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Abstract

We obtain the necessary and sufficient conditions for the convergence of an explicit iterative procedure to a common fixed point of a finite
family of non-self asymptotically quasi-nonexpansive type mappings in real Banach spaces. We also prove the strong convergence of this
iterative method to a common fixed point of a finite family of non-self asymptotically quasi-nonexpansive in the intermediate sense mappings
in uniformly convex Banach spaces. Our results mainly generalize and extend those obtained by Wang [L. Wang, Explicit iteration method
for common fixed points of a finite family of nonself asymptotically nonexpansive mappings, Computers & Mathematics with applications,
53, (2007), 1012 - 1019.]
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1. Introduction

Let K be a nonempty subset of a real normed linear space E. A self-mapping T : K→ K is called nonexpansive if ‖ T x−Ty ‖≤‖ x− y ‖ for
every x,y ∈ K and asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that for every n≥ 1,
‖ T nx−T ny ‖≤ kn ‖ x− y ‖ for all x,y ∈ K. If F(T ) = {x ∈ K : T x = x} 6= φ and there exists a sequence {kn} ⊂ [1,∞) with kn → 1 as
n→ ∞ such that ‖ T nx− y ‖≤ kn ‖ x− y ‖ for all x ∈ K, y ∈ F(T ) and every n≥ 1 then T is called asymptotically quasi-nonexpansive. T is
called uniformly L-Lipschitzian if there exists a real number L > 0 such that ‖ T nx−T ny ‖≤ L ‖ x− y ‖ for all x,y ∈ K and all n≥ 1.
The class of asymptotically nonexpansive mappings was introdued by Goebel and Kirk [5] and the class forms an important generalization of
that of nonexpansive mappings. It was proved in [5] that if K is a nonempty closed convex subset of a real uniformly convex Banach space
and T is an asymptotically nonexpansive self-mapping on K, then T has a fixed point.
Iterative methods for approximating fixed points of nonexpansive mappings have been studied by many authors (see for example [1], [2], [3],
[4], [6], [8], [12], [14] and the references therein).
In Most of these papers, the well-known Mann iteration process [7],

x1 ∈ K, xn+1 = (1−αn)xn +αnT xn, n≥ 1, (*)

has been studied and the operator T has been assumed to map K into itself. The convexity of K then ensures that the sequence {xn} generated
by (*) is well defined.
In 2001, Xu and Ori [25] introduced the following implicit iteration process for a finite family of nonexpansive self-mappings {Ti, i ∈ I},
where I = {1,2, ...,N}.
For any initial point x0 ∈ K,

xn = αnxn−1 +(1−αn)Tnxn n≥ 1,

where {αn} is a real sequence in (0,1) and Tn = Tn(modN), the mod N function takes values in I. They proved weak convergence of the above
process to a common fixed point of the finite family of nonexpansive self-mappings. Later on, the implicit iteration method has been used to
study the common fixed point of a finite family of strictly pseudocontractive self-mappings, asymptotically nonexpansive self-mappings or
asymptotically quasi-nonexpansive self-mappings by some authors (see for example [10], [16] and [26], respectively). In 1991, Schu [15]
introduced a modified iteration process to approximate fixed points of asymptotically nonexpansive self-mappings in Hilbert space. More
precisely, he proved the following theorem.
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Theorem 1.1. ([15]) Let H be a Hilbert space, K a nonempty closed convex and bounded subset of H. Let T : K→ K be an asymptotically
nonexpansive mapping with sequence {kn} ⊂ [1,∞) for all n≥ 1, limkn = 1 and ∑

∞
n=1(k

2
n−1)< ∞. Let {αn} be a real sequence in [0,1]

satisfying the condition 0 < a≤ αn ≤ b < 1, n≥ 1, for some constants a and b. Then the sequence {xn} generated from x1 ∈ K by

xn+1 = (1−αn)xn +αnT nxn n≥ 1,

converges strongly to some fixed point of T .

Since then, Schu’s iteration process has been widely used to approximate fixed points of asymptotically nonexpansive self-mappings in
Hilbert space or Banach space (see for example [9], [13], [12], [19]). If, however, K is a proper subset of the real Banach space E and T
maps K into E (as in the case in many applications), then the sequence given by (*) may not be well-defined. one method that has been used
to overcome this in the case of a single operator T is to introduce a retraction P : E→ K in the recursion formula (*) as follows :

x1 ∈ K, xn+1 = (1−αn)xn +αnPT xn, n≥ 1.

Recent results on approximation of fixed points of nonexpansive and asymptotically nonexpansive self and nonself single mappings can be
found in ([3], [4], [6], [8], [11], [14], [17], [18], [20], [22], [24] and the references therein).
The concept of nonself asymptotically nonexpansive mappings was introduced by Chidume et al. [4] as an important generalization of
asymptotically nonexpansive self-mappings.

Definition 1.2. [4] Let K be a nonempty subset of a real normed space E. Let P : E → K be a nonexpansive retraction of E onto K. A
nonself mapping T : K→ E is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with kn→ 1 as n→ ∞ such that
for every n≥ 1,

‖ T (PT )n−1x−T (PT )n−1y ‖≤ kn ‖ x− y ‖ for all x,y ∈ K.

T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that for every n≥ 1,

‖ T (PT )n−1x−T (PT )n−1y ‖≤ L ‖ x− y ‖ for all x,y ∈ K.

It is easy to see that a nonself asymptotically nonexpansive is uniformly L-Lipschitzian.
By studying the following iteration process

x1 ∈ K, xn+1 = P((1−αn)xn +αnT (PT )n−1xn), n≥ 1

Chidume, Ofoedu and Zegeye [4] got some strong convergence theorems for nonself asymptotically nonexpansive mappings in uniformly
convex Banach spaces.
Recently, Wang [22] proved the following strong convergence theorems for common fixed points of two nonself asymptotically nonexpansive
mappings as follows ;

Theorem 1.3. ([22]) Let K a nonempty closed convex subset of a uniformly convex Banach space E. Suppose that T1,T2 : K→ E are two
nonself asymptotically nonexpansive mappings with sequences {kn},{ln} ⊂ [1,∞) such that ∑

∞
n=1(kn−1)< ∞, ∑

∞
n=1(ln−1)< ∞. From

arbitrary x1 ∈ K, let {xn} be defined by

xn+1 = (1−αn)xn +αnT1(PT1)
n−1yn n≥ 1,

yn = (1−βn)xn +βnT2(PT2)
n−1xn,

where {αn} and {βn} are two sequences in [ε,1− ε] for some ε > 0. If one of T1 and T2 is completely continuous and F(T1)∩F(T2) 6= /0
then {xn} converges strongly to a common fixed point of T1 and T2.

Theorem 1.4. ([22]) Let K, E, T1, T2 and {xn} be as in Theorem 1.2. If one of T1 and T2 is demicompact then {xn} converges strongly to a
common fixed point of T1 and T2.

Definition 1.5. [11] Let K be a nonempty subset of a real normed space E. Let P : E → K be a nonexpansive retraction of E onto K. A
nonself mapping T : K→ E is called asymptotically nonexpansive in the intermediate sense if T is uniformly continuous and

limsup
n→∞

sup
x,y∈K

{‖ T (PT )n−1x−T (PT )n−1y ‖ − ‖ x− y ‖} ≤ 0. (1.1)

In 2007, Y. X. Tian, S. S. Chang and J. L. Huang [21] introduced the following concepts for nonself mappings:

Definition 1.6. [21] Let E be a real Banach space, C a nonempty nonexpansive retract of E and P the nonexpansive retraction from E onto
C. Let T : C→ E be a non-self mapping.

(1) T is said to be a nonself asymptotically quasi-nonexpansive mapping if F(T ) 6= /0 and there exists a sequence {kn} ⊂ [1,∞) with
limn→∞ kn = 1 such that for every n≥ 1,

‖ T (PT )n−1x− p ‖ ≤ kn ‖ x− p ‖ f or all x ∈ K, p ∈ F(T ).

(2) T is said to be a nonself asymptotically nonexpansive type mapping if

limsup
n→∞

{ sup
x,y∈K

[‖ T (PT )n−1x−T (PT )n−1y ‖ − ‖ x− y ‖]} ≤ 0.

(3) T is said to be a nonself asymptotically quasi-nonexpansive type mapping if F(T ) 6= /0 and

limsup
n→∞

{ sup
x∈K,q∈F(T )

[‖ T (PT )n−1x−q ‖ − ‖ x−q ‖]} ≤ 0.
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Remark

(i) If T : C→ E is a nonself asymptotically nonexpansive mapping, then T is is a nonself asymptotically nonexpansive type mapping.
(ii) If T : C→ E is a nonself asymptotically quasi-nonexpansive mapping, then T is a nonself asymptotically quasi-nonexpansive type

mapping.
(iii) If F(T ) 6= /0 and T : C → E is a nonself asymptotically nonexpansive type mapping, then T is a nonself asymptotically quasi-

nonexpansive type mapping.

Very recently, Lin Wang [23] constructed an explicit iteration scheme to approximate a common fixed point of a finite family of nonself
asymptotically nonexpansive mappings {Ti : K → E, i ∈ I}, where I denotes the set {1,2, ...,N} and proved some strong convergence
theorems for such mappings in uniformly convex Banach spaces as follows; From arbitrary x0 ∈ K,

x1 = P((1−α1)x0 +α1T1(PT1)
m−1x0), m≥ 1,

x2 = P((1−α2)x1 +α2T2(PT2)
m−1x1),

.

.

.

xN = P((1−αN)xN−1 +αNTN(PTN)
m−1xN−1),

xN+1 = P((1−αN+1)xN +αN+1T1(PT1)
m−1xN),

xN+2 = P((1−αN+2)xN+1 +αN+2T2(PT2)
m−1xN+1),

.

.

.

x2N = P((1−α2N)x2N−1 +α2NTN(PTN)
m−1x2N−1),

x2N+1 = P((1−α2N+1)x2N +α2N+1T1(PT1)
m−1x2N),

.

.

.

which can be rewritten in a compact form as follows

xn = P((1−αn)xn−1 +αnTn(PTn)
m−1xn−1), n≥ 1, m≥ 1, (1.2)

where n = (m−1)N + i, Tn = Tn(modN) = Ti, i ∈ I, {αn} is a real sequence in [0,1].
Motivated and inspired by the previous facts, we extend the results obtained by Lin Wang [23] to the case of nonself asymptotically
quasi-nonexpansive mappings and the case of nonself asymptotically quasi-nonexpansive mappings in the intermediate sense which is
slightly more general than the class nonself asymptotically nonexpansive mappings in the intermediate sense introduced by S. Plubteing and
R. Wangkeeree [11] as follows ;

Definition 1.7. Let K be a nonempty subset of a real normed space E. Let P : E→ K be a nonexpansive retraction of E onto K. A nonself
mapping T : K→ E with a nonempty fixed point set is called asymptotically quasi-nonexpansive in the intermediate sense if T is uniformly
continuous and

limsup
n→∞

sup
x∈K,y∈F(T )

{‖ T (PT )n−1x− y ‖ − ‖ x− y ‖} ≤ 0. (1.3)

Moreover, we discuss the necessary and sufficient condition for convergence of the explicit iterative scheme (1.1) to a common fixed point
(assuming existence) of a finite family of nonself asymptotically quasi-nonexpansive type mappings in real Banach spaces.

2. Preliminaries

Let E be a real normed linear space. The modulus of convexity of E is the function δE : (0,2]→ [0,1] defined by

δE(ε) = inf{1− 1
2
‖ x+ y ‖:‖ x ‖=‖ y ‖= 1,‖ x− y ‖= ε}.

E is uniformly convex if and only if δE(ε)> 0 for every ε ∈ (0,2].
A subset K of E is said to be a retract of E if there exists a continuous map P : E→ K such that Px = x, x ∈ K. Every closed convex subset
of a uniformly convex Banach space is a retract. A map P : E→ E is said to be a retraction if P2 = P. It follows that if P is a retraction then
Py = y for all y ∈ R(P), the range of P.
A mapping T : K→ K is said to be semicompact if, for any bounded sequence {xn} in K such that ‖ xn−T xn ‖→ 0 as n→ 0, there exists
a subsequence {xn j}, say, of {xn} such that {xn j} converges strongly to some x∗ in K. T is said to be completely continuous if, for any
bounded sequence {xn}, there exists a subsequence {T xn j}, say, of {T xn} such that {T xn j} converges strongly to some element of the range
of the range of T .
In what follows we shall use the following results.
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Lemma 2.1. [19] Let {λn}∞
n=1 and {µn}∞

n=1 be sequences of nonnegative real numbers such that λn+1 ≤ λn +µn, n≥ 1 and ∑
∞
n=1 µn < ∞

then limn→∞ λn exists. Moreover, if there exists a subsequence {λn j} of {λn} such that λn j → 0 as j→ ∞ then λn→ 0 as n→ ∞.

Lemma 2.2. [15] Let E be a real uniformly convex Banach space and 0 < α ≤ tn ≤ β < 1 for all positive integers n≥ 1. Suppose that
{xn} and {yn} are two sequences of E such that

limsup
n→∞

‖ xn ‖≤ r, limsup
n→∞

‖ yn ‖≤ r and limsup
n→∞

‖ tnxn +(1− tn)yn ‖= r

hold for some r ≥ 0, then limn→∞ ‖ xn− yn ‖= 0.

Lemma 2.3. [4] Let E be a real uniformly convex Banach space and K a nonempty closed convex subset of E and let T : K → E be
asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1,∞) such that kn→ 1 as n→ ∞, then I−T is demiclosed at zero.

3. Main Results

3.1. Asymptotically quasi-nonexpansive type mappings

Theorem 3.1. Let K be a nonempty closed convex subset of a real Banach space E which is also a nonexpansive retract of E with a
nonexpansive retraction P : E→ K. Suppose that Ti : K→ E, i ∈ I be N nonself asymptotically quasi-nonexpansive type mappings with a
nonempty closed common fixed point set F =

⋂N
i=1 F(Ti). Let {xn}∞

n=1 be the iterative sequence defined iteratively by (1.2) with the sequence
{αn}∞

n=1 satisfying that ∑
∞
n=1 αn < ∞. Then {xn} converges strongly to a common fixed point of Ti, i∈ I if and only if liminfn→∞ d(xn,F) = 0,

where d(xn,F) is the distance from xn to the set F.

Proof. Necessity of the condition is obvious. Since if xn → q as n→ ∞, q ∈ F , then limn→∞ d(xn,F) = d(limn→∞ xn,F) = d(q,F) = 0.
Hence, liminfn→∞ d(xn,F) = 0.
Next, we prove sufficiency. Since Ti, i ∈ I are N nonself asymptotically quasi-nonexpansive type mappings, that is, for each i ∈ I, F(Ti) 6= /0
and

limsup
n→∞

{ sup
x∈K,q∈F(Ti)

[‖ Ti(PTi)
n−1x−q ‖ − ‖ x−q ‖]} ≤ 0.

Then given any ε > 0, there exists a positive integer n0 such that for all n≥ n0,

sup
x∈K,q∈F(Ti)

[‖ Ti(PTi)
n−1x−q ‖ − ‖ x−q ‖]} < ε, i ∈ I.

Since {xn} ⊂ K, then for any m≥ n0 we have

‖ Ti(PTi)
m−1xn−q ‖ − ‖ xn−q ‖ < ε, i ∈ I, n≥ 1. (3.1)

Hence for every x∗ ∈ F and for any m≥ n0, n≥ 1, it follows from (1.2) and (3.1) that

‖ xn− x∗ ‖ = ‖ P((1−αn)xn−1 +αnTn(PTn)
m−1xn−1)− x∗ ‖

≤ ‖ (1−αn)xn−1 +αnTn(PTn)
m−1xn−1− x∗ ‖

≤ (1−αn) ‖ xn−1− x∗ ‖+αn ‖ Tn(PTn)
m−1xn−1− x∗ ‖

≤ (1−αn) ‖ xn−1− x∗ ‖+αn(‖ Tn(PTn)
m−1xn−1− x∗ ‖ − ‖ xn−1− x∗ ‖)+

αn ‖ xn−1− x∗ ‖
≤ ‖ xn−1− x∗ ‖+αnε.

That is, we have

‖ xn+1− x∗ ‖ ≤ ‖ xn− x∗ ‖+αn+1ε.

By arbitrariness of x∗ ∈ F , we get, upon taking infimum over x∗ ∈ F ,

inf
x∗∈F
‖ xn+1− x∗ ‖ ≤ inf

x∗∈F
‖ xn− x∗ ‖+αn+1ε,

so that

d(xn+1,F) ≤ d(xn,F)+αn+1ε,

i. e, λn+1 ≤ λn +µn, n≥ 1, where λn = d(xn,F) and µn = αn+1ε , n≥ 1. Clearly, ∑
∞
n=1 µn < ∞ by our assumption. Then limn→∞ d(xn,F)

exists, by Lemma 2.1. But liminfn→∞ d(xn,F) = 0, then limn→∞ d(xn,F) = 0.
Now, for any x∗ ∈ F ,

‖ xn+l − xn ‖ ≤ ‖ xn+l − x∗ ‖+ ‖ xn− x∗ ‖,

taking infimum on both sides over x∗ ∈ F , we obtain

‖ xn+l − xn ‖ ≤ d(xn+l ,F)+d(xn,F),

letting n→ ∞ on both sides of the above inequality yields that limn→∞ ‖ xn+l− xn ‖= 0, which shows that {xn} is a Cauchy sequence. Since
K is a closed subset of the real Banach space E, then K is also complete. Hence there exists p ∈ K such that xn→ p as n→ ∞. Finally,
we prove that p ∈ F . Since limn→∞ d(xn,F) = d(limn→∞ xn,F) = d(p,F) = 0. Then p ∈ F , but F is closed, then p ∈ F and the proof is
complete.
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Theorem 3.2. Let K be a nonempty closed convex subset of a real Banach space E which is also a nonexpansive retract of E with a
nonexpansive retraction P : E→K. Suppose that Ti : K→ E, i∈ I be N continuous nonself asymptotically quasi-nonexpansive type mappings
with a nonempty common fixed point set F =

⋂N
i=1 F(Ti). Let {xn}∞

n=1 be the iterative sequence defined iteratively by (1.2) with the sequence
{αn}∞

n=1 satisfying that ∑
∞
n=1 αn < ∞. Then {xn} converges strongly to a common fixed point of Ti, i∈ I if and only if liminfn→∞ d(xn,F) = 0,

where d(xn,F) is the distance from xn to the set F.

We only need to show that F is closed so that the conclusion of Theorem 3.2 follow from the conclusion of Theorem 3.1 immediately. Let
{pn} be a sequence of elements of F , i. e, Ti pn = pn, n≥ 1, i ∈ I. Assume that pn→ p∗ as n→ ∞. We claim that p∗ ∈ F . Indeed, since for
each i ∈ I, we have

‖ Ti p∗− p∗ ‖ ≤ ‖ Ti p∗− pn ‖+ ‖ pn− p∗ ‖
= ‖ Ti p∗−Ti pn ‖+ ‖ pn− p∗ ‖ . (3.2)

Since Ti is continuous, i ∈ I, then letting n→ ∞ on both sides of (3.2) yields that

limn−→∞ ‖ Ti p∗− p∗ ‖= 0,

which implies that Ti p∗ = p∗, i ∈ I and hence p∗ ∈ F .

3.2. Asymptotically quasi-nonexpansive mappings

Lemma 3.3. Let K be a nonempty closed convex subset of a normed linear space E which is also a nonexpansive retract of E with
a nonexpansive retraction P. Let {Ti : i ∈ I} be N nonself asymptotically quasi-nonexpansive mappings from K to E with sequences
{k(i)n } ⊂ [1,∞) such that ∑

∞
n=1(k

(i)
n −1) < ∞ and limn→∞ k(i)n = 1 for all i ∈ I, respectively. Let {αn} be a real sequence in [0,1) and let

{xn} be the sequence defined by (1.2). If F =
⋂N

i=1 F(Ti) 6= /0, then limn−→∞ ‖ xn− x∗ ‖ exists for each x∗ ∈ F.

Proof. For each positive integer n, put kn = maxi∈I k(i)n = 1+un.
Thus, 1≤ kn ≤ ∑

N
n=1 k(i)n − (N−1). Since for each i ∈ I, ∑

∞
n=1(k

(i)
n −1)< ∞ then ∑

∞
n=1(kn−1)< ∞, consequently ∑

∞
n=1 un < ∞. For any

x∗ ∈ F , n = (m(n)−1)N + i(n), i(n) ∈ I, it follows from (1.2) that

‖ xn− x∗ ‖ = ‖ P[(1−αn)xn−1 +αnTn(PTn)
m(n)−1xn−1]− x∗ ‖

≤ ‖ (1−αn)xn−1 +αnTn(PTn)
m(n)−1xn−1− x∗ ‖

≤ (1−αn) ‖ xn−1− x∗ ‖+αn ‖ Tn(PTn)
m(n)−1xn−1− x∗ ‖

≤ (1−αn) ‖ xn−1− x∗ ‖+αn(1+um) ‖ xn−1− x∗ ‖
≤ (1+um) ‖ xn−1− x∗ ‖,

that is,

‖ xn− x∗ ‖ ≤ ‖ xn−1− x∗ ‖+um ‖ xn−1− x∗ ‖ . (3.3)

Furthermore, we have

‖ xn− x∗ ‖ = ‖ x(m(n)−1)N+i(n)− x∗ ‖
= ‖ P[(1−α(m(n)−1)N+i(n))x(m(n)−1)N+i(n)−1 +

α(m(n)−1)N+i(n)T(m(n)−1)N+i(n)(PT(m(n)−1)N+i(n))
m(n)−1x(m(n)−1)N+i(n)−1]− x∗ ‖

≤ ‖ (1−α(m(n)−1)N+i(n))x(m(n)−1)N+i(n)−1 +

α(m(n)−1)N+i(n)T(m(n)−1)N+i(n)(PT(m(n)−1)N+i(n))
m(n)−1x(m(n)−1)N+i(n)−1− x∗ ‖

≤ (1−α(m(n)−1)N+i(n)) ‖ x(m(n)−1)N+i(n)−1− x∗ ‖+

α(m(n)−1)N+i(n) ‖ T(m(n)−1)N+i(n)(PT(m(n)−1)N+i(n))
m(n)−1x(m(n)−1)N+i(n)−1− x∗ ‖

≤ (1−α(m(n)−1)N+i(n)) ‖ x(m(n)−1)N+i(n)−1− x∗ ‖+
α(m(n)−1)N+i(n)(1+um) ‖ x(m(n)−1)N+i(n)−1− x∗ ‖

≤ (1+um) ‖ x(m(n)−1)N+i(n)−1− x∗ ‖

≤ (1+um)
2 ‖ x(m(n)−1)N+i(n)−2− x∗ ‖

≤ ...≤ (1+um)
i(n) ‖ x(m(n)−1)N − x∗ ‖ . (3.4)

In addition, since m = 1, while 1≤ n≤ N, then

‖ x1− x∗ ‖ ≤ ‖ (1−α1)x0 +α1T1(PT1)
m(n)−1x0− x∗ ‖

≤ (1−α1) ‖ x0− x∗ ‖+α1 ‖ T1(PT1)
m(n)−1x0− x∗ ‖

≤ (1−α1) ‖ x0− x∗ ‖+α1(1+u1) ‖ x0− x∗ ‖
≤ (1+u1) ‖ x0− x∗ ‖,
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‖ x2− x∗ ‖ ≤ ‖ (1−α2)x1 +α2T2(PT2)
m(n)−1x1− x∗ ‖

≤ (1−α2) ‖ x1− x∗ ‖+α2 ‖ T2(PT2)
m(n)−1x1− x∗ ‖

≤ (1−α2) ‖ x1− x∗ ‖+α2(1+u1) ‖ x1− x∗ ‖
≤ (1+u1) ‖ x1− x∗ ‖≤ (1+u1)

2 ‖ x0− x∗ ‖,

hence,

‖ xN − x∗ ‖ ≤ (1+u1)
N ‖ x0− x∗ ‖ .

Similarly, we have

‖ x2N − x∗ ‖ ≤ ‖ (1−α2N)x2N−1 +α2NT2N(PT2N)
m(n)−1x2N−1− x∗ ‖

≤ (1−α2N) ‖ x2N−1− x∗ ‖+α2N ‖ T2N(PT2N)
m(n)−1x2N−1− x∗ ‖

≤ (1−α2N) ‖ x2N−1− x∗ ‖+α2N(1+u2) ‖ x2N−1− x∗ ‖
≤ (1+u2) ‖ x2N−1− x∗ ‖≤ (1+u2)

N ‖ xN − x∗ ‖
≤ (1+u2)

N(1+u1)
N ‖ x0− x∗ ‖ .

Therefore,

‖ x(m(n)−1)N − x∗ ‖ ≤ (1+u1)
N(1+u2)

N ...(1+um(n)−1)
N ‖ x0− x∗ ‖ . (3.5)

Finally (3.4) together with (3.5) imply that

‖ xn− x∗ ‖ ≤ (1+um)
i(n) ‖ x(m(n)−1)N − x∗ ‖

≤ (1+u1)
N(1+u2)

N ...(1+um(n)−1)
N(1+um)

i(n) ‖ x0− x∗ ‖,

i(n) ∈ I. Thus

‖ xn− x∗ ‖ ≤ (1+u1)
N(1+u2)

N ...(1+um(n)−1)
N(1+um)

N ‖ x0− x∗ ‖ . (3.6)

Since 1+ x≤ ex, x≥ 0, then

‖ xn− x∗ ‖ ≤ eNu1 eNu2 ...eNum ‖ x0− x∗ ‖= eN ∑
m
j=1 u j ‖ x0− x∗ ‖≤ eN ∑

∞
j=1 u j ‖ x0− x∗ ‖ .

But ∑
∞
j=1 u j < ∞, then {xn} is a bounded sequence and there exists a constant M > 0 such that ≤‖ xn− x∗ ‖M, n≥ 0. It follows, from (3.3),

that

‖ xn− x∗ ‖ ≤ ‖ xn−1− x∗ ‖+umM.

Since n→ ∞ is equivalent to m→ ∞, it follows from Lemma 2.1 that limn→∞ ‖ xn− x∗ ‖ exists for any x∗ ∈ F . The proof is complete.

Lemma 3.4. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of
E with a nonexpansive retraction P. Let Ti, i ∈ I be N nonself asymptotically quasi-nonexpansive mappings from K to E with sequences
{k(i)n } ⊂ [1,∞) such that ∑

∞
n=1(k

(i)
n −1)< ∞ and limn→∞ k(i)n = 1 for all i ∈ I, respectively and suppose that Ti are uniformly Li-Lipschitzian

with the uniform Lipschitz constants Li > 0, i ∈ I, respectively. Let {xn} be the sequence defined by (1.2) where {αn} is a real sequence in
[δ ,1−δ ] for some δ ∈ (0,1). If F =

⋂N
i=1 F(Ti) 6= /0, then limn−→∞ ‖ xn−Tixn ‖= 0 for each i ∈ I.

Proof. Lemma 3.3 asserts that limn−→∞ ‖ xn− x∗ ‖ exists for each x∗ ∈ F . We may assume that, for some x∗ ∈ F , limn−→∞ ‖ xn− x∗ ‖= c
for some c≥ 0. If c = 0, we are done. So let c > 0. Set n = (m(n)−1)N + i(n), i(n) ∈ I. Since

‖ xn+1− x∗ ‖ = ‖ P[(1−αn+1)xn +αn+1Tn+1(PTn+1)
m(n)−1xn]− x∗ ‖

≤ ‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ (3.7)

Taking lim inf on both sides of (3.7), we obtain

liminf
n−→∞

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ ≥ c. (3.8)

Also,

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ ≤ (1+um) ‖ xn− x∗ ‖,

which on taking lim sup on both sides yields that

limsup
n−→∞

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖

≤ limsup
m−→∞

(1+um) ‖ xn− x∗ ‖= c. (3.9)

Inequalities (3.8) and (3.9) imply

lim
n−→∞

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ = c. (3.10)
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Since limn−→∞ ‖ xn− x∗ ‖= c and limsupn−→∞ ‖ Tn+1(PTn+1)
m(n)−1xn− x∗ ‖≤ c, it follows from Lemma 2.2 that

lim
n−→∞

‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖ = 0. (3.11)

Since

‖ xn+1− xn ‖ ≤ αn+1 ‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖

then, by (3.11), we have

lim
n−→∞

‖ xn+1− xn ‖ = 0.

By induction, we have

lim
n−→∞

‖ xn+r− xn ‖ = 0 (3.12)

for any positive integer r.
Let L = maxi∈I{Li}. When n > N (m≥ 2), we have

‖ xn−Tn+1xn ‖ ≤ ‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖+ ‖ Tn+1(PTn+1)

m(n)−1xn−Tn+1xn ‖
≤ ‖ xn−Tn+1(PTn+1)

m(n)−1xn ‖+L ‖ P[Tn+1(PTn+1)
m(n)−2]xn− xn ‖

≤ ‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖+L ‖ Tn+1(PTn+1)

m(n)−2xn− xn ‖
≤ ‖ xn−Tn+1(PTn+1)

m(n)−1xn ‖+L{‖ xn− xn−N ‖+
‖ xn−N −Tn+1−N(PTn+1−N)

m(n)−2xn−N ‖+
‖ Tn+1−N(PTn+1−N)

m(n)−2xn−N −Tn+1(PTn+1)
m(n)−2xn ‖}

Hence

‖ xn−Tn+1xn ‖ ≤ ‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖+L{(1+L) ‖ xn− xn−N ‖+

‖ xn−N −Tn+1−N(PTn+1−N)
m(n)−2xn−N ‖} (3.13)

Noticing that n = (m(n)−1)N+ i(n), i(n)∈ I, we have n−N = (m(n)−1)N+ i(n)−N = (m(n)−2)N+ i(n) = (m(n−N)−1)N+ i(n−N),
thus m(n−N) = m(n)−1 and i(n−N) = i(n), n≥ 1. Hence

‖ xn−N −Tn+1−N(PTn+1−N)
m(n)−2xn−N ‖ = ‖ xn−N −Tn+1−N(PTn+1−N)

m(n−N)−1xn−N ‖ .

Using (3.11), we get

lim
n→∞
‖ xn−N −Tn+1−N(PTn+1−N)

m(n)−2xn−N ‖ = 0. (3.14)

Using (3.12) and (3.14), it follows from (3.13) that

lim
n→∞
‖ xn−Tn+1xn ‖ = 0. (3.15)

Furthermore, for each i ∈ I

‖ xn−Tn+ixn ‖ ≤ ‖ xn− xn+i−1 ‖+ ‖ xn+i−1−Tn+ixn+i−1 ‖+ ‖ Tn+ixn+i−1−Tn+ixn ‖
≤ (1+L) ‖ xn− xn+i−1 ‖+ ‖ xn+i−1−Tn+ixn+i−1 ‖ .

Using (3.12) and (3.15), we obtain

lim
n→∞
‖ xn−Tn+ixn ‖ = 0, i ∈ I.

Thus

lim
n→∞
‖ xn−Tixn ‖ = 0, i ∈ I.

This completes the proof.
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3.3. Asymptotically quasi-nonexpansive in the intermediate sense mappings

Lemma 3.5. Let K be a nonempty closed convex subset of a normed linear space E which is also a nonexpansive retract of E with a
nonexpansive retraction P. Let {Ti : i ∈ I} be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to E
with a nonempty common fixed point set F =

⋂N
i=1 F(Ti). For each i ∈ I, put G(i)

m = max{supx∈K,x∗∈F (‖ Ti(PTi)
m−1x−x∗ ‖ − ‖ x−x∗ ‖),0}

so that ∑
∞
m=1 G(i)

m < ∞, i ∈ I. If {xn} is the sequence defined by (1.2), then limn−→∞ ‖ xn− x∗ ‖ exists for each x∗ ∈ F.

Proof. For any x∗ ∈ F , we have

‖ xn− x∗ ‖ = ‖ P[(1−αn)xn−1 +αnTn(PTn)
m(n)−1xn−1]− x∗ ‖

≤ ‖ (1−αn)xn−1 +αnTn(PTn)
m(n)−1xn−1− x∗ ‖

≤ (1−αn) ‖ xn−1− x∗ ‖+αn ‖ Tn(PTn)
m(n)−1xn−1− x∗ ‖

≤ (1−αn) ‖ xn−1− x∗ ‖+αn(G
(n)
m + ‖ xn−1− x∗ ‖).

Thus

‖ xn− x∗ ‖ ≤ ‖ xn−1− x∗ ‖+G(n)
m .

Since ∑
∞
m=1 G(n)

m < ∞, n≥ 1 and n−→ ∞ is equivalent to m−→ ∞, then applying Lemma 2.1 implies that limn−→∞ ‖ xn− x∗ ‖ exists for
each x∗ ∈ F . The proof is complete.

Lemma 3.6. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of E
with a nonexpansive retraction P. Let {Ti : i∈ I} be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to
E with a nonempty common fixed point set F =

⋂N
i=1 F(Ti). For each i∈ I, put G(i)

m =max{supx∈K,x∗∈F (‖ Ti(PTi)
m−1x−x∗ ‖− ‖ x−x∗ ‖),0}

so that ∑
∞
m=1 G(i)

m < ∞, i ∈ I. Let {xn} be the sequence defined by (1.2) where {αn} is a real sequence in [δ ,1−δ ] for some δ ∈ (0,1). Then
limn−→∞ ‖ xn−Tixn ‖= 0 for each i ∈ I.

Proof. It follows from Lemma 3.5 that limn−→∞ ‖ xn− x∗ ‖ exists for each x∗ ∈ F . Assume that limn−→∞ ‖ xn− x∗ ‖= c, x∗ ∈ F for some
c≥ 0. If c = 0, we are done. So let c > 0. Set n = (m(n)−1)N + i(n), i(n) ∈ I. Since

‖ xn+1− x∗ ‖ = ‖ P[(1−αn+1)xn +αn+1Tn+1(PTn+1)
m(n)−1xn]− x∗ ‖

≤ ‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ (3.16)

Taking lim inf on both sides of (3.16), we obtain

liminf
n−→∞

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ ≥ c. (3.17)

In addition,

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ ≤ (1−αn+1) ‖ xn− x∗ ‖

+αn+1(G
m(n)
n+1 + ‖ xn− x∗ ‖).

Hence

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ ≤ ‖ xn− x∗ ‖+Gm(n)

n+1 ,

which on taking lim sup on both sides yields that

limsup
n−→∞

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖

≤ limsup
n−→∞

‖ xn− x∗ ‖+ limsup
m−→∞

Gm(n)
n+1 = c. (3.18)

Inequalities (3.17) and (3.18) imply

lim
n−→∞

‖ (1−αn+1)(xn− x∗)+αn+1(Tn+1(PTn+1)
m(n)−1xn− x∗) ‖ = c. (3.19)

Since limn−→∞ ‖ xn− x∗ ‖= c and limsupn−→∞ ‖ Tn+1(PTn+1)
m(n)−1xn− x∗ ‖≤ c, it follows from Lemma 2.2 that

lim
n−→∞

‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖ = 0. (3.20)

Since

‖ xn+1− xn ‖ ≤ αn+1 ‖ xn−Tn+1(PTn+1)
m(n)−1xn ‖

then, by (3.20), we have

lim
n−→∞

‖ xn+1− xn ‖ = 0.
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By induction, we have

lim
n−→∞

‖ xn+r− xn ‖ = 0 (3.21)

for any positive integer r.
Now, we have

‖ xn−Tn+1xn ‖ ≤ ‖ xn− xn+N ‖+ ‖ xn+N −Tn+1(PTn+1)
m(n+N)−1xn+N ‖+

‖ Tn+1(PTn+1)
m(n+N)−1xn+N −Tn+1(PTn+1)

m(n+N)−1xn ‖+
‖ Tn+1(PTn+1)

m(n+N)−1xn−Tn+1xn ‖ .

Since n= (m(n)−1)N+ i(n), i(n)∈ I, then n+N = (m(n)−1)N+ i(n)+N =m(n)N+ i(n) = (m(n+N)−1)N+ i(n+N), thus m(n+N) =
m(n)+1, i(n+N) = i(n) and Tn+1 = Tn+N+1 = Ti(n+1), n≥ 1. Hence

‖ xn−Tn+1xn ‖ ≤ ‖ xn− xn+N ‖+ ‖ xn+N −Tn+N+1(PTn+N+1)
m(n+N)−1xn+N ‖+

‖ Tn+1(PTn+1)
m(n+N)−1xn+N −Tn+1(PTn+1)

m(n+N)−1xn ‖+
‖ Tn+1(PTn+1)

m(n)xn−Tn+1xn ‖ . (3.22)

But (3.20) implies that

‖ PTn+1(PTn+1)
m(n)−1xn− xn ‖ ≤ ‖ Tn+1(PTn+1)

m(n)−1xn− xn ‖→ 0, n→ ∞,

since Tn+1 are uniformly continuous, then

‖ Tn+1(PTn+1)
m(n)xn−Tn+1xn ‖=‖ Tn+1PTn+1(PTn+1)

m(n)−1xn−Tn+1xn ‖→ 0, n→ ∞

. (3.23)

Also, uniform continuity of Tn+1 and (3.21) yield

‖ Tn+1(PTn+1)
m(n+N)−1xn+N −Tn+1(PTn+1)

m(n+N)−1xn ‖ −→ 0, n→ ∞. (3.24)

Finally, using (3.20), (3.21), (3.23) and (3.24), it follows from (3.22) that

lim
n→∞
‖ xn−Tn+1xn ‖ = 0. (3.25)

Furthermore, for each i ∈ I

‖ xn−Tn+ixn ‖ ≤ ‖ xn− xn+i−1 ‖+ ‖ xn+i−1−Tn+ixn+i−1 ‖+ ‖ Tn+ixn+i−1−Tn+ixn ‖,

using (3.21), (3.25) and uniform continuity of Tn+i, we get

lim
n→∞
‖ xn−Tn+ixn ‖ = 0, i ∈ I.

Thus

lim
n→∞
‖ xn−Tixn ‖ = 0, i ∈ I.

The proof is complete.

Now, we are in a position to state our main theorems

Theorem 3.7. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of
E with a nonexpansive retraction P. Let Ti, i ∈ I be N nonself asymptotically quasi-nonexpansive mappings from K to E with sequences
{k(i)n } ⊂ [1,∞) such that ∑

∞
n=1(k

(i)
n −1)< ∞ and limn→∞ k(i)n = 1 for all i ∈ I, respectively. Suppose that Ti are uniformly Li-Lipschitzian

with the uniform Lipschitz constants Li > 0, i ∈ I, respectively. Let {xn} be the sequence defined by (1.2) where {αn} is a real sequence
in [δ ,1−δ ] for some δ ∈ (0,1). If F =

⋂N
i=1 F(Ti) 6= /0 and if one of the mappings Ti, i ∈ I is completely continuous, then {xn} converges

strongly to a common fixed point of the mappings Ti, i ∈ I.

Theorem 3.8. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of E
with a nonexpansive retraction P. Let {Ti : i∈ I} be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to
E with a nonempty common fixed point set F =

⋂N
i=1 F(Ti). For each i∈ I, put G(i)

m =max{supx∈K,x∗∈F (‖ Ti(PTi)
m−1x−x∗ ‖− ‖ x−x∗ ‖),0}

so that ∑
∞
m=1 G(i)

m < ∞, i ∈ I. Let {xn} be the sequence defined by (1.2) where {αn} is a real sequence in [δ ,1−δ ] for some δ ∈ (0,1). If
one of the mappings Ti, i ∈ I is completely continuous Then {xn} converges strongly to a common fixed point of the mappings Ti, i ∈ I.

Proof. The proof of theorems 3.7 and 3.8 follows from the proof of Theorem 3.4 in [23].

Theorem 3.9. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of
E with a nonexpansive retraction P. Let Ti, i ∈ I be N nonself asymptotically quasi-nonexpansive mappings from K to E with sequences
{k(i)n } ⊂ [1,∞) such that ∑

∞
n=1(k

(i)
n −1)< ∞ and limn→∞ k(i)n = 1 for all i ∈ I, respectively. Suppose that Ti are uniformly Li-Lipschitzian

with the uniform Lipschitz constants Li > 0, i ∈ I, respectively. Let {xn} be the sequence defined by (1.2) where {αn} is a real sequence in
[δ ,1−δ ] for some δ ∈ (0,1). If F =

⋂N
i=1 F(Ti) 6= /0 and one of the mappings Ti, i ∈ I is demicompact then {xn} converges strongly to a

common fixed point of the mappings Ti, i ∈ I.
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Theorem 3.10. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E which is also a nonexpansive retract of E
with a nonexpansive retraction P. Let {Ti : i∈ I} be N nonself asymptotically quasi-nonexpansive in the intermediate sense mappings from K to
E with a nonempty common fixed point set F =

⋂N
i=1 F(Ti). For each i∈ I, put G(i)

m =max{supx∈K,x∗∈F (‖ Ti(PTi)
m−1x−x∗ ‖− ‖ x−x∗ ‖),0}

so that ∑
∞
m=1 G(i)

m < ∞, i ∈ I. Let {xn} be the sequence defined by (1.2) where {αn} is a real sequence in [δ ,1−δ ] for some δ ∈ (0,1). If
one of the mappings Ti, i ∈ I is demicompact then {xn} converges strongly to a common fixed point of the mappings Ti, i ∈ I.

Proof. The proof of theorems 3.9 and 3.10 follows from the proof of Theorem 3.5 in [23].
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