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Abstract 

In this paper, we propose a mixture model containing bivariate Weibull distributions—the 

Marshall-Olkin bivariate Weibull (MOBW) and the Block-Basu bivariate Weibull (BBBW)—

because each of these distributions alone is inadequate for explaining a data set when certain 

special situations occur in bivariate lifetime data sets. We refer to the proposed model as 

Mix_BW. To estimate the model parameters, we use the expectation-maximisation (EM) 

algorithm in an adapted form we term the Mix_EM algorithm. We provide illustrative examples 

with real and simulated data sets to demonstrate the applicability of the proposed Mix_BW 

model. 
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1. INTRODUCTION 

 

In lifetime and reliability data analyses, due to their flexibility and definitions for continuous positive 

random variables, the exponential, Weibull and gamma distributions are widely used to model univariate 

homogeneous data. Mixtures of these distributions are also used to model univariate heterogeneous data 

[4]. However, each of these distributions by themselves is inadequate for multivariate lifetime or 

reliability data. Moreover, there has been insufficient research with respect to modelling multivariate 

lifetime or reliability data. In recent decades, new bivariate exponential models have been developed in 

response to the lack of effective models related to the structure of bivariate lifetime data. To model 

bivariate lifetime data, researchers Gumbel [7], Freund [6], and Marshall and Olkin [12] proposed 

bivariate exponential distributions. In subsequent studies, Block and Basu [1] obtained bivariate 

exponential distributions from the Marshall-Olkin bivariate exponential (MOBE) distribution by 

removing the singular aspects and retaining only the absolutely continuous aspects. Diawara and 

Carpenter [3] proposed a mixture of bivariate exponential distributions, investigated the properties of the 

associated parameters and predicted the mixture elements. Weibull models are more flexible than 

exponential models; so many studies have been conducted using Weibull models. Lu [11] proposed 

bivariate Weibull extensions of the MOBE distribution. Various bivariate Weibull models were examined 

by Han [8], who also proposed a location-scale bivariate Weibull model for the lifetime modelling. 

Kundu and Dey [9] considered the Marshall-Olkin bivariate Weibull distribution and discussed the 

application of the EM algorithm for computing maximum likelihood estimators. Kundu and Gupta [10] 

extended the BBBE model to the Weibull model known as the Block-Basu bivariate Weibull and derived 

the EM algorithm for computing the maximum likelihood estimators of the unknown parameters. 

 

http://dergipark.gov.tr/gujs


644 Ayça Hatice TÜRKAN, Nazif ÇALIŞ/ GU J Sci, 31(2): 643-658 (2018) 

The MOBW and BBBW distributions can be used on bivariate lifetime data, which occurs in many fields, 

including medicine, biology, engineering and demography. However, these distributions are inadequate 

when the data are heterogeneous. For heterogeneous data sets, mixture distribution models are appropriate 

tools for modelling a wide variety of random phenomena. With this motivation, Çalış et al. [2] considered 

a mixture of MOBW distributions and calculated maximum likelihood estimators for the mixture using 

the EM algorithm. However, the mixture of MOBW distributions is only appropriate for the data sets 

including identical observations in each component. When there are heterogeneous data sets with two or 

more components, one of the components may have identical observations whereas the other may not. In 

this case, the mixtures of MOBW or BBBW distributions do not yield appropriate distributions, so 

mixtures of MOBW and BBBW distributions may be a solution to this problem. In the present paper, we 

propose a mixture model of bivariate Weibull distributions, including MOBW and BBBW distributions. 

We refer to the proposed mixture distribution as Mix_BW. The remainder of this paper is organised as 

follow: In Section 2, we provide detailed information about the proposed Mix_BW. In Section 3, we 

perform parameter estimations of the Mix_BW distribution and present the steps of the EM algorithm. 

We demonstrate the applicability of the proposed Mix_BW distribution on sample data sets with respect 

to different situations, as well as a real data set, in Section 4. We conduct a simulation study to 

demonstrate our results in Section 5 and we draw our conclusions in Section 6.  

 

2. MIXTURE OF BIVARIATE WEIBULL DISTRIBUTIONS 

 

To flexibly model data, mixture distribution models are used in situations where a single distribution is 

insufficient or there is evidence of multimodality [5]. In the current study, we propose the Mix_BW 

distribution to model non-homogeneous bivariate lifetime data. 

 

The univariate Weibull distribution with the shape parameter 0  and the scale parameter 0  has the 

following probability density function (pdf) [13]: 

 

 
 x
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A Weibull distribution with the pdf given in Eq.(1) is denoted by   ,WE . Suppose 0U , 1U  and 2U , 

respectively, are independent  0,WE ,  1,WE , and  2,WE  random variables. Define 

 101 ,min UUX   and  202 ,min UUX  . Then, the bivariate vector  21, XX  has the MOBW 

distribution with the parameters  , 0 , 1 , 2 . The joint pdf of 1X  and 2X  can be written as follows: 
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A MOBW distribution with the pdf given in Eq.(2) is denoted as  210 ,,, MOBW  [9], and the 

BBBW distribution can be obtained from the MOBW distribution by removing the singular aspect and 

keeping only the continuous aspects. Then the joint pdf of the BBBW distribution can be written as 

follows: 
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where c  is a normalising constant and 
21

210








c . The pdf given in Eq.(3) is denoted 

as  210 ,,, BBBW . 
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In finite mixture models, it is assumed that the population consists of g ( 2 ) distinct subgroups or 

subclasses. Furthermore, a finite mixture density function can be written as follows: 
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                                                                                                                            (4) 

 

where the vector ),(    contains all unknown parameters ),,( 1 g   and ),,( 1 g  . The 

function )|( kk xf   is called the mixture component density function for the k  and k  parameters, 

where k  is the mixture weight of the k th class in which )1,0(k  and 1
1




g

k

k . Thus, the pdf of the 

Mix_BW model  21_ , xxf BWMix  can be written in the following form: 
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where       jjjBW xxf 21 ,  are component densities and j  are mixing proportions or weights, which are 

nonnegative quantities that sum to one. Here we refer to the density given in Eq.(5) as a g-component 

finite mixture density. When this density function is reorganised as a mixture of MOBW and BBBW 

distributions, the model for the population with two subgroups can be written as follows: 

 

     212121_ ,)1(,, xxfxxfxxf BBBWMOBWBWMix                                                                               (6) 

 

in which the MOBWf  and BBBWf  are given, respectively, as follows: 
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In Eqs.(7) and (8), MO and BB denote Marshall-Olkin and Block-Basu, respectively. 

 

3. EM ALGORITHM FOR MIXTURE OF BIVARIATE WEIBULL DISTRIBUTIONS 

 

In this section, we present the Mix_EM algorithm, comprising EM algorithms for the MOBW [9] and 

BBBW [10] distributions for computing the maximum likelihood estimators of the unknown parameters 

of the Mix_BW model. We define the bivariate data set as     nn xxxx 212111 ,,...,, , which is clustered 

using the k-means algorithm. We individually fit the BW distributions to each cluster using the EM 

algorithm. After applying the k-means algorithm, we use the EM algorithm for MOBW, as given in [9], 

for the sub-cluster containing observations of equal value. For the sub-cluster containing no observations 

of equal value, we use the EM algorithm for the BBBW distribution given in [10]. We then appropriately 

recluster the data using the weighted pdfs of the BW distributions. We provide the EM algorithms for the 

MOBW and BBBW distributions in the following sections. 
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3.1. EM for the MOBW 

 

To obtain the maximum likelihood estimators of the MOBW component, we group the data in the sub-

cluster containing observations of equal value, as in the study of Kundu and Dey [9], using following 

notations: 

 

        MOiMOiMOiMO xxxiI  210 :  

      MOiMOiMO xxiI 211 :   

      MOiMOiMO xxiI 212 :   

     MOMOMO III 213   

       MOMOMOMO IIII 210   

 

where    MOMO nI 00  ,    MOMO nI 11  ,    MOMO nI 22   and        MOMOMOMO IIII 210  .  MOlI  for 

2,1,0l  denotes the number of elements in the set  MOlI . We individually fit the Weibull distribution to 

each of the  MOX1 ,  MOX 2  and     MOMO XX 21 ,min  values. We take the average value of the shape 

parameters of the fitted distributions as our initial guess for  MO . Our initial guess values for  MO0 , 

 MO1  and  MO2  are 1.0, 1.0 and 1.0, respectively. We update the parameters  MO0 ,  MO1 , and  MO2  

using the notations given below: 
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Equations (9)-(11) show the updated equations: 
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Using the updated values of  MO0̂ ,  MO1̂ , and  MO2̂ , we obtain the following equation: 
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By solving Eq.(12), we obtain  ĵ , as shown in Eq.(13) below: 
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As the stopping criterion, we choose 6)1(
)(

)(
)( 10  t

MO
t
MO  , as in the study by Kundu and Dey [9], when 

updating the parameters. Here,  
 t
MO  denotes the estimation of  MO  at the t th iteration. 

 

3.2. EM for the BBBW 
 

For the unknown parameters of the BBBW component, which contains no observations of equal value, 

we use the same notations as those used in the study of Kundu and Gupta [10], as given below: 

 

      BBiBBiBB xxiI 211 :   

      BBiBBiBB xxiI 212 :   

     BBBBBB III 21   

 

Here,    BBBB nI 11   and    BBBB nI 22  .  BBlI  for 2,1,0l  denotes the number of elements in the set 

 BBlI . We individually fit the Weibull distribution to  BBX1 ,  BBX 2  and     BBBB XX 21 ,min . As an 

initial guess for  BB , we take the average value of the shape parameters of fitted distributions. As the 

initial guess values of  BB0 ,  BB1  and  BB2 , we take 1.0, 1.0 and 1.0, respectively. Using the 

following notations: 
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we update the parameters  BB0 ,  BB1  and  BB2  as follows: 
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Using the updated values of 0̂ , 1̂  and 2̂ , we obtain the following equation: 
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By solving Eq.(17), we obtain  BB̂  as follows: 
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As the stopping criterion, we choose  
 

 
  61 10  t

BB

t

BB  , as given in the study of Kundu and Gupta [10], 

for updating the parameters. Here,  
 t
BB  denotes the estimation of  BB  at the t th iteration. 

 

After estimating the parameters of the MOBW and BBBW distributions for the subclusters obtained using 

the k-means algorithm, we update the label vectors. To update the label vectors, we consider the EM 

algorithm containing two EM algorithms for all the observations except those of equal value that use the 

pdfs of the sub-clusters. 

 

As the stopping criterion for the log-likelihood value of the obtained parameters, we choose 

  811 10  kkk lll . Here, kl  denotes the value of the log-likelihood function at the k th iteration for 

each component. 

 

We obtain estimators of the mixing proportions as follows: 
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The log-likelihood value obtained using the Mix_EM algorithm for all the data is given in Eq.(20), as 

follows: 

 

           BBBBBBBWMOMOMOBW xxfxxfl 212211 ,log,log                                                                     (20) 
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The iterations stops for the Mix_EM algorithm when 3)()1( 10  ii ll . Here, )(il  denotes the log-

likelihood value obtained from i th iteration of the Mix_EM algorithm. 

 

4. DATA ANALYSIS 

 

For demonstration purpose, in this section, we present some results to verify how the proposed Mix_EM 

algorithm performs on generated data sets with different sample sizes and parameter values. We conduct 

analyses for three cases related to the sample sizes of MOBW and BBBW distributions, denoted as 1n  

and 2n , respectively. We perform individual data generation processes for each of the distributions based 

on their structures, as defined in section 2, and then merge the separately generated data sets. It is then 

possible to apply the proposed EM algorithm for the MOBW distribution and that proposed for the 

mixture of the two MOBW (Mix_MOBW) distributions to the data set generated according to the 

Mix_BW distribution. In the application of the Mix_EM algorithm, we keep the initial values   10 j , 

  11 j ,   12 j ,  2,1j  and consider the average value of the shape parameters to be the initial value 

of  . We take the stopping conditions provided in section 3. Tables 1, 2, 3 and 4 present the obtained 

estimation results for the generated data sets. 

 

In this section, we also include an analysis of a real data set containing mice data from Sreeja [14]. This 

data set contains information for 300 rats divided into 50 male litters and 50 female litters, all which had a 

size of three. In the data, each observation pair represents lifetimes (in weeks) for a pair of mice. 

 

Case 1 ( 1n =100, 2n =100): First, we consider Case 1. To obtain the parameter estimations using the 

Mix_EM algorithm for the Mix_BW model, we generate a synthetic data set using the following 

parameter values:  1 ,  10 ,  11 ,  12 , and  1  as 2, 2, 4, 6, and 0.50, respectively and  2 ,  20 , 

 21 ,  22 , and  2  as 5, 1, 2, 3, and 0.50, respectively. The contours and surface plots of the data set are 

given in Figs. 1(a) and 1(b), respectively. 

 

The components of Mix_BW are close to each other, as shown in the Figs. 1(a) and 1(b), in which the 

synthetic data set is an example of a Mix_BW distribution. Table 1 shows the obtained estimation results 

for the generated data set. 
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(a) 

 

(b) 

Figure 1. (a) The contour plot of the generated data set with components close to each other (b) The 

surface plot of the generated data set with components close to each other 

 

Table 1. The estimation results for the Case 1 

Distribution  1   10   11   12   1   2   20   21   22   2  
AIC 

(log L ) 

MOBW 2.1599 0.5515 2.3516 2.8369 - - - - - - 
129.252 

(-60.626) 

Mix_BW 2.0917 1.8806 4.5798 8.1728 0.485 5.3506 0.9608 2.4471 2.8367 0.515 
14.8312 

(1.5844) 

 

Next, we generate a data set in which the components of the Mix_BW distribution are far away from each 

other, in contrast to the data set presented above. The contours and surface plots of the data set are given 

in Figs. 2(a) and 2(b), respectively. From Figs. 2(a) and 2(b), we can see that components are far away 

from each other, with respect to the data set generated from the Mix_BW distribution with the parameter 

values  1 ,  10 ,  11 ,  12 , and  1  being 2, 5, 5, 5, and 0.50, respectively, and  2 ,  20 ,  21 ,  22 , 

and  2  being 10, 1, 0.3, 0.1, and 0.50, respectively. Table 2 shows the obtained estimation results for the 

generated data set. 
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(a) 

 

(b) 

Figure 2. (a) The contour plot of the generated data set with components far from each other (b) The 

surface plot of the generated data set with components far from each other 

 

Table 2. The estimation results for the data set with far from components 

Distribution  1   10   11   12   1   2   20   21   22   2  
AIC 

(log L ) 

MOBW 1.8074 0.9465 1.4362 0.9658 - - - - - - 
390.500 

(-191.25) 

Mix_BW 1.8922 4.9146 5.0475 3.9824 0.5 11.7813 0.5321 1.0425 0.3109 0.5 
-155.764 

(86.8818) 

 

Case 2 ( 1n =120, 2n =80): We generate a third synthetic data set using the same parameter values as those 

used in the Case 1 to obtain components far away from each other with different sample sizes. Note that 

in the Cases 2 and 3, all the parameters are the same for both distributions although their proportions 

differ. The Case 2 is more likely a MOBW distribution than a BBBW distribution. The situation in the 

Case 3 is vice versa. Figure 3 shows the contours and surface plots of the data set for the Case 2, and 

Table 3 shows the obtained estimation results for the generated data set. 
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(a) 

 

(b) 

Figure 3. (a) The contour plot for case 2 (b) The surface plot for case 2 

 

Table 3. The estimation results for the Case 2 

Distribution  1   10   11   12   1   2   20   21   22   2  
AIC 

(log L ) 

MOBW 2.1537 0.7074 1.3114 0.9077 - - - - - - 
394.280 

(-193.14) 

Mix_BW 2.0379 5.0282 4.7744 5.0184 0.6 11.0154 0.7388 0.5613 0.1779 0.4 
-167.153 

(92.5766) 

 

Case 3 ( 1n =80, 2n =120): To obtain the synthetic data set, we choose the same parameter values as those 

in the Case 2. Figure 4 shows the contours and surface plots of this data set and Table 4 shows the 

obtained estimation results for the generated data set. 
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(a) 

 

(b) 

Figure 4. (a) The contour plot for case 3 (b) The surface plot for case 3 

 

Table 4. The estimation results for the Case 3 

Distribution  1   10   11   12   1   2   20   21   22   2  
AIC 

(log L ) 

MOBW 1.5923 0.9551 1.5704 1.1404 - - - - - - 
369.760 

(-180.88) 

Mix_BW 2.0326 4.3063 6.3453 5.5713 0.40 11.7569 0.5799 0.5740 0.1501 0.60 
-106.047 

(62.0235) 

 

From Tables 1, 2, 3 and 4, we can see that the performance of the proposed Mix_EM algorithm is 

satisfactory, based on the log L  and AIC (Akaike information criterion) values, even when the Mix_BW 

components are far away from each other. If a data set is distributed using a Mix_BW distribution, more 

satisfactory results are obtained using the proposed Mix_EM algorithm to estimate the parameters. 

Applying the EM algorithm for a MOBW distribution will not generate better results with respect to the 

log L  and AIC values. The EM algorithm for the Mix_MOBW distribution does not work for the 

generated data set since there are no observations for the singular aspect of the MOBW distribution in one 

of the components of the Mix_BW distribution. 

 

Real Data (Mice Data): In this section, we analyse a data set from Sreeja [14]. The data represent the 

lifetimes (in weeks) of a pair of mice. We divide all the data points by 100 to generate parameters that are 

easy to understand. We obtain the maximum likelihood estimators and corresponding log L  values for the 

MOBW and Mix_BW distributions for the mice data using the EM algorithm. Figure 5 shows the 

contours and surface plots of the mice data fitted to the Mix_BW distribution. 
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(a) 

 

(b) 

Figure 5. (a) The contour plot of the mice data (b) The surface plot of the mice data 

 

Table 5 shows the parameter estimations and the log L  and AIC values of the models. As shown in the 

table, the obtained log L  and AIC values of the Mix_BW distribution are 34.7050 and -51.41, 

respectively, so we know that the Mix_BW distribution is more appropriate than the MOBW distribution 

for this data structure. 

 

Table 5. The estimation results for the mice data 

Distribution  1   10   11   12   1   2   20   21   22   2  
AIC 

(log L ) 

MOBW 6.4657 0.1908 2.6344 3.2433 - - - - - - 
-44.8776 

(26.4388) 

Mix_BW 4.3532 0.00004 7.2636 29.1190 0.13 9.1637 0.2125 3.0515 3.9731 0.87 
-51.41 

(34.7050) 

 

5. SIMULATION STUDY 

 

In this section, we present some simulation results to determine how well the Mix_EM algorithm 

performs for a mixture of MOBW and BBBW distributions with different sample sizes and parameter 

values. For this purpose, first, we generate samples from the mixture of the MOBW and BBBW 

distributions using the parameter values  1 ,  10 ,  11 , and  12  as 5, 1, 2, and 3, respectively, and 

 2 ,  20 ,  21 , and  22  as 2, 1.5, 5, and 7.5, respectively, for equal and unequal sample sizes, 

respectively. Next, we generate samples with the values  1 ,  10 ,  11 ,  12 ,  2 ,  20 ,  21 , and 

 22  as 2, 5, 5, 5, 11, 0.7, 0.8, and 0.3, respectively. We obtain parameter estimators for the mixtures of 

MOBW and BBBW distributions using the Mix_EM algorithm. Tables 6 and 7 give the means and 

standard errors of the EM estimators. The standard error values of the estimators obtained from different 

sample sizes with different iteration numbers are remarkably close to zero. Moreover, as the sample size 

increases, the standard errors of the estimators decrease. These results indicate that the Mix_EM 

algorithm can successfully estimate the parameters. 



655 Ayça Hatice TÜRKAN, Nazif ÇALIŞ/ GU J Sci, 31(2): 643-658 (2018) 

Table 6. The means (AV) and standard errors (SE) of the EM estimators for samples generated from 

mixture of the MOBW and BBBW distributions 

 

Iteration number 

 

100 500 1000 

  Parameters AV SE AV SE AV SE 

BBBW 

Parameters 

( 1n =100) 

 1 =0.5 0.5528 0.0099 0.5551 0.0043 0.5517 0.0029 

 2 =2 2.1004 0.0190 2.1073 0.0083 2.0980 0.0060 

 20 =1.5 1.3385 0.0600 1.3064 0.0256 1.3234 0.0206 

 21 =5 4.9899 0.2092 4.9509 0.0919 4.9192 0.0634 

 22 =7.5 7.2543 0.3249 7.2954 0.1517 7.1900 0.1030 

MOBW 

Parameters 

( 2n =100) 

 1 =5 5.7324 0.0977 5.7833 0.0422 5.7155 0.0312 

 10 =1 0.8169 0.0346 0.8134 0.0200 0.7905 0.0132 

 11 =2 2.3521 0.0614 2.3652 0.0392 2.3358 0.0174 

 12 =3 3.5526 0.0844 3.6336 0.0400 3.6223 0.0282 

 
 

Iteration number 

 
 

100 500 1000 

 

Parameters AV SE AV SE AV SE 

   1 =0.3 0.3672 0.0095 0.3562 0.0041 0.3584 0.0029 

BBBW 

Parameters 

( 1n =60) 

 2 =2 2.0851 0.0260 2.0987 0.0124 2.0775 0.0087 

 20 =1.5 1.5937 0.0743 1.6539 0.0429 1.6206 0.0323 

 21 =5 4.3999 0.2886 4.8924 0.1487 4.6147 0.0965 

 22 =7.5 7.0760 0.5228 7.4678 0.2494 7.2795 0.1731 

MOBW 

Parameters 

( 2n =140) 

 1 =5 5.4260 0.0553 5.3995 0.0293 5.4084 0.0174 

 10 =1 0.7910 0.0316 0.8435 0.0151 0.8613 0.0101 

 11 =2 2.2705 0.0418 2.2726 0.0182 2.2694 0.0123 

 12 =3 3.4978 0.0550 3.5129 0.0317 3.4601 0.0185 

 
 

Iteration number 

 
 

100 500 1000 

  Parameters AV SE AV SE AV SE 

   1 =0.7 0.7256 0.0077 0.7265 0.0033 0.7255 0.0024 

BBBW 

Parameters 

( 1n =140) 

 2 =2 2.1206 0.0158 2.1053 0.0065 2.1116 0.0046 

 20 =1.5 1.0832 0.0552 1.1531 0.0296 1.1346 0.0196 

 21 =5 5.2138 0.1362 5.1213 0.0566 5.2455 0.0441 

 22 =7.5 7.8316 0.2360 7.6224 0.1011 7.7047 0.0722 

MOBW 

Parameters 

( 2n =60) 

 1 =5 5.9948 0.1311 5.9930 0.0509 5.9710 0.0413 

 10 =1 0.7679 0.0473 0.7717 0.0211 0.8506 0.0246 

 11 =2 2.4759 0.0901 2.4291 0.0314 2.3840 0.0231 

 12 =3 3.7338 0.1407 3.7422 0.0474 3.7180 0.0419 
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Table 7. The means (AV) and standard errors (SE) of the EM estimators for samples generated from 

mixture of the MOBW and BBBW distributions 

 
 

Iteration number 

 
 

100 500 1000 

  Parameters AV SE AV SE AV SE 

   1 =0.5 0.5055 0.0033 0.5092 0.0019 0.5080 0.0012 

BBBW 

Parameters 

( 1n =100) 

 2 =11 11.1301 0.1573 11.0735 0.0776 11.0389 0.0541 

 20 =0.7 0.6612 0.0143 0.6632 0.0063 0.6633 0.0043 

 21 =0.8 0.7786 0.0130 0.7723 0.0058 0.7708 0.0041 

 22 =0.3 0.2776 0.0088 0.2803 0.0038 0.2840 0.0029 

MOBW 

Parameters 

( 2n =100) 

 1 =2 2.0169 0.0137 2.0514 0.0063 2.0410 0.0044 

 10 =5 5.0802 0.1148 5.1387 0.0501 5.1902 0.0389 

 11 =5 5.3346 0.1433 5.5824 0.0773 5.5369 0.0548 

 12 =5 5.2828 0.1301 5.6670 0.0808 5.5732 0.0583 

 
 

Iteration number 

 
 

100 500 1000 

  Parameters AV SE AV SE AV SE 

   1 =0.3 0.3085 0.0034 0.3119 0.0021 0.3087 0.0012 

BBBW 

Parameters 

( 1n =60) 

 2 =11 10.8660 0.2504 10.8612 0.1128 10.9285 0.0740 

 20 =0.7 0.9277 0.1049 0.8610 0.0446 0.7914 0.0281 

 21 =0.8 1.6423 0.3345 1.3187 0.1175 1.3477 0.0872 

 22 =0.3 1.2122 0.3523 0.9237 0.1371 0.9764 0.1107 

MOBW 

Parameters 

( 2n =140) 

 1 =2 2.0332 0.0127 2.0264 0.0052 2.0337 0.0036 

 10 =5 4.9120 0.1282 4.8984 0.0492 4.9939 0.0365 

 11 =5 4.8379 0.1389 5.1488 0.0709 5.1159 0.0469 

 12 =5 4.9137 0.1540 5.1321 0.0763 5.0445 0.0481 

 
 

Iteration number 

 
 

100 500 1000 

  Parameters AV SE AV SE AV SE 

   1 =0.7 0.7026 0.0020 0.7023 0.0007 0.7023 0.0005 

BBBW 

Parameters 

( 1n =140) 

 2 =11 11.3163 0.1043 11.2349 0.0433 11.2419 0.0296 

 20 =0.7 0.6663 0.0121 0.6604 0.0049 0.6488 0.0036 

 21 =0.8 0.7665 0.0108 0.7687 0.0051 0.7626 0.0035 

 22 =0.3 0.2670 0.0074 0.2720 0.0033 0.2771 0.0023 

MOBW 

Parameters 

( 2n =60) 

 1 =2 2.0330 0.0178 2.0685 0.0074 2.0477 0.0053 

 10 =5 5.3306 0.1683 5.4164 0.0615 5.3228 0.0452 

 11 =5 5.2655 0.1663 5.5546 0.0739 5.5561 0.0533 

 12 =5 5.3213 0.1433 5.6054 0.0726 5.5487 0.0602 
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6. CONCLUSIONS 

 

In this paper, we use MOBW and BBBW distributions in a new finite mixture bivariate model. Although 

the data set structure that inspired this study is not wide enough, especially for data sets related to the 

health field and modelled by the MOBW distribution, our proposed finite mixture bivariate model could 

serve as an alternative for mixtures of the Marshall-Olkin bivariate Weibull distributions. We call the 

proposed mixture distribution the Mix_BW. To estimate the model parameters, the EM algorithm is 

adapted and it is called as the Mix_EM. We demonstrate the performance of the Mix_BW model and 

Mix_EM algorithm in the analysis of a real data example and in a simulation study. Both the simulation 

study and real data analysis confirm that the Mix_EM algorithm achieves satisfactory results. 
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