Impact of contact lens wear on ocular surface and Meibomian glands

Kontakt lens kullanımının oküler yüzey ve Meibomian bezleri üzerine etkileri

Özlem Barut Selver, Melis Palamar, Jale Menteş, Ayşe Yağcı
Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey

Abstract

Aim: To determine the impact of contact lens (CL) wear on the ocular surface and Meibomian glands (MG).

Materials and Methods: 24 silicone hydrogel CL wearers for a minimum of 5 years (Group 1) and 26 healthy volunteers (Group 2) were included in this retrospective study. Best corrected visual acuity, Oxford scoring, tear film break-up time (T-BUT), Schirmer 1 test, Ocular Surface Disease Index (OSDI) scoring and MG evaluation by infrared captures of optic coherence tomography (OCT) were performed. Loss of the MG was scored blindly by a single researcher.

Results: The mean age was 30.00±6.22 in Group 1 and 28.70±4.95 in Group 2 (p=0.300). Male/female ratio was 4/20 in Group 1 and 9/17 in Group 2. The average duration of CL wear was 10.70±2.70 years. The mean T-BUT in Group 1 and 2 were 17.70±76.74 and 24.76±8.06 sec, respectively (p=0.002). The mean Schirmer 1 test in Group 1 and 2 were 29.04±19.25 and 23.63±21.99, respectively (p=0.334). The average upper, lower eyelid, and total meiboscores in Group 1 and 2 were 0.58±0.94 and 0.15±0.41, respectively. Oxford scale puanı Grup 1'de 0.95±0.87, 0.66±0.73, 1.60±1.40 and 0.67±0.59, 0.67±0.70 and 1.34±1.17, respectively. No statistical significance was detected in any of these scores.

Conclusion: CL wear has a variety of effects on ocular surface. MG has a significant influence on ocular surface. Meiboscoring is an effective and practical way for evaluation of the MG.

Keywords: Contact lens wear, infrared imaging, Meibomian gland, meibography, optic coherence tomography

Öz

Amaç: Yumuşak kontakt lens (KL) kullanımının oküler yüzey ve Meibomian bezleri üzerine etkisini araştırmak

Gereç ve Yöntem: Beş yılı aşkın süredir silikon hidrojel KL kullanlan 24 olgu (Grup 1) ve 26 sağlıklı gönüllünün (Grup 2) en iyi düzelttilmiş görme keskinlikleri, Schirmer 1 testi, gözyaş kırılma zamanı, oküler yüzey boyanması (Oxford skalası), OSDI skoru ve Meibomian bez özelliklerini içeren kayıtları retrospektif olarak değerlendirildi. Üst ve alt kapakları OCT meibografileri (Spectralis HRA+OCT, Heidelberg Engineering, Heidelberg, Germany) çekilerek bez kaybı açısından tek bir araştırmacı tarafından kör olarak değerlendirildi.

Bulgular: Ortalama yaş Grup 1'de 30.00±6.22, Grup 2'de ise 28.70±4.95 idi (p=0.300). Erkek/kadın oranı Grup 1'de 4/20, Grup 2'de ise 9/17 idi. KL kullanım süresi Grup 1'de 10.70±2.70 yıldır. Ortalama gözyaş kırılma zamanı Grup 1'sinde 17.70±76.74, Grup 2'de ise 24.76±8.06 saniyedir (p=0.002). Ortalama Schirmer 1 testi Grup 1'de 29.04±19.25, Grup 2'de ise 23.63±21.99 mm idi (p=0.002). Schirmer 1 testi Grup 1'de 0.58±0.94, Grup 2'de ise 0.15±0.41 olup fark istatistiksel olarak anlamlı fark bulunmamaktaydı (Grup 1: 0.36±19.25, Grup 2: 23.63±21.99, p=0.334). Üst, alt kapak ve toplam Meibomian bez skoru ortalaması Grup 1'de sırasıyla 0.95±0.87, 0.66±0.73 ve 1.60±1.40, Grup 2'de sırasıyla 0.67±0.59, 0.67±0.70 ve 1.34±1.17 idi ve aralarındaki fark istatistiksel olarak anlamlı degildi.

Sonuç: Uzun süreli KL kullanımının, oküler yüzeye birçok farklı etkisi mevcuttur. Meibomian bezler, oküler yüzey önemi etkileri bulunan yapıdadır. Meibobian bez skorlaması, Meibomian bez değerlendirilmesi için etkili ve pratik bir yöntemdir.

Anahtar Sözcükler: Kontakt lens kullanımı, infrared görüntüleme, Meibomian bez, meibografi, optik koherens tomografi

Corresponding Author: Melis Palamar
Ege University Faculty of Medicine, Department of Ophthalmology, İzmir, Turkey
Received: 05.07.2017 Accepted: 12.09.2017
Introduction
Meibomian glands (MG) are specialized sebaceous glands, which are localized at the tarsal plates of the eyelids. These glands are responsible for lipid secretion, which plays a significant role to build the surface tension and stability of the tear film and prevents evaporation (1-3). Meibomian gland dysfunction (MGD) is a chronic disease, which results with ocular irritation and ocular surface disorders (4). Meibography is a relatively new technique for evaluating MGD. Infrared imaging of MG and scoring systems for MG loss are the leading research subjects on MGD issue recently (5-7).

Contact lens wearing has various undesired effects on the ocular surface, such as allergic conjunctivitis, infections and dry eye. Dry eye – one of the most common of these complications – is mainly suggested being related to abnormally functioning MG (8-10,13). Herein, it is aimed to determine the effects of contact lens wear on the ocular surface and MG.

Materials and Methods
In this cross-sectional observational study 24 contact lens wearers (Group 1) and 26 healthy volunteers (Group 2) were evaluated. Inclusion criteria for contact lens wearers were minimum 5 years history of silicone-hydrogel type contact lens wearing. Exclusion criteria for both groups were ocular or systemic chronic disease history, any intra- or extra-ocular surgery history, smoking, and pregnancy or lactation period for female cases. Both eyes of each subject were evaluated for the study, and the mean values of both eyes were assessed for data analysis. All cases underwent a detailed opthalmological examination and the following tests were performed: corneal and conjunctival fluorescein staining and Oxford scoring, tear film break-up time (T-BUT), Schirmer 1, Ocular Surface Disease Index (OSDI) score assessment, and evaluation of the MG after everting both upper and lower eyelids to reveal infrared captures using the Optic Coherence Tomography (OCT) device (Spectralis HRA+OCT; Heidelberg Engineering, Heidelberg, Germany). All patients were questioned for daily eyelid hygiene. Partial or complete loss of the MG was scored for each eyelid as grade 0 (no loss of MG), grade 1 (the area characterized by gland dropout was <1/3 of the total MG), grade 2 (the area characterized by gland dropout was 1/3-2/3 of the total MG) and grade 3 (the area characterized by gland dropout was >2/3 of the total MG) (Figure 1). Meiboscore assessment was performed blinded by the same researcher (AY). The meiboscores for the upper and lower eyelids were summed for each eye. This study was adhered to the tenets of the Declaration of Helsinki. The Statistical Package for the Social Sciences version 11.5.0 was used for statistical analysis. The Mann-Whitney U test is used to compare differences between two groups.

Results
The mean age was 30.0±6.2 (range, 22-42) in Group 1 and 28.7±4.9 (range, 22-38) in Group 2 (p=0.334). Male to female ratio was 4/20 in Group 1 and 9/17 in Group 2 (p=0.080). The average duration of contact lens wear was 10.7±2.7 years (range, 5-16 years). Two cases (8.33%) in Group 1 and one case (3.84%) in Group 2 were performing daily eyelid hygiene. The mean T-BUT in Group 1 and 2 were 17.70±76.74 (range, 8-30) and 24.76±8.06 (range, 8-30) seconds, respectively (p=0.002) (Table 1). The mean Schirmer 1 test results in Group 1 and 2 were 29.04±7.67 (range, 1-35) and 25.50±8.48 (range, 11-35) mm, respectively (p=0.129).

The mean superficial punctate staining according to Oxford scale in Group 1 and 2 were 0.58±0.94 (range, 0-4) and 0.15±0.41 (range, 0-1.5), respectively (p=0.040). The mean OSDI scores in Group 1 and 2 were 29.36±19.25 (range, 0-70.83) and 23.63±21.99 (range, 0-70.45), respectively (p=0.334). The average upper eyelid, lower eyelid, and total (upper eyelid plus lower eyelid) meiboscores in Group 1 were 0.95±0.87 (range, 0-3), 0.66±0.73 (range, 0-3) and 1.60±1.40 (range, 0-6), respectively. The average upper eyelid, lower eyelid, and total (upper eyelid plus lower eyelid) meiboscores in Group 2 were 0.67±0.59 (range, 0-2), 0.67±0.70 (range, 0-3.5) and (1.34±1.17) (range, 0-4), respectively. Although a noteworthy increase in upper eyelid meiboscore compared to the lower eyelid was noted in contact lens wearer group, the statistical difference could not reach the significance point (p=0.068). No other significant differences were found in the remaining meiboscores of the groups (Table 1).

Discussion
Contact lens use induces a variety of ocular complications, such as allergic conjunctivitis, infections and dry eye. One of the most important complications of prolonged contact lens wear is dry eye (11-12). The prevalence of dry eye and related findings were reported up to 50% in the literature (4).
MG plays an important role in structuring the lipid layer of the tear film (13). MGD consequently causes dry eye, mainly of evaporative type. There are several ways to evaluate MG function; slit lamp biomicroscopy for MG appearance, T-BUT measurement, analyzing meibum expressed from the glands (4).

Meibography is a relatively objective and new technique for evaluating the MG, which images the MG and also advances with the developments in medical imaging. It can be performed in various ways by using contact or noncontact infrared cameras, confocal microscopy, ultrasound and OCT devices (14).

Currently, it is not clear which device is the most suitable for this purpose. Besides, grading MGS is still a controversial issue. Most of the researchers defined their own grading systems and scoring the drop out of the gland percentage is the most common system (5,6,15–20). However, some of the researchers also evaluate the morphology of the glands (6,21-26).

There are only a few studies that investigate the relation of these two parameters, contact lens wear and MG. In most of the published literature, MG evaluation with conventional methods in gas permeable or hydrogel contact lens users was performed (13,25-26). In 2009, Arita et al (13), reported a significant MG loss in rigid gas permeable and hydrogel contact lens wearers with one-year history of lens use. They also reported that meiboscore difference that is demonstrated with their own developed infrared Meibography camera was prominent between upper and lower eyelids of contact lens wearer group. Herein, silicone hydrogel contact lens wearers – at least for 5 years - were included and MG imaging was performed with the infrared acquisition feature of the OCT device, which is widely present in most of the ophthalmology clinics. Contact lens wear is a probable reason of alterations in MG, which may result with MGD (13,27). We found a slight meiboscore difference between upper and lower eyelids in silicone hydrogel contact lens wearer group was detected, however the statistical difference did not reach the significance point.

In the present study, an increased Oxford scoring and decreased T-BUT in contact lens wearer group compared to the control group were found. The differences were statistically significant which is consistent with the literature – confirming the negative effects of contact lens wear on the ocular surface (8,13).

Conclusion

In conclusion, contact lens wear has a variety of effects on ocular surface. Meiboscopy of MG is an effective and practical way for the evaluation. There still is need for more detailed and associated randomized controlled prospective studies with larger populations to understand the issue in a better way.

Table-1. The results of the Corneal And Conjunctival Fluorescein Staining And Oxford Scoring, Tear Film Break-Up Time (T-BUT), Schirmer 1, Ocular Surface Disease Index (OSDI) Score Assessment, and Evaluation of the Meibomian Glands in Group 1 and 2.

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BUT (sec)</td>
<td>17.70 ± 6.74</td>
<td>24.76 ± 8.06</td>
<td>0.002</td>
</tr>
<tr>
<td>Schirmer test (mm)</td>
<td>29.04 ± 7.67</td>
<td>25.50 ± 8.48</td>
<td>0.129</td>
</tr>
<tr>
<td>Oxford scale score</td>
<td>0.58 ± 0.94</td>
<td>0.15 ± 0.41</td>
<td>0.040</td>
</tr>
<tr>
<td>OSDI score</td>
<td>29.36 ± 19.25</td>
<td>23.63 ± 21.99</td>
<td>0.334</td>
</tr>
<tr>
<td>Total eyelid meiboscore</td>
<td>1.60 ± 1.40</td>
<td>1.34 ± 1.17</td>
<td>0.483</td>
</tr>
<tr>
<td>Upper eyelid meiboscore</td>
<td>0.95 ± 0.87</td>
<td>0.67 ± 0.59</td>
<td>0.218</td>
</tr>
<tr>
<td>Lower eyelid meiboscore</td>
<td>0.66 ± 0.73</td>
<td>0.67 ± 0.70</td>
<td>0.843</td>
</tr>
</tbody>
</table>

References