{p,q,n-1}(x) - OF_{p,q,n}^2(x) = (-1)^n \alpha_1^*(x)\alpha_2^*(x)q^{n-1}(x)$$
$$OL_{p,q,n+1}(x)OL_{p,q,n-1}(x) - OL_{p,q,n}^2(x) = (-1)^{1+n}\alpha_1^*(x)\alpha_2^*(x)q^{n-1}(x)(\alpha_1(x) - \alpha_2(x))^2$$

for any natural number n.

Theorem 2.7. Let $OF_{p,q,n}(x)$ and $OL_{p,q,n}(x)$ be the (p,q)-Fibonacci and Lucas octonion polynomials respectively. Then for $n \ge 0$, we have

1.

$$q(x)(OF_{p,q,n}(x))^{2} + (OF_{p,q,n+1}(x))^{2} = \frac{(\alpha_{1}^{*})^{2}(x)\alpha_{1}^{2n+1}(x) - (\alpha_{2}^{*})^{2}(x)\alpha_{2}^{2n+1}(x)}{\alpha_{1}(x) - \alpha_{2}(x)}$$
$$q(x)(OL_{p,q,n}(x))^{2} + (OL_{p,q,n+1}(x))^{2} = (\alpha_{1}(x) - \alpha_{2}(x))(\alpha_{1}^{*})^{2}(x)\alpha_{1}^{2n+1}(x) - (\alpha_{2}^{*})^{2}(x)\alpha_{2}^{2n+1}(x)$$

2.

$$OF_{p,q,1}(x) - \alpha_1(x)QF_{p,q,0}(x) = \alpha_2^*(x)$$

 $OF_{p,q,1}(x) - \alpha_2(x)QF_{p,q,0}(x) = \alpha_1^*(x)$

and

$$OL_{p,q,1}(x) - \alpha_1(x)OL_{p,q,0}(x) = (\alpha_1(x) - \alpha_2(x))\alpha_2^*(x)$$
$$OL_{p,q,1}(x) - \alpha_2(x)OL_{p,q,0}(x) = (\alpha_1(x) - \alpha_2(x))\alpha_1^*(x).$$

Proof. Let us prove the identity 1.. From Theorem 2.2

$$\begin{split} q(x)(OF_{p,q,n}(x))^2 + (OF_{p,q,n+1}(x))^2 &= q(x) \left(\frac{\alpha_1^*(x)\alpha_1^n(x) - \alpha_2^*(x)\alpha_2^n(x)}{\alpha_1(x) - \alpha_2(x)}\right)^2 + \left(\frac{\alpha_1^*(x)\alpha_1^{n+1}(x) - \alpha_2^*(x)\alpha_2^{n+1}(x)}{\alpha_1(x) - \alpha_2(x)}\right)^2 \\ &= \frac{\left\{\begin{array}{c} q(x)(\alpha_1^*)^2(x)\alpha_1^{2n}(x) - 2q(x)\alpha_1^*(x)\alpha_1^n(x)\alpha_2^*(x)\alpha_2^n(x) \\ +q(x)(\alpha_2^*)^2(x)\alpha_2^{2n}(x) + (\alpha_1^*)^2(x)\alpha_1^{2n+2}(x) \\ -2\alpha_1^*(x)\alpha_1^{n+1}(x)\alpha_2^*(x)\alpha_2^{n+1}(x) + (\alpha_2^*)^2(x)\alpha_2^{2n+2}(x) \end{array}\right\} \\ &= \frac{(\alpha_1^*)^2(x)\alpha_1^{2n}(x)\left(q(x) - q(x)\frac{\alpha_1(x)}{\alpha_2(x)}\right) + (\alpha_2^*)^2(x)\alpha_2^{2n}(x)\left(q(x) - q(x)\frac{\alpha_2(x)}{\alpha_1(x) - \alpha_2(x)}\right)}{(\alpha_1(x) - \alpha_2(x))^2} \\ &= \frac{(\alpha_1^*)^2(x)\alpha_1^{2n+1}(x) - (\alpha_2^*)^2(x)\alpha_2^{2n+1}(x)}{\alpha_1(x) - \alpha_2(x)}. \end{split}$$

Also the proof of the identity 2. is similar to 1..

Theorem 2.8. For the (p,q)-Fibonacci and Lucas octonion polynomials $OF_{p,q,n}(x)$ and $OL_{p,q,n}(x)$, $n \ge 0$ we have following binomial sum formula for odd and even terms,

1.

$$OF_{p,q,2n}(x) = \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} p(x)^{m} OF_{p,q,m}(x)$$
$$OF_{p,q,2n+1}(x) = \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} p(x)^{m} OF_{p,q,m+1}(x)$$

2.

$$OL_{p,q,2n}(x) = \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} p(x)^{m} OL_{p,q,m}(x)$$
$$OL_{p,q,2n+1}(x) = \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} p(x)^{m} OL_{p,q,m+1}(x).$$

Proof. For 1. from (1.3) and Binet formulas, we get

$$\begin{split} &\sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} p(x)^{m} OF_{p,q,m}(x) \\ &= \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} p(x)^{m} \frac{\alpha_{1}^{*}(x) \alpha_{1}^{m}(x) - \alpha_{2}^{*}(x) \alpha_{2}^{m}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} \\ &= \frac{\alpha_{1}^{*}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} (p(x)\alpha_{1}(x))^{m} \\ &- \frac{\alpha_{2}^{*}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} \sum_{m=0}^{n} \binom{n}{m} q(x)^{n-m} (p(x)\alpha_{2}(x))^{m} \\ &= \frac{\alpha_{1}^{*}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} (q(x) + p(x)\alpha_{1}(x))^{n} - \frac{\alpha_{2}^{*}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} (q(x) + p(x)\alpha_{2}(x))^{n} \\ &= \frac{\alpha_{1}^{*}(x)\alpha_{1}^{2n}(x) - \alpha_{2}^{*}(x)\alpha_{2}^{2n}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} \\ &= OF_{p,q,2n}(x). \end{split}$$

Also the other cases for $OL_{p,q,n}(x)$ can be done similarly.

Theorem 2.9. The sums of the first *n*-terms of the sequences $OF_{p,q,n}(x)$ and $OL_{p,q,n}(x)$ are given by

$$\sum_{m=0}^{n} OF_{p,q,m}(x) = \frac{-q(x)OF_{p,q,n}(x) - OF_{p,q,n+1}(x) + OF_{p,q,0}(x) - \frac{\alpha_{1}^{*}(x)\alpha_{2}(x) - \alpha_{2}^{*}(x)\alpha_{1}(x)}{\alpha_{1}(x) - \alpha_{2}(x)}}{(\alpha_{1}(x) - 1)(\alpha_{2}(x) - 1)}$$

and

$$\sum_{m=0}^{n} OL_{p,q,m}(x) = \frac{-q(x)OL_{p,q,n}(x) - OL_{p,q,n+1}(x) + OL_{p,q,0}(x) - \left[\alpha_{1}^{*}(x)\alpha_{2}(x) + \alpha_{2}^{*}(x)\alpha_{1}(x)\right]}{(\alpha_{1}(x) - 1)(\alpha_{2}(x) - 1)}$$

respectively.

Proof. Using Binet formulas and the roots $\alpha_1(x)$, $\alpha_2(x)$, we get

$$\begin{split} \sum_{m=0}^{n} OF_{p,q,m}(x) &= \frac{\alpha_{1}^{*}(x)\alpha_{1}^{m}(x) - \alpha_{2}^{*}(x)\alpha_{2}^{m}(x)}{\alpha_{1}(x) - \alpha_{2}(x)} \\ &= \frac{1}{\alpha_{1}(x) - \alpha_{2}(x)} \sum_{m=0}^{n} (\alpha_{1}^{*}(x)\alpha_{1}^{m}(x) - \alpha_{2}^{*}(x)\alpha_{2}^{m}(x)) \\ &= \frac{1}{\alpha_{1}(x) - \alpha_{2}(x)} (\alpha_{1}^{*}(x) \sum_{m=0}^{n} \alpha_{1}^{m}(x) - \alpha_{2}^{*}(x) \sum_{m=0}^{n} \alpha_{2}^{m}(x)) \\ &= \frac{1}{\alpha_{1}(x) - \alpha_{2}(x)} (\alpha_{1}^{*}(x) \frac{\alpha_{1}^{n+1}(x) - 1}{\alpha_{1}(x) - 1} - \alpha_{2}^{*}(x) \frac{\alpha_{2}^{n+1}(x) - 1}{\alpha_{2}(x) - 1}) \\ &= \frac{\alpha_{1}^{*}(x)(\alpha_{1}^{n+1}(x) - 1)(\alpha_{2}(x) - 1) - \alpha_{2}^{*}(x)(\alpha_{2}^{n+1}(x) - 1)(\alpha_{1}(x) - 1)}{(\alpha_{1}(x) - \alpha_{2}(x))(\alpha_{1}(x) - 1)(\alpha_{2}(x) - 1)} \\ &= \frac{\left\{ \begin{array}{c} (\alpha_{1}^{*}(x)\alpha_{1}^{n+1}(x)\alpha_{2}(x)) - (\alpha_{1}^{*}(x)\alpha_{1}^{n+1}(x)) - (\alpha_{1}^{*}(x)\alpha_{2}(x)) + \alpha_{1}^{*}(x) \\ -\alpha_{2}^{*}(x) - \alpha_{2}^{*}(x)\alpha_{2}^{n+1}(x)\alpha_{1}(x) + \alpha_{2}^{*}(x)\alpha_{2}^{n+1}(x) + \alpha_{2}^{*}(x)\alpha_{2}(x) \right) \right\} \\ &= \frac{-q(x)OF_{p,q,n}(x) - OF_{p,q,n+1}(x) + OF_{p,q,0}(x) - \frac{\alpha_{1}^{*}(x)\alpha_{2}(x) - \alpha_{2}^{*}(x)\alpha_{1}(x)}{\alpha_{1}(x) - \alpha_{2}(x)})(\alpha_{1}(x) - 1)(\alpha_{2}(x) - 1)}{(\alpha_{1}(x) - 1)(\alpha_{2}(x) - 1)}. \end{split}$$

The other cases for $OL_{p,q,n}(x)$ can be done similarly.

3. Conclusion

Octonions have great importance as they are used in quantum physics, applied mathematics, graph theory. In this work, we introduce the (p,q)-Fibonacci and Lucas octonion polynomials and formulate the Binet-style formula, the generating function and some identities of the (p,q)-Fibonacci octonion and Lucas octonion polynomial sequence. Thus, in our future studies we plan to examine different quaternion and octonion polynomials and their key features.

References

- [1] M. Akyigit, H. Kösal, M Tosun, Fibonacci Generalized Quaternions. Adv. Appl. Clifford Algebr. 24(3)(2014), 631-641.
- [2] A. İpek, K Arı, On h(x)-Fibonacci Octonion Polynomials, Alabama Journal of Mathematics, 39, 2015.
- [3] A. İpek, C. Çimen, On (p, q) Fibonacci Octonions. Mathematica Æterna, 6(6)(2016), 923-932.
- [4] O. Keçilioğlu, İ. Akkuş, The Fibonacci Octonions, Adv. App Clifford Algebras 25(2015) 151-158. [5] G. Y. Lee and M. Asci, Some Properties of the (p,q)-Fibonacci and (p,q)-Lucas Polynomials, Journal of Applied Mathematics, Volume 2012,
- Article ID 264842, 18 pages doi:10.1155/2012/264842. [6] A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas Polynomials, Chaos Solitons and Fractals 42(2009) 3179-3186.
- [7] A.Özkoç, A. Porsuk, A Note for the (p,q)-Fibonacci and Lucas Quaternions Polynomials. Konuralp Journal of Mathematics. 5(2)(2017), 36-46. [8] P. Ribenboim, My Numbers, My Friends, Popular Lectures on Number Theory, Springer-Verlag, New York, Inc. 2000.
- [9] A Tekcan, A. Özkoç, M. Engür, M.E. Özbek, On Algebraic Identities on a New Integer Sequence with Four Parameters, Ars Combinatoria. 127(2016)
- -238. [10] J. Wang, Some New Results for the (p,q) – Fibonacci and Lucas Polynomials. Advances in Difference Equations 2014, 2014: 64.