
Konuralp Journal of Mathematics, 6 (1) (2018) 7-16

Konuralp Journal of Mathematics
Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath

e-ISSN: 2147-625X

Oscillatory Behavior for Certain Theorems and Examples of
Higher order Nonlinear Delay Differential Equations

S.Balamuralitharan1*

1Department of Mathematics, Faculty of Engineering and Technology, SRM Institute of Science and Technology , Kattankulathur - 603 203,
Kancheepuram District, Tamil Nadu, INDIA.

*Corresponding author E-mail: balamurali.maths@gmail.com

Abstract

In this paper the oscillatory behaviour of higher order nonlinear delay differential equation theorems and examples are investigated. Some
new oscillatory main results of higher order nonlinear delay differential equations are given. We discuss the relation of Riccati transformation
of the nonlinear delay differential equation to studying properties of the two higher order differential equations. Furthermore, an average
integrating method is introduced as a asymptotic approach to study the oscillatory behavior. Some results are extended to nonlinear delay
differential equations of any order. An example is also discussed, to illustrate the efficiency of the results obtained.

Keywords: oscillatory, higher order nonlinear delay differential equations
2010 Mathematics Subject Classification: 34C10

1. Introduction

The theory of impulsive delay differential equations is promising as an important role of investigation, since it is better than the corresponding
theory of delay differential equation without impulse effects [13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41]. Furthermore, such
equations may demonstrate several real-world phenomena in physics,chemistry, biology, engineering, etc. In the last few years the theory of
periodic solutions and delay differential equations with impulses has been studied by many authors, respectively [14, 16, 18, 20, 22, 24, 26].
There are several books and a many of papers dealing with the periodic solution of delay differential equations [28, 30, 32, 34, 36, 38, 40].
Periodic solutions of impulsive delay differential equations is a new research area and there are many publications in this field. The paper
deals with impulsive equations with constant delay and Fredholm operator of index zero. We obtain the theorems of existence of periodic
solution based on the following Mawhin’s continuation theorem.
In recent years, there has been much research work concerning the oscillation theory and applications of nonlinear higher order delay
differential equations; see [5, 31, 39]. Therefore, the oscillatory criteria of higher order differential equations theorems and examples gave
many new results. In this paper, the study of oscillatory criteria of nonlinear higher order delay differential equations is detail, but most of
them are about delay differential equation; there are many results dealing with the oscillation of the solutions of nonlinear higher order delay
differential equations with any order in [1, 3, 7]. A regular function which is defined for all large t is called oscillatory if it has no last zero,
otherwise it is called nonoscillatory.
The differential equation itself is called oscillatory if all its assumptions are oscillatory [2, 4, 6]. In recent research, it has been used the
oscillation solution and applications of nonlinear delay differential equations and examples; see [8, 10, 12].The authors have worked different
solutions of the nonlinear equations [13, 17, 23, 31].
R. P. Agarwal [29, 30, 31] obtained second order and third order conditions for the oscillation of solutions, under the equation that it is
also higher order. Then we worked previous results. We follow the same condition as in [9, 11], but with different results in examples and
theorems. We shall introduce the properties of the nonlinear delay differential equations. We obtain some previous works known for the
nonlinear delay differential equations that are in basically compared on the parameters of nonlinear delay differential equations.
Our work is based on the Riccati transformation and average integrating method for comparing the nonlinear delay with a set of the nonlinear
delay differential equations. The oscillation and asymptotic behavior have extensive applications in the real world. See the monographs [30]
for more details. The problem of obtaining the oscillation and asymptotic behavior of certain higher-order nonlinear functional differential
equations has been studied by a number of authors, see [39] and the references cited therein. The oscillations of these equations are oscillates
and converges to zero. Moreover, our results can be easily extend to cover the neutral differential equations in any order.
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2. Oscillatory Behaviour for Theorems

In this section we shall state and prove the theorems of oscillatory behaviour.

Theorem 2.1. Let α > 1. Let f ′(u) be nondecreasing on (−∞,−t)
and nonincreasing on (t,∞), t ≥ 0. We assume that∫

∞

p(s)
∣∣ f [c(s− τ)]

∣∣ds = ∞ , for all c 6= 0 (2.1)

and moreover∫
∞
(

τ
2(s)p(s)− τ ′(s)

f ′[λ (s− τ)]

)
ds = ∞ for some λ > 0. (2.2)

Proof. Assume that it has a positive solution of u(t).Then

(z)′ =−p(t) f
[
u(t− τ)

]
< 0.

Hence, the function |u′(t)|u′(t) is decreasing. Therefore, either
u′(t)> 0, or u′(t)< 0. Since

0 > (z)′ = 2|u′(t)|u′′(t),
we assume that u′′(t)< 0. Let u(t)→−∞ as t→ ∞. This is a contradiction. So we conclude that u(t)> 0, u′(t)> 0, u′′(t)< 0 and[(

u′(t)
)2
]′
=−p(t) f

[
u(t− τ)

]
. (2.3)

We define

w(t) = τ
2(t)

[u′(t)]2

f [u(t− τ)]
. (2.4)

Then w(t)> 0 and

w′(t) = 2ττ
′(t)

[u′(t)]2

f [u(t− τ)]
+ τ

2(t)

[
(u′(t))2

]′
f [u(t− τ)]

−τ
2(t)

[u′(t)]2 f ′[u(t− τ)]u′(τ(t))τ ′(t)
f 2[u(t− τ)]

= 2
τ ′(t)
τ(t)

w(t)− τ
2(t)p(t)−w(t)

f ′[u(t− τ)]u′(τ(t))τ ′(t)
f [u(t− τ)]

. (2.5)

We claim that u′(t)→ 0 as t→ ∞. To prove it is contradiction, that is u′(t)→ 2c as t→ ∞, c > 0. Then u′(t)≥ 2c which on integration from
t1 to t implies

u(t)≥ u(t1)+2c(t− t1)≥ ct. (2.6)

Integrating (2.3) from t1 to t and using (2.6)

−
[
u′(t)

]2
+
[
u′(t1)

]2
=
∫ t

t1
p(s) f [u(s− τ)]ds >

∫ t

t1
p(s) f [c(s− τ)]ds.

Putting t→ ∞ we have ∫
∞

t1
p(s) f [c(s− τ)]ds < ∞.

It shows that u′(t)→ 0 as t→∞. Therefore, for any λ > 0 there exists a t1 such that λ/2 > u′(t), t ≥ t1. Integrating the functional inequality
from t1 to t we have

u(t)≤ u(t1)+
λ

2
(t− t1)≤ λ t, t ≥ t2 ≥ t1

and so for any λ > 0 and t large enough

f ′[u(t− τ)]≥ f ′[λ (t− τ)]. (2.7)

Conversely, since u′(t) is decreasing and u′(t)→ 0 as t→ ∞ it follows that

u′(t− τ)≥ u′(t)≥
(
u′(t)

)2
. (2.8)

Combining (2.7) and (2.8) together with (2.5) we have

w′(t) ≤ −τ
2(t)p(t)+2

τ ′(t)
τ(t)

w(t)− τ ′(t) f ′[λ (t− τ)]

τ2(t)
w2(t) =−τ

2(t)p(t)

− τ ′(t) f ′[λ (t− τ)]

τ2(t)

[(
w(t)− τ(t)

f ′[λ (t− τ)]

)2
− τ2(t)

( f ′[λ (t− τ)])2

]

≤ −τ(t)p(t)+
τ(t)τ ′(t)

f ′[λ (t− τ)]
. (2.9)

Integrating the above inequality from t2 to t we conclude in the point of (2.2) that w(t)→−∞ as t→ ∞. This is a contradiction. Hence the
proof is complete.
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Theorem 2.2. Let α > 1. Let f ′(u) be nonincreasing on (−∞,−t)
and nondecreasing on (t,∞), t ≥ 0. We assume that (2.1) holds for any c 6= 0. If∫

∞(
τ

2(s)p(s)−Mτ(s)τ ′(s)
)

ds = ∞ for some M > 0. (2.10)

Proof. We assume that M > 0 is such that (2.10) holds. Here u(t) is a positive solution. In the proof of Theorem 2.1 we can verify that
u′(t)> 0, u′′(t)< 0 and u′(t)→ 0 as t→∞. Then there exists c > 0 such that u(t−τ)> c, exactly. If w(t) be defined by (2.4), then w(t)> 0
and (2.5) is determined. It is easy to verify that

f ′[u(t− τ)]u′(t− τ)≥ f ′(c)u′(t) = f ′(c)
(

u′(t)
)−1(

u′(t)
)2

. (2.11)

Since u′(t)→ 0 then for any λ > 0 we have u′(t)< λ , exactly. We see from (2.11) that

f ′[u(t− τ)]u′(t− τ)≥ f ′(c)λ−1
(

u′(t)
)2

= K
(

u′(t)
)2

,

where λ is taken such that f ′(c)λ−1 = 1/(M). We have

w′(t) ≤ −τ
2(t)p(t)+2

τ ′(t)
τ(t)

w(t)−K
τ ′(t)
τ2(t)

w2(t) =−τ
2(t)p(t)

−K
τ ′(t)
τ2(t)

[(
w(t)− τ(t)

K

)2
− τ2(t)

K2

]

≤ −τ
2(t)p(t)+

1
K

τ(t)τ ′(t). (2.12)

We Integrate the inequality from t1 to t, and then putting t→ ∞.This is contradiction. Hence the proof is complete.

Theorem 2.3. We assume that ∫
∞

t0

du∣∣ f (u)∣∣1/2
< ∞

and ∫
∞

t0
τ
′(s)
(∫

∞

s
p(x)dx

)1/2
ds = ∞

are oscillatory.

Proof. We assume that u(t) is a positive solution. Similarly as in the proof of Theorem 2.1 it can be shown that u′(t)> 0 and u′′(t)< 0.
Integrating from t to s we have

−
[
u′(s)

]2
+
[
u′(t)

]2
=
∫ s

t
p(x) f [u(x− τ)]dx≥ f [u(t− τ)]

∫ s

t
p(s)ds.

Using conditions of u′(t) and putting s→ ∞ we have(
u′[t− τ]

)2 ≥
(
u′(t)

)2 ≥ f [u(t− τ)]
∫

∞

t
p(s)ds. (2.13)

It follows from (2.13) that
u′[t− τ]τ ′(t)
f 1/2[u(t− τ)]

≥ τ
′(t)
(∫

∞

t
p(x)dx

)1/2

which on integration from t1 to t gives∫ u[t−τ]

u[(t1)−τ]

ds
f 1/2(s)

≥
∫ t

t1
τ
′(s)
(∫

∞

s
p(x)dx

)1/2
ds. (2.14)

The left side of (2.14) is bounded, on the other hand the right side of (2.14) tends to ∞ as t→ ∞. Hence the proof is complete.

Theorem 2.4. Assume that u(t) > 0, u′(t) > 0, u′′(t) > 0, (a(t)(u′′(t))n)′ ≤ 0 on [t0,∞). Then for each ` ∈ (0,1) there exists T` ≥ t0
such that

u(τ(t))
a(τ(t))

≥ `
u(t)
a(t)

f ort ≥ T`.

Proof. We set a(t)(u′′(t))n is non-increasing. Then we define a1/n(t)(u′′(t)).

u(t)−u(τ(t)) =
∫ t

τ(t)
a1/n(s)(u′′(s))

1
a1/n(s)

ds≤ a1/n(τ(t))u′′(τ(t))
(
a(t)−a(τ(t))

)
. (2.15)

u(τ(t))≥ u(τ(t))−u(t0)

≥ a1/n(τ(t))u′′(τ(t))
(
a(τ(t))−a(t0)

)
.
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It means that limt→∞
a(τ)−a(t0)

a(τ) = 1, for each ` ∈ (0,1) there exists T` ≥ t0 such that
(
a(τ(t))−a(t0)

)
> `a(τ(t)) for t ≥ T`. From the above

(2.15),

u′(τ(t))
u′′(τ(t))

≥ `a1/n(τ(t))a(τ(t)), t ≥ T`. (2.16)

Combining (2.15) together with (2.16), we have

u(t)
u(τ(t))

≤ 1+
a(t)−a(τ(t))

`a(τ(t))
≤ a(t)

`a(τ(t))
,

which completes the proof.

Theorem 2.5. Assume that on (T`,∞) and then z(t)
z′(t) ≥

a1/n(t)a(t)
2

f or t ≥ T`.

Proof. We set a(t)(z′′′(t))n is positive and non-increasing. Then, we define a1/n(t)z′′′(t). Let z′′(t)> 0, z′(t)> 0, a(t)> 0, we have

z′′(t)≥ z′′(t)− z′′(τ(t))≥
∫ t

T`

a1/n(s)z′′′(s)
a1/n(s)

ds≥ a1/n(t)a(t)z′′′(t). (2.17)

Let us denote a′(t) = a−1/n(t) and a(T`)z′′(T`)> 0,

a′(t)z′′(t)≥ a(t)z′′′(t), t ≥ T`. (2.18)

Integrating both sides of the above inequality, we have∫ t

T`
a′(s)z′′(s)ds≥ a(t)z′′(t)−

∫ t

T`
a′(s)z′′(s)ds.

Which implies that∫ t

T`
a′(s)z′′(s)ds≥ 1

2
a(t)z′′(t). (2.19)

Therefore a(t) is non-increasing, then we have a(t)> 0, a′(t)> 0, a′′(t)≥ 0. and denote

(a′(t)z(t))′ = a′(t)z′(t)+a′′(t)z(t)≥ a′(t)z′(t). (2.20)

At the end, integrating on both sides of the above equation (2.19), one have

a′(t)z(t)≥ 1
2

a(t)z′′(t), t ≥ T`,

which completes the proof.

Theorem 2.6. Let x(t) be a positive solution. Let A < ∞, B < ∞ and z(t) satisfy A≤ r− r1+ 1
n and A+B≤ 1. If A = ∞ or B = ∞, then

z(t) does not have any other oscillatory conditions.

Proof. Since that x(t) is a positive solution, then the corresponding function z(t) satisfies that

x(t) = z(t)− p(t)x(τ1(t))> z(t)− p(t)z(τ1(t))≥ (1− p)z(t). (2.21)

Using this equation (2.21), we have

(a(t)(z′′′(t))n)′ ≤−(1− p)nq(t)zn(τ(t))≤ 0. (2.22)

we see that w(t) is a positive solution of

w′(t) =
1

(z′′(t))n

(
a(t)(z′′′(t))n)′−na(t)

( z′′′(t)
z′′(t)

)n+1

≤−q(t)(1− p)n zn(τ(t))
(z′′(t))n −

n
a1/n(t)

w1+ 1
n (t).

From Lemma 2.4 with u(t) = z′(t), we can verify that

1
z′′(t)

≥ `
a(τ(t))

a(t)
1

z′′(τ(t))
, t ≥ T`,

where ` is equal to A`. Now (2.22) provides

w′′(t)≤−`nq(t)(1− p)n
(a(τ(t))

a(t)

)n zn(τ(t))
(z′′(τ(t)))n −

n
a1/n(t)

w1+ 1
n (t).

Since z(t)≥ a1/n(t)a(t)
2 z′′(t), we denote

w′(t)+A`(t)+
n

a1/n(t)
w1+ 1

n (t)≤ 0. (2.23)
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Then A`(t)> 0 and w(t)> 0 for t ≥ T`. We see that w′′(t)≤ 0 and −w′′(t)≥ nw1+(1/n)(t)/a1/n(t), one have( 1
w1/n(t)

)′
>

1
a1/n(t)

.

where w−1/n(T`)> 0. Integrating from T` to t, we have

w(t)<
1(∫ t

T` a−1/n(s)ds
)n ,

It means that limt→∞ w(t) = 0.
On the other hand, from the equation in view of provides w(t),

an(t)w(t) = a(t)
(a(t)z′′′(t)

z′′(t)

)n
=
( a(t)z′′′(t)

a′(t)z′′(t)

)n
≤ 1n.

Furthermore,

0≤ r ≤ R≤ 1. (2.24)

Let ε > 0. Then from A and r, we can use t ≥ T`, such that

an(t)
∫

∞

t
A`(s)ds≥ A− ε and an(t)w(t)≥ r− ε f or t ≥ T`.

Integrating (2.23) from t to ∞, we have

w(t)≥
∫

∞

t
A`(s)ds+n

∫
∞

t

w1+ 1
n (s)

a1/n(s)
ds f or t ≥ T`. (2.25)

Multiplying the above equation (2.25) by an(t) and simplifying, we have

an(t)w(t)≥ an(t)
∫

∞

t
A`(s)ds+nan(t)

∫
∞

t

an+1(s)w1+ 1
n (s)

an+1(s)a1/n(s)
ds

≥ (A− ε)+(r− ε)1+ 1
n an(t)

∫
∞

t

na′(s)
an+1(s)

ds,

an(t)w(t)≥ (A− ε)+(r− ε)1+ 1
n .

Taking the limit on both sides as t→ ∞, we have
r ≥ (A− ε)+(r− ε)1+ 1

n .

Since ε > 0 is arbitrary, we have the required result
A≤ r− r1+ 1

n .

Multiplying (2.23) by an+1(t) and integrating it from t2 to t, we have

∫ t

t2
an+1(s)w′′(s)ds≤−

∫ t

t2
an+1(s)A`(s)ds−n

∫ t

t2

(an(s)w(s))(n+1)/n

a1/n(s)
ds.

an+1(t)w(t)≤ an+1(t2)w(t2)−
∫ t

t2
an+1(s)A`(s)ds

−n
∫ t

t2

(an(s)w(s))(n+1)/n

a1/n(s)
ds+

∫ t

t2
w(s)

(
an+1(s)

)′
ds.

Which implies that

an+1(t)w(t)≤ an+1(t2)w(t2)−
∫ t

t2
an+1(s)A`(s)ds

+
∫ t

t2

[ (n+1)an(s)w(s)
a1/n(s)

− n(an(s)w(s))(n+1)/n

a1/n(s)

]
ds.

Using the notation

Eu−Du(n+1)/n ≤ nn

(n+1)n+1
En+1

Dn (2.26)

and u = an(t)w(t), D = n
a1/n(t) , E = n+1

a1/n(t) , we set

an+1(t)w(t)≤ an+1(t2)w(t2)−
∫ t

t2
an+1(s)A`(s)ds+a(t)−a(t2).
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It means that

an(t)w(t)≤ 1
a(t)

an+1(t2)w(t2)−
1

a(t)

∫ t

t2
an+1(s)A`(s)ds+1− a(t2)

a(t)
.

Taking the limit on both sides as t→ ∞, we have

R≤−B+1. (2.27)

Combining this inequality (2.27) with (2.24), one have

A≤ r− r1+ 1
n ≤ r ≤ R≤−B+1,

We assume that x(t) is a positive solution. We will prove that z(t) can not satisfy. On the contradiction, A = ∞. From (2.25),

an(t)w(t)≥ an(t)
∫

∞

t
A`(s)ds.

Then the equation (2.24) is equal to 1. But the limit is A = ∞. This leads to a contradiction.
Next, we assume that B = ∞. Then combining equation (2.27), R =−∞, which leads to a contradiction 0≤ R≤ 1 in (2.24). We can assume
that x(t) is a non-oscillatory solution. We can use without loss of generality that x(t) is positive solution. If A = ∞, then z(t) does not have
any other oscillatory conditions . Hence, z(t) satisfies, therefore, we have limt→∞ x(t) = 0.
Furthermore, we obtain z(t) satisfies that set A≤ r− r(n+1)/n. Using (2.26) with E = D = 1, we obtain

A≤ nn

(n+1)n+1 ,

which leads to a contradiction. The proof is complete.

Theorem 2.7. Assume further that there exists a ρ ∈C1(I,R+) such that

limsup
t→∞

∫ t

T

[
Kρ(s)q(s)− 2l−3(l−1)!(n− l +2)!(ρ ′(s))2

gl−1(s)(s−g(s))n−l+2g′(s)ρ(s)

]
ds =+∞ (2.28)

holds for every T ≥ a and for all l = 2,4, . . . ,n+2 when n is even and for all l = 1,3, . . . ,n+2 when n is odd. Then every solution x is
oscillatory, or satisfies x(t)→ 0 as t→ ∞.

Proof. Let x be a non-oscillatory solution. Without loss of generality, we may assume that x(t)> 0 and x(g(t))> 0 for t ≥ a. There exists a
constant T ≥ a such that x(n)(t)> 0 or x(n)(t)< 0 for t ≥ T .
Consider firstly the case that x(n)(t)> 0, t ≥ T . We know that x(n+3)(t)< 0, t ≥ T . Therefore, it follows that there exists l ∈ {1,3, . . . ,n+2}
when n is odd such that for all sufficiently large t, x( j)(t)> 0 for j = 0,1, . . . , l and (−1)n+ jx( j)(t)> 0 for j = l +1, l +2, . . . ,n+2.
If l ≥ 1, then we consider the function w defined by

w(t) =
ρ(t)x(n+2)(t)

x(g(t))
, t ∈ I. (2.29)

w′(t) = ρ ′(t)
ρ(t) w(t)− ρ(t)q(t) f (x(g(t)))

x(g(t)) − ρ(t)p(t)x(n)(t)
x(g(t)) − ρ(t)x(n+2)(t)x′(g(t))g′(t)

x2(g(t))

≤ ρ ′(t)
ρ(t) w(t)−Kρ(t)q(t)− gl−1(t)(t−g(t))n−l+2g′(t)ρ(t)(x(n+2)(t))2

2l−1(l−1)!(n−l+2)!x2(g(t))

=
ρ ′(t)
ρ(t) w(t)−Kρ(t)q(t)−w2(t) gl−1(t)(t−g(t))n−l+2g′(t)

2l−1(l−1)!(n−l+2)!ρ(t)

=−Kρ(t)q(t)− gl−1(t)(t−g(t))n−l+2g′(t)
2l−1(l−1)!(n−l+2)!ρ(t)

(
w(t)

− 2l−1(l−1)!(n−l+2)!ρ(t)ρ ′(t)
2ρ(t)gl−1(t)(t−g(t))n−l+2g′(t)

)2
+

2l−3(l−1)!(n−l+2)!ρ ′2(t)
ρ(t)gl−1(t)(t−g(t))n−l+2g′(t) .

Thus

w′(t)≤−Kρ(t)q(t)+
2l−3(l−1)!(n− l +2)!ρ ′2(t)

ρ(t)gl−1(t)(t−g(t))n−l+2g′(t)
.

Integration yields ∫ t

T

(
Kρ(s)q(s)− 2l−3(l−1)!(n− l +2)!ρ ′2(s)

ρ(s)gl−1(s)(s−g(s))n−l+2g′(s)

)
ds≤ w(T )−w(t), t > T,

which contradicts (2.28).
If l = 0, then

x′(t)< 0, x′′(t)> 0, x′′′(t)< 0, . . . ,

x(n)(t)> 0, x(n+1)(t)< 0, x(n+2)(t)> 0
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for sufficiently large t, namely, for t ≥ T1. Let limt→∞ x(t) = µ . If µ 6= 0, then there exists a constant T2 ≥ T1 such that x(g(t))≥ x(t)> µ >
0, t ≥ T2. We obtain

x(n+2)(t)≤ x(n+2)(T2)−K
∫ t

T2

x(g(u))q(u)du≤ x(n+2)(T2)−Kµ

∫ t

T2

q(u)du, (2.30)

for t ≥ T2. We know that
∫

∞

T2
q(u)du =+∞. Thus inequality (2.30) implies that x(n+2)(t) is eventually negative, a contradiction to (2.30).

Consider next the case that x(n)(t)< 0 for t ≥ T . By x(t) is eventually monotonous and x(n−1)(t) is eventually positive. Let

lim
t→+∞

x(t) = α1, lim
t→+∞

x(n−1)(t) = α2.

We claim that α1 = 0. If this is not true, then there exist constants β1,β2 > 0 such that

x(g(t))> β1, 0 < x(n−1)(t)< β2, t ≥ T3 (2.31)

for some constant T3 > 0.
Integrating from T3 to t yields

x(n+2)(t)+
∫ t

T3
[(p(u)x(n−1)(u))′− p′(u)x(n−1)(u)]du

+
∫ t

T3
x(g(u))q(u) f (x(g(u)))

x(g(u)) du

= x(n+2)(T3).

from (2.31) we obtain

x(n+2)(t)≤ x(n+2)(T3)+ p(T3)x(n−1)(T3)+
∫ t

T3
p′(u)x(n−1)(u)du−

∫ t
T3

β1Kq(u)du

≤ x(n+2)(T3)+ p(T3)x(n−1)(T3)+
∫ t

T3
x(n−1)p′+(u)du−

∫ t
T3

β1Kq(u)du

≤ x(n+2)(T3)+ p(T3)x(n−1)(T3)+
∫ t

T3
β2 p′+(u)du−

∫ t
T3

β1Kq(u)du

= x(n+2)(T3)+ p(T3)x(n−1)(T3)−β1K
∫ t

T3
[q(u)− β2

β1K p′+(u)]du.

By letting t→+∞, we have from x(n+2)(t)→−∞. Consequently, there is a constant T4 ≥ T3 such that x(n+2)(t)≤−1 for t ≥ T4. Hence
x(n+1)(t) ≤ x(n+1)(T4)− (t−T4)→−∞ as t → +∞. By the same way, it follows that x(n)(t),x(n−1)(t), . . . ,x′(t),x(t)→−∞ as t → +∞.
This contradict the assumption that x(t) is eventually positive.

Theorem 2.8. Assume further that there exist functions H ∈ℜ and ρ ∈C1(I,R+) such that

limsup
t→∞

1
H(t,T )

∫ t

T

[
Kρ(s)H(t,s)q(s)−

(ρ(s)h(t,s)−
√

H(t,s)ρ ′(s))2

ρ2(s)Gl(s)

]
ds =+∞, (2.32)

where

Gl(t) =
gl−1(t)(t−g(t))n−l+2g′(t)

a(l)ρ(t)
a(l) = 2l−3(l−1)!(n− l +2)!,

where l = 2,4, . . . ,n+2 when n is even, and l = 1,3, . . . ,n+2 when n is odd. Then every solution x is oscillatory, or satisfies x(t)→ 0 as
t→ ∞.

Proof. Let x be a non-oscillatory solution. Without loss of generality, we may assume that x(t)> 0 and x(g(t))> 0 for t ≥ a. There exists a
constant T ≥ a such that x(n)(t)> 0 or x(n)(t)< 0 for t ≥ T .
Assume firstly that x(n)(t)> 0 for t ≥ T . It follows that x(n+3)(t)< 0 and hence there exists l ∈ {1,3, . . . ,n+2} when n is odd such that for
all sufficiently large t, x( j)(t)> 0 for j = 0,1, . . . , l and (−1)n+ jx( j)(t)> 0 for j = l +1, l +2, . . . ,n+2.
Defining again the function w as in (2.29). If l 6= 0, then we have from (2.30) that

Kρ(t)q(t)≤−w′(t)+
ρ ′(t)
ρ(t)

w(t)− 1
4

w2(t)Gl(t). (2.33)

Thus

K
∫ t

T H(t,s)ρ(s)q(s)ds

≤
∫ t

T

[
−w′(s)H(t,s)+

(
ρ ′(s)
ρ(s) w(s)− 1

4 w2(s)Gl(s)
)

H(t,s)
]
ds.

Using integration by parts and noting that H ∈ℜ, we find

−
∫ t

T
w′(s)H(t,s)ds = w(T )H(t,T )+

∫ t
T w(s) ∂H(t,s)

∂ s ds

= w(T )H(t,T )−
∫ t

T w(s)h(t,s)
√

H(t,s)ds.

Let

Q(t,s) = h(t,s)−
√

H(t,s)
ρ ′(s)
ρ(s)

,



14 Konuralp Journal of Mathematics

then

K
∫ t

T H(t,s)ρ(s)q(s)ds

≤ w(T )H(t,T )−
∫ t

T

[
w(s)

√
H(t,s)Q(t,s)+ 1

4 Gl(s)H(t,s)w2(s)
]
ds

= w(T )H(t,T )− 1
4
∫ t

T Gl(s)H(t,s)
(

w(s)+ 2Q(t,s)
Gl(s)
√

H(t,s)

)2
ds+

∫ t
T

Q2(t,s)
Gl(s)

ds

≤ w(T )H(t,T )+
∫ t

T
Q2(t,s)
Gl(s)

ds.

It turns out that

1
H(t,T )

∫ t

T

[
KH(t,s)ρ(s)q(s)− Q2(t,s)

Gl(s)

]
ds≤ w(T ). (2.34)

This contradicts 2.32. The rest of the proof is the same as in Theorem 2.7, and hence it is omitted.

Theorem 2.9. Suppose the following conditions hold:

(i) It has an eventually positive increasing solution;
(ii) there are integer m > 1 and constant α > 0 such that limt→∞ q(t)/tm−1 ≥ α;

(iii) g(t) = at− τ with 0 < a≤ 1 and τ > 0.

Then every solution x is oscillatory, or satisfies x(t)→ 0 as t→ ∞.

Proof. we only give the proof of the case that a = 1. Obviously, condition (ii) implies that q(t)/(t− τ)m−1 > α/2, t ≥ T1 for some constant
T1 > a. Hence ∫ t

T1

(
g(t)
g(s) −1

)m
q(s)ds

=
∫ t

T1

(t−s)m

s−τ
· q(s)
(s−τ)m−1 ds

≥ α

2
∫ t

T1

(t−s)m

s−τ
ds

= α

2
∫ t

T1

((t−τ)−(s−τ)))m

s−τ
ds

= α

2 ∑
m
k=0 Ck

m(−1)k(t− τ)m−k ∫ t
T1
(s− τ)k−1ds

= α

2

(
(t− τ)mln t−τ

T1−τ
+∑

m
k=1 Ck

m(−1)k (t−τ)m−(t−τ)m−k(T1−τ)k

k

)
,

where Ck
m = m!

(m−k)!k! . It turns out that

limt→∞
1

(g(t)−g(T ))m

∫ t
T

(
g(t)
g(s) −1

)m
q(s)ds

≥ limt→∞
α

2

(
(t−τ)m

(t−T )m ln t−τ

T1−τ
+∑

m
k=1 Ck

m(−1)k (t−τ)m−(t−τ)m−k(T1−τ)k

k(t−T )m

)
=+∞.

1
(g(t)−g(T ))m

∫ t
T

(g(t)−g(s))m−2g2(t)g′(s)
gl+m+1(s)(s−g(s))n−l+2 ds

=
(t−τ)2

(t−T )m

∫ t
T

((t−τ)−(s−τ))m−2

(s−τ)l+m+1τn−l+2 ds

= 1
τn−l+2 Il(t),

where

Il(t) =
(t− τ)2

(t−T )m

∫ t

T

((t− τ)− (s− τ))m−2

(s− τ)l+m+1 ds.

If m = 2, then

Il(t) =
( t− τ

t−T

)2
∫ t

T

1
(s− τ)l+3 ds < M1, (2.35)

where M1 is a constant.
If m > 2, then

Il(t) =
(t−τ)2

(t−T )m ∑
m−2
k=0 Ck

m−2(−1)k(t− τ)m−2−k ∫ t
T (s− τ)k−l−m−1ds

=
( t−τ

t−T
)m

∑
m−2
k=0 Ck

m−2(−1)k(t− τ)−k (T−τ)k−l−m−(t−τ)k−l−m

m+l−k

=
( t−τ

t−T
)m

∑
m−2
k=0 Ck

m−2(−1)k (T−τ)k−l−m(t−τ)−k−(t−τ)−l−m

m+l−k < M2,

where M2 is a constant.
By (2.35), (2.35) and (2.36), it is easy to see that

limsup
t→∞

1
[g(t)−g(T )]m

∫ t

T

m2a(l)(g(t)−g(s))m−2g2(t)g′(s)
gl+m+1(s)(s−g(s))n−l+2 ds <+∞. (2.36)

This completes the proof.
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3. Oscillatory Behaviour for Examples

Example 1
We consider the third order nonlinear delay differential Equation( 1√

t
|u′(t)|1/2u′(t)

)′
+

u
t5/2

(3
2
+

3
2ln t

+
1

ln2 t

)
|u(2t)|1/2u(2t) = 0, t > 1,

where

u > 0, α =
3
2
, r(t) =

1√
t
, h(t) = 2t, p(t) =

u
t5/2

(
3
2
+

3
2ln t

+
1

ln2 t
).

Here

π0(t) = P(t) =
u

t3/2
(1+

1
ln t

), π1(t)>
9u5/3

7t7/6
+

u
t3/2

(1+
1

ln t
).

Then

lim
t→∞

π1(t)exp
(

α

∫ t

1

(P(s)
r(s)

)1/α ds
)

≥ lim
t→∞

(9u5/3

7t7/6
+

u
t3/2

(
1+

1
ln t

))
exp
(3

2

∫ t

1

(u(1+ 1
lns )

s

)2/3ds
)

≥ lim
t→∞

(9u5/3

7t7/6
+

u
t3/2

)
exp
(3

2

∫ t

1

(u
s

)2/3ds
)
≥ lim

t→∞

u1

t3/2
eu2t1/3

= ∞,

where u1 = ue−9/2u2/3
and u2 = 9u2/3/2. Thus, Theorem 2.1 is satisfied for α = 2. Hence, it is oscillatory.

Example 2
Consider the fourth-order nonlinear delay differential equation

x(4)(t)+
3(ln2 t−2)

t3 ln3 t
x′(t)+

t +1
t2 +1

x
(
(1+ sin

1
t2 +1

)
t
2

)
= 0, t ≥ 1. (3.1)

The delay function g(t) = (1+ sin 1
t2+1 )

t
2 satisfies 0 < g(t)< t, limt→+∞ g(t) = +∞ and t/g(t)≥ 2/(1+ sin(1/2)) > 1. It is not hard to

check that the equation u′′′+ p(t)u = 0, with p(t) = 3(ln2 t−2)
t3 ln3 t

, has a positive and strictly increasing solution u(t) = t ln3 t. Moreover, since

p′(t) =
3

t4 ln4 t
(6+6ln t− ln2t−3ln3 t),

and p′+(t) = 0 is for all t. Clearly,
∫

∞

1 q(t)dt ≥
∫

∞

1
t+1
2t2 dt =+∞, which implies that it is true. Thus, any solution of (3.1) is oscillatory, or

satisfies x(t)→ 0 as t→ ∞.
Example 3
Consider the fifth-order nonlinear delay differential equation

x(5)(t)+
2

t3(1+2ln t)
x′′(t)+(5+ e−t cos t)tx(at− τ)(2+ exp[−x(at− τ)]) = 0, (3.2)

for t ≥ 1, where a ∈ (0,1],τ > 0. Obviously, the function f (x) = x(2+ e−x) satisfies that f (x)/x ≥ 2 for x 6= 0. It is easy to check
that the equation u′′′ + p(t)u = 0 has a positive and strictly increasing solution u(t) = t(2ln t + 1). Moreover, since p′(t) ≤ 0 and∫

∞

1 q(t)dt =
∫

∞

1 (5+ e−t cos t)tdt = +∞ are satisfied. Clearly, limt→∞ q(t)/t = 5. Thus, any solution of (3.2) is oscillatory, or satisfies
x(t)→ 0 as t→ ∞.
Example 4
Consider the eighth-order nonlinear delay differential equation

x(8)(t)+
1

(1+2t)2

( t2 + t−2
(1+ t)3 ln(1+ t)

+
3

(1+2t)

)
x(5)(t)+

3t + sin t
t2−2

x(t− ln t) = 0, (3.3)

for t ≥ 2. Here n = 5,

p(t) =
1

(1+2t)2

( t2 + t−2
(1+ t)3 ln(1+ t)

+
3

(1+2t)

)
, q(t) =

3t + sin t
t2−2

with K = 1.
The equation u′′′+ p(t)u = 0 has a positive and strictly increasing solution u(t) = (2t +1)3/2 ln(1+ t). It is easy to see that

∫
∞

2 q(t)dt =+∞,
p′(t) is eventually negative and hence that it is true. Let ρ(t) = t, then it is easy to see that for l = 1,3,5,7,

limt→∞ sup
(∫ t

2

[
Kρ(s)q(s)− 2l−3(l−1)!(n−l+2)!(ρ ′(s))2

gl−1(s)(s−g(s))n−l+2g′(s)ρ(s)

]
ds
)

= limt→∞ sup
(∫ t

2

[
3s2+ssins

s2−2 − 2l−3(l−1)!(7−l)!
(s−lns)l−1(lns)7−l(s−1)

]
ds
)
=+∞.

Consequently, any solution of (3.3) is oscillatory, or satisfies x(t)→ 0 as t→ ∞.
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4. Conclusion

Some new oscillatory principle consequences of higher order nonlinear delay differential equations are given. We discuss about the
connection of Riccati change of the nonlinear differential equations to examining properties of the higher order differential equations.
Besides, a normal coordinating strategy is presented as an asymptotic way to deal with consider the oscillatory behaviour. A few comes
about are reached out to nonlinear delay differential equations of any order. A case is additionally examined, to represent the effectiveness of
the outcomes got.
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