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Abstract

Using a mapping F : R+→ R, Wardowski [1] introduce a new type of contraction called F-contraction and prove a new fixed point theorem
concerning F-contraction. In the present article, we prove some fixed point theorems with helping compatible maps for type 1 and type 2
F-contraction in complete G-metric spaces.
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1. Introduction and Preliminaries

The common fixed point theory is very important and useful in Mathematics. It can be applied in various areas, for instant, variational
inequalities, optimization, and approximation theory. The Banach contraction principle [2], is the simplest and one of the most versatile
elementary results in fixed point theory. Over the years, various extensions and generalizations of this principle have appeared in the literature.
In 2006, Mustafa and Sims [3] introduced a new structure called G-metric space as a generalization of the usual metric spaces. Afterwards
based on the notion of a G-metric space, many fixed point results for different contractive conditions have been presented, for more details
see [4–7].
On the other hand, there has been a considerable interest to study common fixed point for a pair of mappings satisfying contractive conditions
in various spaces. Several interesting and elegant results were obtained in this direction by various authors. It was the turning point in the
fixed point field when the notion of commutativity was used by Jungck [8], to obtain common fixed point theorems in metric spaces. This
result was further generalized and extended in various ways by many authors. Furthermore in 1986, Jungck [9] introduced the concept of
compatible maps in metric spaces. Then Kumar [10], introduced the concept of compatible maps in G-metric space.
Recently Wardowski [1], introduced the notion of a F-contraction mapping and investigated the existence of fixed points for such mappings.
Consistent with Wardowski [1], we denote by F the set of all functions F : R+→ R satisfying the following conditions:

(F1) F is strictly increasing. That is, α < β ⇒ F(α)< F(β ) for all α,β ∈ R+

(F2) For every sequence {αn}n∈N in R+ we have limn→∞ αn = 0 if and only if
limn→∞ F(αn) =−∞

(F3) There exists a number k ∈ (0,1) such that limα→0+ αkF(α) = 0.

Note that every F contraction is continuous (see [1]). The results of Wardowski have become of recent interest of many authors (see [11–18]).
Now, we mention briefly some fundamental definitions.

Definition 1.1. ( [3]) Let X be a nonempty set, and let G : X×X×X → R+ be a function satisfying the following properties:

(G1) G(x,y,z) = 0 if x = y = z;
(G2) 0 < G(x,x,y); for all x,y ∈ X , with x 6= y;
(G3) G(x,x,y)≤ G(x,y,z), for all x,y,z ∈ X , with z 6= y;
(G4) G(x,y,z) = G(x,z,y) = G(y,z,x) = · · · (symmetry in all three variables);
(G5) G(x,y,z)≤ G(x,a,a)+G(a,y,z), for all x,y,z,a ∈ X , (rectangle inequa-lity).

Then the function G is called a generalized metric or more specifically a G-metric on X , and the pair (X ,G) is called a G-metric space.
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Definition 1.2. ( [3]) Let (X ,G) be a G-metric space. A sequence (xn) in X is G-convergent to x if limn,m→∞ G(x,xn,xm) = 0; that is, for
every ε > 0, there is N ∈ N such that G(x,xn,xm)< ε , for all n,m≥ N.

Proposition 1.1. ( [3]) Let (X ,G) be a G-metric space, then the following are equivalent.

(i) (xn) is G-convergent to x.
(ii) G(xn,xn,x)→ 0, as n→ ∞.

(iii) G(xn,x,x)→ 0, as n→ ∞.
(iv) G(xm,xn,x)→ 0, as n,m→ ∞.

Definition 1.3. ( [3]) Let (X ,G) be a G-metric space, a sequence (xn) is called G-Cauchy if for every ε > 0, there is N ∈ N such that
G(xn,xm,xl)< ε , for all n,m, l ≥ N; that is, G(xn,xm,xl)→ 0 as n,m, l→ ∞.

Proposition 1.2. [3] If (X ,G) is a G-metric space, then the following statements are equivalent.

(i) The sequence (xn) is G-Cauchy.
(ii) For every ε > 0,there exists N ∈ N such that; G(xn,xm,xm)< ε , for all n,m≥ N.

2. Main Results

In this section we present our main definitions and theorems. We start with the following definition.

Definition 2.1. ( [10]) Let f and g be maps from a G-metric spaces (X ,G) into itself. The maps f and g are said to be compatible map if
there exists a sequence (xn) such that

lim
n→∞

G( f gxn,g f xn,g f xn) = 0

or
lim
n→∞

G(g f xn, f gxn, f gxn) = 0

whenever (xn) is sequence in X such that
lim
n→∞

f xn = lim
n→∞

gxn = t

for some t ∈ X .

Definition 2.2. Let (X ,G) a G-metric spaces and f ,g : X → X be compatible mappings. Furthermore

f (X)⊆ g(X) (2.1)

f or g is continuous. (2.2)

A mapping f ,g : X → X is said to be type 1 F-contraction on (X ,G) if there exists a number τ > 0 such that for all x,y,z ∈ X satisfying
G( f x, f y, f z)> 0, the following holds:

τ +F(G( f x, f y, f z))≤ F(G(gx,gy,gz)). (2.3)

Moreover f ,g : X → X is said to be type 2 F-contraction on (X ,G) if there exists a number τ > 0 such that for all x,y,z ∈ X and β ∈ [0, 1
3 ]

satisfying G( f x, f y, f z)> 0, the following holds:

τ +F(G( f x, f y, f z))≤F(β [G(gx, f x, f x)+G(gy, f y, f y)+G(gz, f z, f z)]). (2.4)

Theorem 2.1. Let (X ,G) be a complete G-metric space and f ,g : X → X be type 1 F-contraction. Then f and g have a unique common
fixed point.

Proof: Let x0 be an arbitrary point in X . By (2.1) one can choose a point x1 in X such that f x0 = gx1. In general choose xn+1 and yn such that

yn = f xn = gxn+1, (n = 1,2,3, ...). (2.5)

Now suppose that yn 6= yn+1 for every n ∈ N. Then G(yn,yn+1,yn+1)> 0. We denote

γn = G(yn,yn+1,yn+1) = G( f xn, f xn+1, f xn+1). (2.6)

Then G( f xn, f xn+1, f xn+1)> 0, so using (2.3) we obtain

τ +F(G( f xn, f xn+1, f xn+1))≤ F(G(gxn,gxn+1,gxn+1)).

Hence using (2.5) we obtain

F(G(yn,yn+1,yn+1))≤ F(G(yn−1,yn,yn))− τ.

Using the above inequality we obtain

F(γn)≤ F(γn−1)− τ ≤ F(γn−2)−2τ ≤ ...≤ F(γ0)−nτ. (2.7)

From (2.7), we obtain

lim
n→∞

F(γn) =−∞ (2.8)
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that together with (F2) gives

lim
n→∞

γn = 0. (2.9)

From (F3) there exists k ∈ (0,1) such that

lim
n→∞

γ
k
nF(γn) = 0. (2.10)

By (2.7), the following holds for all n ∈ N :

γ
k
n(F(γn)−F(γ0))≤−γ

k
nnτ ≤ 0 (2.11)

Letting n→ ∞ in (2.11) and using (2.9) and (2.10), we obtain

lim
n→∞

nγ
k
n = 0. (2.12)

Now, let us observe that from (2.12) there exists n1 ∈ N such that nγk
n ≤ 1 for all n≥ n1. In order to show that (yn) is a Cauchy sequence

consider ∀m,n ∈ N such that m > n > n2. From the definition of the G-metric spaces we get

G(yn,ym,ym)≤G(yn,yn+1,yn+1)+G(yn+1,yn+2,yn+2)+

· · ·+G(ym−1,ym,ym)

=γn + γn+1 + ...+ γm−1

=
m−1

∑
i=n

γi

≤
∞

∑
i=n

γi

≤
∞

∑
i=n

1

i
1
k

.

From the convergence of the series ∑
∞
i=1

1
i

1
k

and the above inequality, we receive that (yn) is a Cauchy sequence. From the completeness of

X there exists u ∈ X such that limn→∞ yn = u and limn→∞ yn = limn→∞ f xn = limn→∞ gxn+1 = u. Since f or g is continuous, suppose that g
is continuous therefore limn→∞ g f xn = gu. Further f and g are compatible, therefore

G(g f xn, f gxn, f gxn) = 0,

implies
lim
n→∞

f gxn = gu.

Suppose that
G( f gxn, f xn, f xn)> 0.

Then from (2.3), we obtain

τ +F(G( f gxn, f xn, f xn))≤ F(G(ggxn,gxn,gxn)) (2.13)

proceeding limit as n→ ∞, we obtain

τ +F(G(gu,u,u))≤ F(G(gu,u,u)),

a contradiction. Then G( f gxn, f xn, f xn) = 0 we obtain G(gu,u,u) = 0 that is, gu = u. Thus u is a fixed point of g. Now suppose that
G( f xn, f u, f u)> 0. Thus from (2.3) we obtain

τ +F(G( f xn, f u, f u))≤ F(G(gxn,gu,gu)) (2.14)

proceeding limit as n→ ∞, we obtain

τ +F(G(u, f u, f u))≤ F(G(u,u,u))

= F(0).

Thus from (F2) we get

τ +F(G(u, f u, f u))≤−∞

a contraction. Then G( f xn, f u, f u) = 0, we obtain G(u, f u, f u) = 0 that is, f u = u. Thus u is a common fixed point of f and g. We assume
that u 6= w and w is another common fixed point of f and g. Then G( f u, f w, f w)> 0 and from (2.3) we get

τ +F(G( f u, f w, f w))≤ F(G(gu,gw,gw))

that is,

τ +F(G(u,w,w))≤ F(G(u,w,w))

a contradiction. Then we obtain G( f u, f w, f w) = 0 that is, u = w. Therefore, the fixed point of f and g is unique.
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Theorem 2.2. Let (X ,G) be a complete G-metric space and f ,g : X → X be type 2 F-contraction. Then f and g have a unique common
fixed point.

Proof: Let x0 be an arbitrary point in X . By ( 2.1) one can choose a point x1 in X such that f x0 = gx1. In general choose xn+1 and yn such
that

yn = f xn = gxn+1 (n = 1,2,3, ...). (2.15)

Suppose now that yn 6= yn+1, for every n ∈ N. Then G(yn,yn+1,yn+1)> 0. We denote

γn = G(yn,yn+1,yn+1) = G( f xn, f xn+1, f xn+1). (2.16)

Then G( f xn, f xn+1, f xn+1)> 0 using (2.4) we obtain

τ +F(G( f xn, f xn+1, f xn+1))≤F(β [G(gxn, f xn, f xn)+G(gxn+1, f xn+1, f xn+1)+

G(gxn+1, f xn+1, f xn+1)])

=F(β [G(gxn, f xn, f xn)+2G(gxn+1, f xn+1, f xn+1)]).

Using (2.15) we obtain

F(G(yn,yn+1,yn+1))≤ F(β [G(yn−1,yn,yn)+2G(yn,yn+1,yn+1)])).

Now suppose that

G(yn−1,yn,yn)< G(yn,yn+1,yn+1).

Then

τ +F(G(yn,yn+1,yn+1))< F(3βG(yn,yn+1,yn+1)))

a contradiction. Then we get

G(yn−1,yn,yn)≥ G(yn,yn+1,yn+1).

Thus we obtain

τ +F(G(yn,yn+1,yn+1))≤ F(3βG(yn−1,yn,yn)]))

≤ F(G(yn−1,yn,yn)).

By using the above inequality

F(γn)≤ F(γn−1)− τ ≤ F(γn−2)−2τ ≤ ...≤ F(γ0)−nτ. (2.17)

By using (2.17), we obtain

lim
n→∞

F(γn) =−∞ (2.18)

that together with (F2) gives

lim
n→∞

γn = 0. (2.19)

From (F3) there exists k ∈ (0,1) such that

lim
n→∞

γ
k
nF(γn) = 0. (2.20)

By (2.17), the following holds for all n ∈ N :

γ
k
n(F(γn)−F(γ0))≤−γ

k
nnτ ≤ 0 (2.21)

Letting n→ ∞ in (2.21) and using (2.19) and (2.20), we obtain

lim
n→∞

nγ
k
n = 0. (2.22)

Now, let us observe that from (2.22) there exists n1 ∈ N such that nγk
n ≤ 1 for all n≥ n1. In order to show that (yn) is a Cauchy sequence

consider ∀m,n ∈ N such that m > n > n2. From the definition of the G-metric spaces and (2.22) we get

G(yn,ym,ym)≤G(yn,yn+1,yn+1)+G(yn+1,yn+2,yn+2)+

· · ·+G(ym−1,ym,ym)

=γn + γn+1 + ...+ γm−1

=
m−1

∑
i=n

γi

≤
∞

∑
i=n

γi

≤
∞

∑
i=n

1

i
1
k

.
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From the convergence of the series ∑
∞
i=1

1
i

1
k

and the above inequality we receive that (yn) is a Cauchy sequence. From the completeness of X

there exists u ∈ X such that limn→∞ yn = u and limn→∞ yn = limn→∞ f xn = limn→∞ gxn+1 = u.
Since f or g is continuous, suppose that g is continuous therefore limn→∞ g f xn = gu. Further f and g are compatible, therefore

G(g f xn, f gxn, f gxn) = 0,

implies
lim
n→∞

f gxn = gu.

Suppose that
G( f gxn, f xn, f xn)> 0.

Then from (2.4), we obtain

τ +F(G( f gxn, f xn, f xn))≤ F(β [G(ggxn, f gxn, f gxn)+2G(gxn, f xn, f xn)] (2.23)

proceeding limit as n→ ∞, we obtain

τ +F(G(gu,u,u))≤ F(β [G(gu,gu,gu)+2G(u,u,u))

= F(0).

Thus from (F2) we get

τ +F(G(gu,u,u))≤−∞

a contraction. Then G( f gxn, f xn, f xn) = 0 so we obtain G(gu,u,u) = 0 that is, gu = u. Thus u is a fixed point of g. Now suppose that
G( f xn, f u, f u)> 0. Thus from (2.4) we obtain

τ +F(G( f xn, f u, f u))≤ F(β [G(gxn, f xn, f xn)+2G(gu, f u, f u)] (2.24)

proceeding limit as n→ ∞, we obtain

τ +F(G(u, f u, f u))≤ F(β [G(u,u,u)+2G(u, f u, f u)])

= F(2βG(u, f u, f u).

a contraction. Then G( f xn, f u, f u) = 0, we obtain G(u, f u, f u) = 0 that is, f u = u. Thus u is a common fixed point of f and g. We assume
that u 6= w and w is another common fixed point of f and g. Then G( f u, f w, f w)> 0 and from (2.4) we get

τ +F(G( f u, f w, f w))≤ Fβ [G(gu, f u, f u)+2G(gw, f w, f w)]

that is,

τ +F(G(u,w,w))≤ F(β [G(u,u,u)+2G(w,w,w)])

= F(0).

From (F2) we obtain

τ +F(G(u,w,w))≤−∞

a contradiction. Then we obtain G( f u, f w, f w) = 0 that is, u = w. Therefore, the common fixed point of f and g is unique.

Example 2.1. Let X = [−1,1] and let G : X×X×X → R+ defined as follows:

G(x,y,z) = max{|x− y|, |y− z|, |x− z|},

for all x,y,z in X . Then (X ,G) is a G-metric space. Define f (x) =
x
8

and g(x) =
x
2

. Here we note that, f is continuous and f (X)⊆ g(X). If

F(α) = lnα , α ∈ (0,∞), and τ = ln4 then

G( f x, f y, f z)≤ 1
4

G(gx,gy,gz)

which indicates the presence of the type 1 F-contraction mapping.
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