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Abstract

In this paper, we study the logic of language of L(More, IA). The logic contains the quantifier called ‘’ more ‘’ which makes cardinality
comparisons can not be expressed in the language of the first order logic. The sentence forms are basically the form of ‘’There are more y
than x .‘’ with x and y being common plural nouns. The sentence forms of common plural nouns combined with intersecting adjectives are
‘’There are more b y than a x.” with the intersecting adjectives a and b. We focus on derivation algorithms of the sentences having this type
of quantifier and algorithms of construction of counter-models when the derivations are not provided.
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1. Introduction

The fundamental form of human reasoning and intelligent systems is syllogism. First examples of syllogisms, which were initially called
logic in language, were given by Aristotle [1]. The Aristotelian syllogism consists of simple sentences with the quantifiers all, some, and no
[1]. In the modern sense, set sizes (element count comparison) or cardinality comparisons of sets are included. It is set interpretations of
plural names within sentences that are intended to be compared from the sets. Sentences including ”more” can not be expressed on the first
order logic. For this reason, working with these types of logic involves some difficulties and has a significant place in the field of logic.
Intersecting Adjectives in syllogistic logic have been formally used by Moss for the first time [2]. Later, Moss introduced some of the logics
that Aristotelian syllogisms and cardinality comparisons together evaluated on finite models [3]. Moss and Topal introduced a logic of
syllogistics (countable or uncountable) models, comparisons of the cardinality, and sets of of interpretations of nouns on infinite sets[4]. The
logic in this paper consists of sentences with ”more” and intersecting adjectives, is the first time described in here.

Remark 1.1. This paper is extracted from master thesis entitled “Algorithmic Analysis and A Computer Implementation of A Syllogistic
Logic Composed of Cardinality Comparisons of Nouns and Intersecting Adjectives”, (Yasin Akünsoy, Master Thesis, Bitlis Eren University,
Turkey, 2017).

2. The Logic L(More, IA)

Let P be a set of plural nouns x,y,z, ... (as variables). Sentences in the language form ∃>(x,y), and read as ” There are more x than y” .
Semantics is constructed on a finite set Γ of sentences and finite universe M. An interpretation function [[]] is defined from P to M and for
all x ∈ P , [[x]]⊆M. Cardinality of [[x]] is denoted by |[[x]]| . This language is called L(More). Figure 1 shows the rules of L(More). We
introduce L(More, IA) by adding intersective adjectives to L(More). Colors can be good examples for intersecting adjectives (IA) such as
blue, green, black, ... and plural nouns are such as cats, cars, machines, ... Syntax in this language contains nouns as x,y,z, ... and intersecting
adjectives as a1,a2,a3. . . . A complex noun ax is a noun where x is a basic noun and a is an intersecting adjective. Variables x,y,z will be
basic nouns ve p,q,r will be nous (basic or complex). Semantics is on finite sets M and, [[x]]⊆M for all basic noun x. The interpretation of
ax is [[ax]] = [[a]]∩ [[x]]. For a model M = (M, [[]]) ” M |= ∃>(p,q) is true if and only if |[[p]]|> |[[q]]| in M .
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Figure 2.1: Rules of L(More).

Figure 2.2: Rules of L(More, IA).

The rules (χ1) and (χ2) are called contradictions in Figure 2.2. The rules say that if more p than p or more ax than x can be derivable from a
proof tree, then the model is inconsistent and therefore, one can derive all possible sentences from this model. The rules (ia1) and (ia2) in
Figure 2.2 contains intersecting adjectives. The rule (ia1) says that if more a x than q can be derived from a proof tree, then more x than q is
derivable. The rule (ia2) says that if more p than x is derivable in a proof tree, then more p than ax can do. Finally, the rule (tr) is called
transitive and says that more n than p and more p than q can be derived, then we have more n than q .

3. Inferences and Counter-Models

In this section, we consider inferences and counter-models in L(More, IA).

3.1. Inferences

The rule (tr) is used in inference (1). (tr) is a transitive relation.

There are more students than teachers.
There are more persons than students.
——————————————– (1)
therefore, There are more persons than teachers

A directed graph representation for inference (1) is given in figure 3.1. (a) shows the premises and (b) shows is a direct application of the
transitivity.
There are more green bicycles than red cars.
There are more blue tractors than green bicycles.
——————————————– (2)
Therefore, there are more tractors than red cars.

In inference (2), firstly by (tr) there are more blue tractors than red cars and secondly by (ia2), we have there are more tractors than red
cars. For easier understanding of the inferences and transferring to computer as data, L (More, IA) can be represented by the labeled graph
theoretical structures. [5]. In addition, there is no need for a labeling procedure since only sentences with ”more” are worked on.

Figure 3.2 gives the theoretical representation of the application for inference (2). (a) for (tr), and then the application of (b) for (ia2) are
represented. Although the order of application of the rules is sometimes not important, we note that it is important here.
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Figure 3.1: A directed graph representation for inference (1).

Figure 3.2: A directed graph representation for inference (2).

3.1.1. Inference algorithms

In this section, we explain how to make the question of whether a sentence can be derived from a set of sentences given in the language of
the logic. Our main goal is to get all the sentences that can be derived from a given set of sentences. The first issue here is to determine if the
set of sentences of the algorithm is consistent.
As seen in Figure 2.2, there are two types of inconsistency, (χ1) and (χ2). (χ1) says that no cardinality of a set interpretation of a nouns can
be more that itself. First of all, remember that we assign a directed graph for each of the sentences of the logic, and then we define the loop.

Definition 3.1. Let G=(V,E) be a directed-graph. A loop is an edge e of G whose endvertices are the same vertex [6].

If a set Γ of sentences given in Definition 3.1 contains ”more v than v” or ”more v than v” can be derived from Γ, - will be inconsistent.
If there is a path v−→ v with the representation of the graph, then a loop is found and the inconsistency is reached. Of course, this loop
applies not only to sentences containing nouns of type x, y and z but also to sentences containing intersecting adjectives of the form ax, by
and cz.
It is necessary to make a forward search to get these types of sentences. For this, we need to obtain the inferences by applying the rules (tr),
(ia1) and (ia2) to Γ.

Example 3.1. For a given Γ = { more v than w, more than h, more h than v } is found to be inconsistent because we can obtain
v−→ w−→ h−→ v, ie v−→ v.

For contradictions finding via the rule (χ2), a given Γ must contain ”more a x than x” or be derived from Γ. Controlling whether or not there
is a path of ax−→ x is sufficient to achieve the inconsistency after having obtained the rules (tr), (ia1) and (ia2) derived from Γ.

Example 3.2. For a given Γ = { more a x than w,more w than h, more h than x } is seen to be inconsistent because we can obtain
ax−→ w−→ h−→ x and x−→ x.

Basically, all the derivations obtained from a set of given sentences by transforming the language of the rules in Figure 2.2 into a directed
graph structure. Each path obtained during this application, that is, every noun (each vertex) that reaches each other is added to the graph, so
the set of derivations to be created is brought to the graph. Therefore, it would be sufficient to check whether a given sentence belongs to
a set of all derivations in order to determine whether or not a given sentence can be derived. If the set is inconsistent, the process can be
terminated without any additional processing.
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3.2. Counter-models

In this section, we will focus on the counter-models. Let’s first explain what the counter-model is. A set Γ of sentences and a sentence of β

can not be derived from Γ are given. In this case, we will construct a model that makes correct all the sentences in Γ, but makes β false.
Let’s make the concept clearer with a simple example.
For given set of sentences, Γ = { more v than w, more than h, more h than k }, can be easily seen that the sentence of ”more k than v” can
not derived from the Γ. Now let’s create a model that makes correct sentences of Γ but falsifies sentence of “more k than v”. The model’s
universe is M = {0,1,2,3} and [[k]] = {3}, [[h]] = {0,2}, [[[v]] = {0,1,2,3}. Note that [[k]] has one element, [[h]] has two elements, [[w]]
has three elements and [[v]] has four elements.
When we consider these nouns in terms of their cardinalities, it is seen that all Γ sentences are true in this model. On the other hand, the
sentence of ”more k than v” is false in this model because [[k]] has a single element while [[v]] has four element. So we built an counter-model
for a sentence that is not derived from the set. The set of sentences given in Example 3 is simple and construction of the model is easy. If there
were more sentences and there were intersecting adjectives in the nouns of these sentences, the construction of the counter- model would be
much more complex and confusing. In particular, the intersection of the sets in the sentences containing the intersecting adjectives is a matter
of concern, so more attention should be paid to the construction of the model. If [[ax]] element contains an element, then naturally [[x]]must
also contain this element. Otherwise, a sentence belonging to Γ may be false. For the sake of clarity, we will describe the counter-model
algorithm with a sample output of the program on the Python [7] platform. It can be reached to program address of [8].

Figure 3.3: A counter-model example for Python implementation.

In Figure 3.3, inputs of the set of sentences are expressed as ′x > y,a− y > t,b− t > h, t > a− x′ in abbreviation. x > y means ′morexthany′.
a− y contains a − sign to indicate that a is an intersecting adjective and y is a plural noun. All the derivations to be obtained from this
input set are indicated by totaltuple. ′A− h : (x)′ means ”x more than a-h” . The function counter−model(′y′,′ x′) , which brings the
counter-model to the square, checks whether the expression ”y more than x” is derived first. If such a sentence is derived it prints ’derivable’.
Since this sentence can not be derived as in the example, we are calculating an counter-model. An empty set (set ([])) is assigned to the ’h’
which is not greater than any nouns in the set. Since ’h’ is an empty set, naturally ’b-h’ appears to be empty. On the other hand, the set ’x’
contains 0,1,2,3,4,5,6,7,8,9,10 elements since it has cardinalities larger than 11 . The sets ’a− x’, ’b− y’, and ’a− t’ are contained as
elements by the set ’x’ because they have different sets and a smaller cardinality of ’x’. Otherwise, in a possible case, ’a− x’ and ’x’ have the
same number of elements and falsify the expression (′a− x′ : (x)) in the set. To overcome this contradiction, we added cardinality to the
’x’ cluster as a small ’a-x’ expression element. Thus, the obtained model falsifies the expression ’x’, but all the expressions of the input
(including derivations) are confirmed. The algorithm type used here is based on topological ordering. When topological and cardinality
comparisons are made, a comparison of the first and the following (larger or smaller cardinal quality) nouns are provided.

Figure 3.4 shows the results for the number of inputs in a computer with a 64-bit, 2.40 GHz, 8.00 GB RAM processor system. Based on the
measurements it is seen that the algorithms have an effective time. Approximately O(n)∼=

n
10

has the value of big O.



Konuralp Journal of Mathematics 5

Figure 3.4: Input-output time measurements.

4. Conclusion

In this paper, for the purpose of comparing the sentences composed of cardinality comparisons of the expressions including the plural nouns
and the intersecting adjectives have introduced and identified for the first time, and the derivation and counter model algorithms belonging to
L(More, IA) are given. An application of these algorithms with effective time complexity is built using a Python program.Nouns of the logic
could be extended by adding their noun-level complements (such as non-cats, non-cats). The models of the logic are built on the finite sets. It
can operate on Π0

1 classes for models that can be built on infinitely countable clusters [9, 10, 11]. The paper [4] contains infinite models can
be used to work on infinite models.
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[8] Topal, S. and Akünsoy Y., L(More, IA) Lojiğinin Python Uygulaması, http://pbs.beu.edu.tr/s.topal/docs (Access date: 15.05.2017).
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