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Abstract

We use two different techniques, one of them including fixed point tools, i.e., the Prešić type fixed point
theorem, in order to study the asymptotic stability of some k-order difference equations for k = 1 and
k = 2. In this way, we can study the global stability for more general initial value problems associated with
particular forms of difference equations.
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1. Introduction

In [12] the authors studied the dynamics and the global asymptotic stability of the second order difference
equation

yn+1 = A+
yn
yn−1

, n = 0, 1, . . . (1.1)

where y−1, y0, A ∈ (0,∞). They have shown that the unique positive equilibrium y = 1+A of equation (1.1)
is globally asymptotically stable. In [1], some partial answers to Conjecture 6.4.1 and Open Problem 6.4.1 in
[12] where given by obtaining a sufficient condition for the global asymptotic stability of the unique positive
equilibrium of the more general (k + 1)-order difference equation

yn+1 = A+
yn
yn−k

, n = 0, 1, . . . (1.2)
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where y−k, . . . , y0, A ∈ (0,∞) and k ∈ {2, 3, . . . }. More recently, El-Owaidy et al [15], [15], and Stević [28],
[29]-[31], and many other authors have studied the dynamics of the difference equations in the family

xn+1 = α+
xpn
xpn
, n = 0, 1, . . . (1.3)

where: α ∈ [0,∞) and p ∈ [1,∞) (in [15]), while, in [28], all parameters are nonnegative real numbers.
In continuation of this research work, Aloqeili [2] studied the asymptotic behaviour of the rational dif-

ference equation

xn+1 = α+
xpn
xpn−1

, n = 0, 1, . . . (1.4)

where: α ∈ [0,∞) and p ∈ (0, 1) and x−1, x0 ∈ (0,+∞).
Aloqeili [2] also studied a more general difference equation, i.e.,

xn+1 = α+
xpn
xpn−k

, n = 0, 1, . . . (1.5)

where: α ∈ [0,∞) and p ∈ (0, 1) and x−k, . . . , x0 ∈ (0,+∞) and k ∈ {1, 2, . . . }.
The technique of proof in the papers [1]-[3], [9]-[31] and in many others is essentially based on the linearized

stability theorem, on the one hand. On the other hand, the initial conditions are in almost all cases restricted
to positive values. Starting from these facts, our aim in this paper is to establish some asymptotic stability
results for similar difference equations but different from those in the family of equations (1.1)-(1.5), by using
an alternate technique and under more general initial conditions.

2. Basics of global asymptotic stability

In connection with the study of difference equations we shall be concerned with the particular case
X := I, where I ⊂ R. In this context, a fixed point x∗ of f is also called an equilibrium point of the difference
equation.

Remind, see for example [16], that the equilibrium point x∗ of the difference equation

xn+1 = T (xn, . . . , xn−k+1) , n = k − 1, k, k + 1, . . . (2.1)

is said to be locally stable if, for every ε > 0, there exists δ > 0 such that, for all x0, x1, . . . , xk−1 ∈ I satisfying

|x0 − x∗|+ |x1 − x∗|+ · · ·+ |xk−1 − x∗| < δ, (2.2)

one has
|xn − x∗| < ε,∀n ≥ 0.

The equilibrium point x∗ of (2.1) is said to be stable if x∗ is a locally stable solution and there exists δ > 0
such that for all x0, x1, . . . , xk−1 ∈ I satisfying (2.2) one has

lim
n→∞

xn = x∗.

The equilibrium point x∗ of (2.1) is a global attractor if, for all x0, x1, . . . , xk−1 ∈ I, one has

lim
n→∞

xn = x∗.

The equilibrium point x∗ of (2.1) is globally asymptotically stable if x∗ is simultaneously locally stable and a
global attractor of (2.1).

The equilibrium point x∗ of (2.1) is unstable if it is not locally stable.
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One of the most popular method used to study the stability of equilibrium points of difference equations
is based on the linearization technique, which consists in considering the linearized equation of (2.1) about
the equilibrium point x∗, defined as

yn+1 =
k−1∑
i=0

∂f(x∗, x∗, . . . , x∗)

∂xn−i
yn−i, (2.3)

whose characteristic equation is

p(λ) := p1λ
k−1 + p2λ

k−2 + · · ·+ pk−1λ+ pk = 0 (2.4)

where
pi+1 =

∂f(x∗, x∗, . . . , x∗)

∂xn−i
, i = 0, 1, . . . , k − 1.

A generic result concerning the stability of equilibrium points of a difference equation is given by the next
theorem, see [16].

Theorem 2.1. Assume that f is a C1 function and let x∗ be an equilibrium point x∗ of (2.1).
(a) If all roots of the equation (2.4) lie in the open unit disk |λ| < 1, then the equilibrium point x∗ of

(2.1) is asymptotically stable;
(b) If at least one root of the equation (2.4) has absolute value greater than one, then the equilibrium

point x∗ of (2.1) is unstable;

Remark 2.2. It is easily seen from the way the linearized equation attached to a difference equation is
constructed that the technique of linearization can be applied only to those difference equations for which f
is a C1 function. For other approaches, based on elementary arguments or on the concepts of negative and
positive semicycle, see for example [1] and papers cited there.

The main aim of the next section is to illustrate how we can establish stability results for difference
equations with f not necessarily a C1 function. Most of the stability results obtained in this way are the
same or at least similar to those obtained by other means in the extremely rich literature devoted to the
behaviour of difference equations.

3. Results on global asymptotic stability of first order difference equations

First we study the stability of a first order difference equation similar in some sense but essentially
different of (1.1).

Theorem 3.1. Let x0 ∈ (0,∞). Then the equilibrium point x∗ of the difference equation

xn+1 = 1 +
2

xn
, n = 0, 1, . . . , (3.1)

is globally asymptotically stable.

Proof. It is easy to see that the unique equilibrium of equation (3.1) is the positive root of the quadratic

equation x = 1 +
2

x
⇔ x2 − x− 2 = 0, that is x∗ = 2.

We present three different proofs.

Proof 1. First, since x0 > 0 implies xn > 0 for all n ∈ N, in view of xn+1xn = xn + 2, we have that
xn+1xn > 2, for all n ∈ N. On the other hand, by (3.1) we get

|xn+1 − 2| ≤
∣∣∣∣ 2xn − 1

∣∣∣∣ = ∣∣∣∣2− xnxn

∣∣∣∣ = |2− xn|xn
=
|xn − 2|
xn
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By induction one obtains

|xn+1 − 2| ≤ |x1 − 2|
xnxn−1 . . . x1

<
|x1 − 2|
2[

n
2
]
, n ≥ 2,

which shows that, indeed, the unique equilibrium x∗ = 2 is globally asymptotically stable.

Proof 2. If x0 < 2, then x1 = 1 +
2

x0
> 1 + 1 = 2. Then x2 < 2, x3 > 2,. . . x2n < 2, x2n+1 > 2, . . . .

Similarly, if x0 > 2, then x1 = 1 +
2

x0
< 2, x2 > 2, x3 < 2,. . . x2n > 2, x2n+1 < 2, . . . . Consider

in the following the first case (the second case is similar). Then the subsequence {x2n} is increasing, the
subsequence {x2n+1} is decreasing. Indeed, since

x2n+1 = 1 +
2

x2n
= 1 +

2

1 + 2
x2n−1

= 1 +
2x2n−1
x2n−1 + 2

=
3x2n−1 + 2

x2n−1 + 2
, n ≥ 1,

x2n+1 < x2n−1 ⇔ x22n−1 − x2n−1 − 2 > 0,

which is true, since x2n−1 > 2. Similarly, one proves that {x2n} is increasing. Therefore

x2 ≤ xn ≤ x1, ∀n ≥ 1,

which shows that the subsequences {x2n} and {x2n+1} are both monotone and bounded, hence convergent.
Denote

u = lim
n→∞

x2n+1; v = lim
n→∞

x2n.

By letting n→∞ in the recurrence

x2n+1 = 1 +
2

x2n
,

we get u = 1 +
2

v
⇔ uv = v + 2, while by letting n→∞ in the recurrence

x2n = 1 +
2

x2n−1
,

we get v = 1 +
2

u
⇔ uv = u+ 2. This yields u = v = 2 and hence the unique equilibrium x∗ = 2 of (3.1) is

globally asymptotically stable.

Proof 3. We denote
yn =

1

xn + 1
,

and by some calculations one obtains that the sequence {yn} satisfies the linear recurrence relation

2yn+1 = −yn + 1, n ≥ 1.

Now, one finds {yn} and then {xn} in closed form (we omit the details) and then we show directly that the
unique equilibrium x∗ = 2 of (3.1) is globally asymptotically stable.

Remark 3.2. Note that in Theorem 3.1 above we assumed only positive values for the initial point x0, like
in the case of the difference equations (1.1), (1.3), (1.4) and (1.5). It is still possible to allow initial value
problems with negative values for difference equations of the form (2.1), but only with an appropriate change
in the difference equation itself, as shown by the next result.

Theorem 3.3. Let x0 ∈ (−∞,−3
2) ∪ (−6

7 , 0) ∪ (0,∞). Then the equilibrium point x∗ = 3 of the difference
equation

xn+1 = 2 +
3

xn
, n = 0, 1, . . . , (3.2)

is globally asymptotically stable.
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Proof. We can use any of the three variants of proof presented to Theorem 3.1 by noting that, if x0 ∈ (−6
7 , 0),

then x1 ∈ (−∞,−3
2) and therefore x2 ∈ (0,+∞) and so all inequalities similar to those in the proofs of

Theorem 3.1 hold for n ≥ 2.

Remark 3.4. It is interesting to note that, despite the fact that the difference equation (3.2) has two
equilibrium points, −1 and 3, only x∗ = 3 is stable, while x∗ = −1 is unstable (being a repelling fixed point
of the dynamical system {xn}).

The best result we can prove for the difference equation (3.2) is the following one (for a complete proof,
see Chapter 13 in [4]).

Theorem 3.5. Let x0 ∈ R. Then the equilibrium point x∗ = 3 of the difference equation

xn+1 = 2 +
3

xn
, n = 0, 1, . . . , (3.3)

is globally asymptotically stable.

Proof. We first use Problem 13f in [4], which shows that none of the terms of {xn} satisfying (3.3) can belong
to the set

E =

{
en : en =

3(−1)n+1 + 3n+1

(−1)n+1 − 3n+1
, n = 0, 1, 2, . . .

}
and then prove that for any x0 /∈ E, the equilibrium point x∗ of the difference equation is globally asymp-
totically stable.

Remark 3.6. Note that e0 = 0, e1 = −3
2 , e2 = −6

7 , . . . , which motivates the choice of the values of x0 in
Theorem 3.3.

4. Results on global asymptotic stability of second order difference equations

In this section we illustrate a technique based on Prešić fixed point theorem for the study of stability of
a second order difference equation. The same technique works in the case of a k-order difference equation.

Theorem 4.1. Let x0, x1 ∈ [0,+∞), x0 − x1 ≤ 40. Prove that the unique equilibrium of the difference
equation

xn+1 =
√
xn + 45−

√
xn−1 + 5, n ≥ 1. (4.1)

is globally asymptotically stable.

Proof. Observe that the sequence {xn}n≥0 defined by (4.1) is actually of the form

xn+1 = f(xn, xn−1)

where f : I2 → I, with I = [0,+∞), is given by

f(x1, x2) =
√
x1 + 45−

√
x2 + 5, x1, x2 ∈ [0,+∞).

It is easy to prove that for all x0, x1, x2 ∈ [0,+∞) f satisfies the inequality

|f(x0, x1)− f(x1, x2)| ≤ α1 |x0 − x1|+ α2 |x1 − x2| , (4.2)

where α1 =
1

6
√
5
, α2 =

1

2
√
5
and α1 + α2 =

2

3
√
5
< 1.

By applying Prešić fixed point theorem, see for example [18], we obtain that {xn}n≥0 converges to 4, the
unique fixed point of f , for all x0, x1, x2 ∈ [0,+∞), which proves the theorem.
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