Matchings in Tetrameric 1, 3-Adamantane

Fatemeh Taghvaee ${ }^{1 *}$ and Gholam Hossein Fath-Tabar ${ }^{2}$
${ }^{1}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran.
${ }^{2}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran.
*Corresponding author E-mail: taghvaei19@yahoo.com

Abstract

Suppose G is a graph, $A(G)$ its adjacency matrix, and $\varphi(G, \lambda)=\sum_{i=0}^{n} a_{i} \lambda^{n-i}$ is the characteristic polynomial of G. The polynomial $M(G, x)=\sum_{k \geq 0}(-1)^{k} m(G, k) x^{n-2 k}$, is called the matching polynomial of G, where $m(G, k)$ is the number of $k-$ matchings in G. In this paper, we consider tetrameric 1, 3-adamantane, $T A(N)$, and determine some coefficients of characteristic polynomial and matching polynomial of TA(N).

Keywords: Characteristic polynomial, matching polynomial, spectral moment, tetrameric 1, 3-adamantane.
2010 Mathematics Subject Classification: 05C50,15A18

1. Introduction

Suppose G is a simple graph with n vertices and m edges. The adjacency matrix of G is a square $n \times n$ matrix A such that $A_{i j}$ is 1 when there is an edge from v_{i} to v_{j} and zero when there is no edge. The characteristic polynomial of G, denoted by $\varphi(G, \lambda)$, is defined as:

$$
\varphi(G, \lambda)=\operatorname{det}\left(\lambda I_{n}-A(G)\right)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n} .
$$

The roots of the characteristic polynomial are called the eigenvalues of G and the eigenvalues together with their multiplicities form the spectrum of G. A matching in a graph G is a set of its edges such that no two edges of this set have a vertex in common. The matching polynomial of G is defined as:

$$
M(G, x)=\sum_{k \geq 0}(-1)^{k} m(G, k) x^{n-2 k},
$$

where $m(G, k)$ is the number of k-matchings in G [9]. It is clear that $m(G, 1)=m$ and $m(G, k)=0$ for $k>\left\lfloor\frac{n}{2}\right\rfloor$ or $k<0$. The matching polynomial is an important concept in Combinatorics and Theoretical Chemistry [7, 8, 10, 11]. A walk of length k in a graph is an alternating sequence $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{k}, e_{k}, v_{k+1}$ of vertices and edges such that for any $i=1,2, \ldots, k$, the vertices v_{i} and v_{i+1} are distinct end-vertices of the edge e_{i}. A closed walk is a walk in which the first and the last vertices are the same.
Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $A(G)$. The numbers $S_{k}(G)=\sum_{i=1}^{n} \lambda_{i}^{k}$ are called the k-th spectral moment of G. It is easy to see that $S_{0}(G)=n, S_{1}(G)=0, S_{2}(G)=2 m$ and $S_{3}(G)=6 t$, where n, m and t denote the number of vertices, edges and triangles of the graph G, respectively [4].
Strightforward computations yield that $|V(T A(N))|=10 N$ and $|E(T A(N))|=13 N-1$. Some authors computed the 4 and 5-matchings in a graph $[2,15]$. In this paper we consider a tetrameric 1, 3-adamantane, $T A(N)$, and we find the spectral moments of this graph and then by these spectral moments we compute the number of the k-matchings in $T A(N)$ for $N \geq 3$ and $k=2,3,4$.

2. Preliminaries

Our terminology and notations are mostly standard and are taken from Biggs [3]. Suppose G is a graph with n vertices, m edges and with adjacency matrix $A(G)$. The characteristic polynomial of $G, \varphi(G, \lambda)$, is defined as

$$
\varphi(G, \lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}
$$

An elementary subgraph of G is a subgraph, each of whose connected component is regular and has degree 1 or 2 . In other words, the connected components are single edges or a cycle. The following theorems of Biggs [3] is crucial throughout this paper.

Figure 1.1: The Tetrameric 1, 3-adamantane $T A(N)$.

Figure 2.1: The subgraphs H_{19} and H_{17}.

Theorem 2.1. Let G be a graph and $\varphi(G, \lambda)$ be the characteristic polynomial of G. Then $(-1)^{i} a_{i}=\Sigma(-1)^{r(H)} 2^{s(H)}$, where the summation is taken over all elementary subgraphs H of G which have i vertices and $r(H)=n-c$ and $s(H)=m-n+c$ where c is the number of connected components of H and m, n are the number of edges and vertices of H, respectively.

Theorem 2.2. Let G be a graph with characteristic polynomial $\varphi(G, \lambda)$. Then

1. $a_{1}=0$,
2. $a_{2}=$ the number of edges of G,
3. $a_{3}=t$ wice the number of triangles in G.

Throughout this paper, denote by P_{n}, C_{n}, S_{n} and U_{n} a path, a cycle, a star with n verices and a graph obtained from C_{n-1} by attaching a vertex of degree 1 to one vertex of C_{n-1}, respectively. Suppose F and G are graphs. An F-subgraph of G is a subgraph isomorphic to the graph F. The number of all F-subgraphs of G is denoted by $\phi_{G}(F)$. For the sake of completeness, we mention here three lemmas from Cvetković et al [4], Wu and Liu [16].

Lemma 2.3. The $k-t h$ spectral moment of G is equal to the number of closed walks of length k in G.

Lemma 2.4. For any graph G, we have

1. $S_{4}(G)=2 \phi\left(P_{2}\right)+4 \phi\left(P_{3}\right)+8 \phi\left(C_{4}\right)$,
2. $S_{5}(G)=30 \phi\left(C_{3}\right)+10 \phi\left(U_{4}\right)+10 \phi\left(C_{5}\right)$,
3. $S_{6}(G)=2 \phi\left(P_{2}\right)+12 \phi\left(P_{3}\right)+6 \phi\left(P_{4}\right)+12 \phi\left(S_{4}\right)+12 \phi\left(U_{5}\right)+36 \phi\left(B_{4}\right)+24 \phi\left(B_{5}\right)+24 \phi\left(C_{3}\right)+48 \phi\left(C_{4}\right)+12 \phi\left(C_{6}\right)$.

Lemma 2.5. For any graph G, we have

1. $S_{7}(G)=126 \phi\left(C_{3}\right)+84 \phi\left(H_{1}\right)+28 \phi\left(H_{7}\right)+14 \phi\left(H_{5}\right)+14 \phi\left(H_{6}\right)+112 \phi\left(H_{3}\right)+42 \phi\left(H_{15}\right)+28 \phi\left(H_{8}\right)+70 \phi\left(C_{5}\right)+14 \phi\left(H_{18}\right)+14 \phi\left(C_{7}\right)$,
2. $S_{8}(G)=2 \phi\left(P_{2}\right)+28 \phi\left(P_{3}\right)+32 \phi\left(P_{4}\right)+8 \phi\left(P_{5}\right)+72 \phi\left(K_{1,3}\right)+16 \phi\left(H_{17}\right)+48 \phi\left(K_{1,4}\right)+168 \phi\left(C_{3}\right)+64 \phi\left(H_{1}\right)+464 \phi\left(H_{3}\right)+384 \phi\left(H_{4}\right)+$ $96 \phi\left(H_{15}\right)+96 \phi\left(H_{10}\right)+48 \phi\left(H_{11}\right)+80 \phi\left(H_{12}\right)+32 \phi\left(H_{16}\right)+264 \phi\left(C_{4}\right)+24 \phi\left(H_{9}\right)+112 \phi\left(H_{2}\right)+16 \phi\left(H_{23}\right)+16 \phi\left(H_{20}\right)+16 \phi\left(H_{21}\right)+$ $32 \phi\left(H_{22}\right)+32 \phi\left(H_{13}\right)+32 \phi\left(H_{14}\right)+528 \phi\left(K_{4}\right)+96 \phi\left(C_{6}\right)+16 \phi\left(H_{19}\right)+16 \phi\left(C_{8}\right)$.

Some authors applied above formula to calculate the spectral moments of some graphs. They also gave an ordering of these graphs with respect to spectral moments [12]. Also some authors found signless Laplacian spectral moments of graphs and then they order some graphs with respect to them $[13,14]$.

Theorem 2.6. (Newtonś identity) Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the roots of the polynomial $\varphi(G, \lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n}$ with spectral moment S_{k}. Then

$$
a_{k}=\frac{-1}{k}\left(S_{k}+S_{k-1} a_{1}+\ldots+S_{1} a_{k-1}\right)
$$

3. Main Results

In this section, first we find the spectral moments of $T A(N)$, for $k=1,2,3, \ldots, 8$ and then by Newtons identity compute the coefficients of characteristic polynomial and matching polynomial in $T A(N)$ for $N \geq 3$.

Theorem 3.1. In a tetrameric 1, 3-adamantane $T A(N)$ we have

$$
\phi\left(P_{2}\right)=13 N-1, \quad \phi\left(P_{3}\right)=24 N-6, \quad \phi\left(P_{4}\right)=39 N-15, \quad \phi\left(P_{5}\right)=67 N-32
$$

Proof. It is easy to see that $\phi\left(P_{2}\right)=m=13 N-1$. In a tetrameric 1, 3-adamantane with $10 N$ vertices, there are $2 N+2$ vertices of degree 3, $6 N$ vertices of degree 2 and $2 N-2$ vertices of degree 4 . So $\phi\left(P_{3}\right)=24 N-6$.
To calculate $\phi\left(P_{4}\right)$, we select an edge e. There are three type of edges in $T A(N)$. The first type edges are those with an end vertex of degree 2 and another of degree 3 . The number of these edges is equal to $6 N+6$. The second type of edges are those with an end vertex of degree 2 and another of degree 4. The number of these edges is equal to $6 N-6$. The third type of edges are those both end vertices have degree 4. It is easy to see that the number of these edges is equal to $N-1$. Now if e is an edge of the first type, then the number of subgraphs isomorphic to P_{4} is equal to $2(6 N+6)$. If e is an edge of the second type, then the number of subgraphs isomorphic to P_{4} is equal to $3(6 N-6)$ and if e is an edge of the third type, then the number of subgraphs isomorphic to P_{4} is equal to $9(N-1)$. Thus $\phi\left(P_{4}\right)=39 N-15$.
To calculate $\phi\left(P_{5}\right)$, we select a vertex v as the middle vertex of $\phi\left(P_{5}\right)$. If v is a vertex of degree 3 , then the number of subgraphs isomorphic to $\phi\left(P_{5}\right)$ is equal to $6 N+6$. Suppose that v is a vertex of degree 2 . Then by a simple calculation we have $\phi\left(P_{5}\right)=37 N-14$. If v is a vertex of degree 4 , then $\phi\left(P_{5}\right)=24 N-24$. Therefore $\phi\left(P_{5}\right)=67 N-32$.

Theorem 3.2. The spectral moments of $T A(N)$, for $k=1,2,3, \ldots, 8$ can be computed as the followings:

$$
\begin{gathered}
S_{1}(T A(N))=0, \quad S_{2}(T A(N))=26 N-2, \quad S_{3}(T A(N))=0, \\
S_{4}(T A(N))=122 N-26, \quad S_{5}(T A(N))=0, \quad S_{6}(T A(N))=716 N-236, \\
S_{7}(T A(N))=0, \quad S_{8}(T A(N))=4690 N-2010 .
\end{gathered}
$$

Proof. It is easy to see that $S_{1}(T A(N))=0$. Also since $m(T A(N))=13 N-1$ and since a tetrameric 1,3 -adamantane is triangle free, $S_{3}(T A(N))=0$. Now we compute the forth spectral moment of $T A(N)$. By using Theorem 2.2 and Lemma 2.2 we have

$$
S_{4}(T A(N))=26 N-2+4(24 N-6)=122 N-26 .
$$

Since $\phi\left(C_{3}\right)=\phi\left(C_{5}\right)=0, S_{5}(T A(N))=0$. To compute $S_{6}(T A(N))$ it is easy to check that in $T A(N), \phi\left(K_{1,3}\right)=10 N-6$ and so $S_{6}(T A(N))=$ $716 N-236$. According to the structure of the tetrameric 1, 3-adamantane and by Lemma 2.5, we have $S_{7}(T A(N))=0$. To calculate the eighth spectral moment of $T A(N)$, we must calculate the number of subgraphs isomorphic to $K_{1,4}, C_{8}, H_{17}$ and H_{19}, where the last two subgraphs are shown in Figure 2.1 and the number of other subgraphs mentioned in Lemma 2.5 is equal to 0 . To have a subgraph isomorphic to H_{17}, we select an edge $e=u v$ such that the degree of u is at least 2 and degree of v is at least 3 . If e is an edge of the first type, then $\phi\left(H_{17}\right)=6 N+6$. While if e is an edge of the second type, then $\phi\left(H_{17}\right)=18 N-18$ and otherwise $\phi\left(H_{17}\right)=18 N-18$. So in a tetrameric 1,3 -adamantane we have $\phi\left(H_{17}\right)=42 N-30$. A simple verification shows that the number of subgraphs isomorphic to H_{19} is equal to $18 N-6$ and also $\phi\left(K_{1,4}\right)=2 N-2$. Therefore by Lemma 2.5 we have $S_{8}(T A(N))=4690 N-2010$.

Theorem 3.3. The coefficients of characteristic polynomial of $\operatorname{TA}(N)$, for $i=1,2,3, \ldots, 8$ are as following:

$$
\begin{aligned}
& a_{1}(T A(N))=0, a_{2}(T A(N))=-13 N+1, a_{3}(T A(N))=0, \\
& a_{4}(T A(N))=\frac{169 N^{2}}{2}-\frac{87 N}{2}+7, a_{5}(T A(N))=0, \\
& a_{6}(T A(N))=\frac{-1445 N}{6}+46+481 N^{2}-\frac{2197 N^{3}}{6}, a_{7}(T A(N))=0, \\
& a_{8}(T A(N))=\frac{-18205 N}{12}+315+\frac{72107 N^{2}}{24}-\frac{35321 N^{3}}{12}+\frac{28561 N^{4}}{24} .
\end{aligned}
$$

Proof. By Theorem 2.1 and Newtonś identity we can compute the coefficients of characteristic polynomial of a tetrameric 1, 3-adamantane. It is easy to check that $a_{1}=a_{3}=a_{5}=a_{7}=0$. Since $S_{2}(T A(N))=26 N-2, a_{2}(T A(N))=-13 N+1$. Also since $S_{4}(T A(N))=122 N-26$ and $S_{6}(T A(N))=716 N-236$, thus $a_{4}(T A(N))=\frac{169 N^{2}}{2}-\frac{87 N}{2}+7$ and $a_{6}(T A(N))=\frac{-1445 N}{6}+46+481 N^{2}-\frac{2197 N^{3}}{6}$. Similarly the eighth coefficients of characteristic polynomial of $T A(N)$ can be calculated.

In the following by Theorems 2.1 and 2.2 we can compute the coefficients of matching polynomial of $T A(N), m(T A(N), k)$, for $k=2,3,4$ and $N \geq 3$.
Theorem 3.4. In a tetrameric 1, 3-adamantane, we have:

$$
\begin{aligned}
& m(T A(N), 2)=\frac{169 N^{2}}{2}-\frac{87 N}{2}+7 \\
& m(T A(N), 3)=\frac{1397 N}{6}-46-481 N^{2}+\frac{2197 N^{3}}{6} \\
& m(T A(N), 4)=\frac{-17029 N}{12}+303+\frac{69611 N^{2}}{24}-\frac{35321 N^{3}}{12}+\frac{28561 N^{4}}{24}
\end{aligned}
$$

Proof. We have $a_{4}=\Sigma(-1)^{r(H)} 2^{s(H)}$, where H is an elementary subgraph with 4 vertices. Since there is one elementary subgraph with 4 vertices, $\left.a_{4}=m(T A(N), 2)\right)=\frac{1397 N}{6}-46-481 N^{2}+\frac{2197 N^{3}}{6}$. To calculate $m(T A(N), 3)$ again by Theorem 2.1 we have

$$
a_{6}=\sum_{A}(-1)^{3}+\sum_{B}(-1)^{5} 2=-m(T A(N), 3)-2 \phi\left(C_{6}\right),
$$

where A and B are the subgraphs isomorphic to three separate edges and a 6 -cycle, respectively. Due to the structure of a tetrameric 1 , 3-adamantane, we have $\phi\left(C_{6}\right)=4 N$ and thus by Theorem 3.3

$$
m(T A(N), 3)=-a_{6}-8 N=\frac{1397 N}{6}-46-481 N^{2}+\frac{2197 N^{3}}{6}
$$

Now we compute the number of 4-matchings in $\operatorname{TA}(N)$. We have

$$
a_{8}=\sum_{A}(-1)^{4}+\sum_{B}(-1)^{6} 2+\sum_{C}(-1)^{7} 2=m(T A(N), 4)+2|B|-2 \phi\left(C_{8}\right),
$$

where A, B and C are the four separate edges, a 6 -cycle with a single edge and a 8 -cycle, respectively. It is easy to see that $|C|=\phi\left(C_{8}\right)=3 N$. Now we calculate the number of subgraphs isomorphic to B. We consider part 1 of $T A(N)$, Figure 1.1. For the first 6 -cycle, there are $m-9$ ways to choose a single edge. For each of the second and third 6 -cycle there are $m-10$ ways to choose a single edge. Also for the forth 6 -cycle, that is $u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{1}$, there are $m-10$ ways to choose a single edge. Thus for the first part of $T A(N)$ we have, $|B|=4 m-39$. Similarly for the N-th part of $T A(N)$ we have, $|B|=4 m-39$. For each of the $(N-2)$ middle part of $T A(N)$ there are in total $4 m-42$ ways to select a 6 -cycle with a single edge. Finally by putting $m=13 N-1$ we have, $|B|=2(4 m-39)+(N-2)(4 m-42)=52 N 2-46 N+6$. Therefore

$$
m(T A(N), 4)=\frac{-17029 N}{12}+303+\frac{69611 N^{2}}{24}-\frac{35321 N^{3}}{12}+\frac{28561 N^{4}}{24}
$$

This completes the proof.

Acknowledgement

The research of this paper is partially supported by the University of Kashan under grant no 504631/17.

References

[1] Ashrafi A.R. and Fath-Tabar G.H. , Bounds on the Estrada index of $\operatorname{ISR}(4,6)$-fullerene, Appl. Math. Lett., 24, (2011) 337-339.
[2] Behmaram A., On the number of 4 -matchings in graphs, MATCH Commun. Math. Comput. Chem. 62, (2009) 381-388.
[3] Biggs N., Algebraic Graph Theory, Cambridge Univ, Press, Cambridge (1974).
[4] Cvetković D., Doob M. and Sachs H., Spectra of Graphs-Theory and Applications, Academic Press, New York (1980).
[5] Fath-Tabar G.H., Doslić T. and Ashrafi A.R., On the Szeged and the Laplacian Szeged spectrum of a graph, Linear Algebra Appl., 433, (2010) 662-671.
[6] Fath-Tabar G.H. and Ashrafi A.R., New upper bounds for Estrada index of bipartite graph, Linear Algebra. Appl., 435, (2011) 2607-2611.
[7] Godsil C.D. and Gutman I., Some remarks on the matching polynomial and its zeros, Croat. Chem. Acta 54, (1981) 53-59.
[8] C.D. Godsil and I. Gutman, On the theory of the matching polynomial, J. Graph Theory, 5, 137-144 (1981).
[9] Gutman I., The matching polynomial, MATCH Commun. Math.Comput. Chem. 6, (1979) 75-91.
[10] Gutman I., Milun M. Trinajstić and N., Non-Parametric Resonance Energies of Arbitrary Conjugated Systems, J. Am. Chem. Soc. 99, (1977) 1692-1704.
[11] Riordan J., An Introduction to Combinatorial Analysis, Wiley, New York (1958).
[12] Taghvaee F. and Ashrafi A.R., Comparing fullerenes by spectral moments, J. Nanosci. Nanotechnol., 16, (2016) 1-4.
[13] Taghvaee F. and Fath-Tabar G.H., Signless Laplacian spectral moments of graphs and ordering some graphs with respect to them, Alg. Struc. Appl., 1, (2014) 133-141.
[14] Taghvaee F. and Fath-Tabar G.H., Relationship between coefficients of characteristic polynomial and matching polynomial of regular graphs and its applications, Iranian J. Math. Chem., 8 (2017), 7-23.
[15] Vesalian R. and Asgari F., Number of 5-matchings in graphs, MATCH Commun. Math. Comput. Chem., 69 (2013), 33-46.
[16] Wu Y., and Liu H., Lexicographical ordering by spectral moments of trees with a prescribed diameter, Linear Algebra Appl., 433 (2010), 1707-1713.

