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ENTROPY EXCHANGE AND ENTANGLEMENT IN THE
JAYNES-CUMMINGS MODEL WITH TRANSIENT EFFECTS

HÜNKAR KAYHAN

Abstract. In this paper, we investigate the dynamics of entropy exchange and
entanglement in the atom-field interaction by the Jaynes-Cummings model in
the presence of the transient effects considered for the case of linear sweep. We
find that the transient effects do not influence the entropy exchange between
the atom and the field. As the strength of these effects increases, the oscil-
lations of the entropy change and entanglement speed up. The entanglement
behaves chaotically as the transient effects become stronger

Introduction

Cavity Quantum Electrodynamics (CQE) keeps an important place in quantum
optics and attracts much attention [1, 2, 3]. Perhaps, the simplest model of CQE
is the Jaynes-Cummings Model (JCM) [4]. The model describes the system of
a two-level atom interacting with a quantized mode of an optical cavity, with or
without the presence of light. In spite of its simplicity, the JCM reveals important
properties of light such as the discreteness of field states [1, 5]. The model is open
to some extensions to consider additional effects. Some of the extensions are initial
conditions [6], dissipation and damping [7, 8, 9], multilevel atoms and multiple
atoms [10] and multi-mode description of the field [11]. Another extension of the
JCM is incorporation of the transient effects considered for the linear sweep as
studied by Joshi and Lawande [12]. Experimentally, this extension can describe an
atom entering a cavity subjecting to a very slow shift or a sudden jump of the electric
field. Linear sweep model was considered elsewhere [13, 14]. We previously studied
the influence of the transient effects on the dynamics of entanglement between a
JCM atom and an isolated atom [15]. We showed that the entanglement sudden
death can be controlled by these transient effects. Transient effects has also been
studied elsewhere [16, 17].
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Boukobza and Tannor [18] studied the JCM for the mixed states of field and atom
and showed that there is an entropy exchange between the field and the atom. The
entropy exchange dynamics in the atom-field interactions was studied extensively
elsewhere [19, 20, 21, 22, 23, 24].
In this paper, we use the model in Ref. [12] to study the dynamical properties of

entropy correlations and entanglement in the atom-field interaction in the presence
of the transient effects. We show that the transient effects do not influence the
dynamical behavior of entropy exchange between the atom and the field. As the
strength of these effects increases, the oscillations of the entropy change and entan-
glement speed up. The entanglement behaves chaotically as the transient effects
become stronger.

System and Solution

The Hamiltonian of the system with the resonance between the atomic transition
and the field frequencies is (~ = 1) [4]

H = ωSz + ωa†a+ g(S+a+ S−a
†) (1)

where S± and Sz are spin-1/2 atomic operators, a and a† are the field annihilation
and creation operators and also g is the coupling coeffi cient between the atom and
the field. In order to incorporate the transient effects, the coupling coeffi cient g is
modified as [12]

g(t) = gf(t) (2)

where the function f(t) describes the linear sweep. f(t) contains the two limiting
cases which correspond to sudden jump and adiabatic variation. The cavity-mode
quantized field is switched on by a linear ramp described by this function. It is
defined as

f(t) = kt/T for 0 ≤ t ≤ T
0 otherwise

As the value of k increases over a fixed time interval T from small values to large
values, the strength of the interaction changes from adiabatic variation to sudden
jump.
The atom is initially taken in a mixed state

ρa(0) = Pe|e〉〈e|+ Pg|g〉〈g| (3)

with Pe + Pg = 1 and 0 ≤ Pe, Pg ≤ 1 and the field is initially taken in a thermal
state

ρf (0) =
∑
n=0

Pn|n〉〈n| (4)

whose probability distribution Pn is given by

Pn =
1

(1 + 〈n〉) (
〈n〉

1 + 〈n〉 )
n (5)
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where 〈n〉 is the initial mean photon number in the cavity. So, the initial state of
the total system which is a product state, becomes

ρfa(0) = ρf (0)⊗ ρa(0) = Pe
∑
n=0

Pn|ne〉〈ne|+ Pg
∑
n=0

Pn|ng〉〈ng| (6)

where |ne〉 = |n〉⊗|e〉 and |ng〉 = |n〉⊗|g〉. The Hamiltonian operator of our system
is time-dependent due to the coupling g(t), but the Hamiltonians at different times
commute. Then, time-evolution of the total system is obtained by

ρfa(t) = exp[−i
∫ t

0

H(t́)dt́)]ρfa(0) exp[i

∫ t

0

H(t́)dt́] (7)

Then, we obtain

ρfa(t) = Pe
∑
n

Pn[cos2(cn+1(t))|ne〉〈ne|+ i sin(cn+1(t)) cos(cn+1(t))|ne〉〈n+ 1g|

−i sin(cn+1(t)) cos(cn+1(t))|n+ 1g〉〈ne|+ sin2(cn+1(t))|n+ 1g〉〈n+ 1g|]
+Pg

∑
n

Pn[cos2(cn(t))|ng〉〈ng|+ i sin(cn(t)) cos(cn(t))|ng〉〈n− 1e|

−i sin(cn(t)) cos(cn(t))|n− 1e〉〈ng|+ sin2(cn(t))|n− 1e〉〈n− 1e|] (8)

where cn(t) = g
√
nkt

2

2T . The density matrix of the atom (and the field) can be found
by tracing out ρfa(t) over the degree of freedom of the field (and the atom). The
atomic density matrix becomes

ρa(t) = {Pe
∑
n

Pn cos2(cn+1(t)) + Pg
∑
n

Pn+1 sin2(cn+1(t))}|e〉〈e|

+{Pg
∑
n

Pn cos2(cn(t)) + Pe
∑
n

Pn−1 sin2(cn(t))}|g〉〈g| (9)

The elements of the density matrix of the field becomes

ρfnn(t) = Pe{Pn cos2(cn+1(t)) + Pn−1 sin2(cn(t))}+

Pg{Pn cos2(cn(t)) + Pn+1 sin2(cn+1(t))} (10)

Results

We now numerically investigate the entropy correlations and the entanglement
between the atom and the field by the figures. (In these, we assume that g = 1.)
For our computations, we truncate the series when

∑
n=0 Pn ≈ 1 [18]. For the

entropy correlations, we compute the von-Neumann entropy of the atom and the
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field subsystems. The entropy of a system is defined as

S = −
∑
i

λi log λi (11)

where λis are the non-zero eigenvalues of the relevant density matrix. The entropy
change (∆S = S(t)−S(0)) for the atom and for the field can be computed by using
their density matrices described in Eqs. (9) and (10).

Figs. (1)-(5) show the time-evolution of entropy changes of the atom and the
field and their entanglement in the presence of the transient effects. Numerically,
k = 0.5 may describe an adiabatic variation and k = 8.0 may describe a sudden
jump in the interaction. As we move from the adiabatic variation case to the sudden
jump case (the value of k increases), the periodic evolution of entropy changes and
entanglement speeds up. In Fig. (1), the atom is in the excited state and the field
is in a weakly excited thermal state with the average photon number 〈n〉 = 0.1.
The entropy changes of the atom and the field fluctuate together and so they are
correlated. When the atom is taken to be in the ground state as shown in Fig. (2),
the sum of the atom and field entropy changes is quasi-conserved. Their entropy
relations are anti-correlated. There is an entropy exchange between the atom and
the field, although the exchange is not complete. When the atomic state is close to
ground state (Pg = 0.9), there is an almost complete entropy exchange, as shown
in Fig. (3). The sum of the atom and field entropy changes is almost completely
conserved. The transient effects do not have any influence on the behavior of the
entropy exchange between the atomic and the field states. The sum of the entropy
changes of the atom and the field is approximately zero in the presence of the
transient effects.
For the entanglement properties of the system, we calculate a lower bound on

concurrence (LBC) such that the joint state of the atom-field system 2 ⊗ ∞ is
projected onto 2⊗ 2 systems by means of the projection operator

Πn = (|g〉〈g|+ |e〉〈e|)⊗ (|n〉〈n|+ |n+ 1〉〈n+ 1|) (12)

The resulting density operator is

ρn(t) =
1

Tn(t)
Πnρ

fa(t)Πn (13)

where Tn(t) = Tr(Πnρ
fa(t)Πn) denotes the probability of obtaining ρn(t) which is a

sub-state with the dimension 2⊗2. For the 2⊗2 systems, the degree of entanglement
can be quantified by the Wootters’concurrence [25]. Concurrence varies from 0 for
the separable states to 1 for the maximally entangled states. Entanglement of
the total system can be quantified by averaging over the entanglement of all the
sub-states of the system [26]

C(t) =

∑
n Tn(t)Cn(t)∑

n Tn(t)
(14)
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Figure 1. Entropy change ∆S for the atom (solid line) and for
the field (dot line) as a function of time t. Pe = 1, 〈n〉 = 0.1 and
T = 30. (a) k = 0.5 (b) k = 2.0 (c) k = 8.0.
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Figure 2. Entropy change ∆S for the atom (solid line), for the
field (dot line) and for their sum (dash-dot line) as a function of
time t. Pg = 1, 〈n〉 = 0.1 and T = 30. (a) k = 0.5 (b) k = 2.0
(c) k = 8.0.
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Figure 3. Entropy change ∆S for the atom (solid line), for the
field (dot line) and for their sum (dash-dot line) as a function of
time t. Pg = 0.9, 〈n〉 = 0.1, T = 30 and k = 1.0.

where Cn(t) is the concurrence of sub-state ρn(t).
Fig. (4) shows the time-evolution of the entanglement of the system for Pe = 1. It

is obvious that the time-elapsed for the collapse and recovery of the entanglement is
long around the beginning of the interaction and then shortens, as time passes. Also,
there is a time interval (around t ≈ 15) at which the amplitude of the oscillations
are relatively suppressed. So, there is some chaos at these instants of time in the
interaction. We now calculate the time-average of the concurrence to see more
clearly this chaotic influence of the transient effects on the entanglement. We
compute it as

Cav =

∫ T
0
C(t)dt

T
(15)

where we take T = 30 and take the integral numerically.
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Figure 4. Concurrence C as a function of time t. Pe = 1, 〈n〉 =
0.1 and T = 30. (a) k = 0.5 (b) k = 2.0 (c) k = 8.0.
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Figure 5. Average Concurrence Cav as a function of the parame-
ter of the transient effects k. Pe = 1, 〈n〉 = 0.1 and T = 30.

Fig. (5) shows the evolution of the time-averaged entanglement as a function
the parameter of the transient effects. It is clear that the average entanglement
fluctuates chaotically with the parameter k. There are unexpectedly considerable
sharp rises and falls at some values of k. What we normally expect is the certain
monotonic increase of the average entanglement with the parameter k. Apart from
these random fluctuations, the higher values of k, the higher magnitude of the
entanglement, as expected.

Conclusion

In summary, we have examined the dynamics of the entropy changes and the
entanglement in the atom-field interaction by the Jaynes-Cummings model in the
presence of the transient effects. We have showed that the transient effects do
not influence the dynamical behavior of entropy exchange between the atom and
the field. As the strength of these effects increases, the oscillations of the entropy
change and entanglement speed up. The entanglement behaves chaotically as the
transient effects become stronger.
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