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Abstract 

In the present paper, the transfer matrix method based on the Euler-Bernoulli beam theory is exploited to 

originally achieve some exact analytical formulas for classically supported beams under both the concentrated 

and generalized power/sinusoidal distributed loads.   A general solution procedure is also presented to consider 

different loads and boundary conditions. Those closed-form formulas can be used in a variety of engineering 

applications as well as benchmark solutions. 

Keywords: Transfer matrix method, initial value problem, exact solution, Euler-Bernoulli beam, distributed 

loads. 

1. Introduction 

As is well known Euler-Bernoulli beam theory called classical beam theory is founded on the 

following assumptions: i) The cross section of the beam does not significantly deform under 

applied loads and can be assumed as rigid, ii) The cross section of the beam remains planar and 

normal to the deformed axis of the beam during the deformation. Due to the assumptions given 

above, in Euler-Bernoulli beams, which are very good for thin beam applications, transverse 

shear stress is not taken into account contrary to Timoshenko beams, which are good for thick 

beams. In Timoshenko beams the cross-section remains planar but does not remain normal to 

the neutral axis after bending. The basis of Euler-Bernoulli beam theory are well introduced in 

the text books in engineering educational system.  There are also some engineering handbooks 

which cover Euler-Bernoulli exact solutions of many certain types of problems [1-3]. The 

present study aims at adding some remarkable closed-form formulas to the deep open repository 

for Euler-Bernoulli beam bending formulas. To this end the transfer matrix approach which is 

one of the initial value problem (IVP) solver methods is employed [4-6].  

2. Application of the Transfer Matrix Method 

Let x be the beam axis (Fig. 1). The governing homogeneous differential equation set for the 

out-of-plane bending analysis of the beam having uniform section in canonical form is given 

by [4] 
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Fig. 1. A beam under uniformly distributed forces 

 
𝑑𝑤(𝑥)

𝑑𝑥
= −𝜃(𝑥),

𝑑𝜃(𝑥)

𝑑𝑥
=
𝑀(𝑥)

𝐸𝐼
,

𝑑𝑀(𝑥)

𝑑𝑥
= 𝑇(𝑥),

𝑑𝑇(𝑥)

𝑑𝑥
= 0 

 

(1) 

where 𝑤(𝑥) is  the transverse displacement, 𝜃(𝑥) is the rotation, 𝑀(𝑥) is the bending moment, 

and  𝑇(𝑥) is the shear force. By using the prime symbol for the derivative of the related quantity 

with respect to x, Eq. (1) may be written in a compact form as 

 

𝑺′(𝑥) =

[
 
 
 
 0 −1
0 0

0 0
1

𝐸𝐼
0

0 0
0 0

0 1
0 0 ]

 
 
 
 

{

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)

𝑇(𝑥)

} = 𝑫 𝑺(𝑥) 

 

(2) 

where 𝑺(𝑥) is called the state vector which comprises the cross-sectional quantities at a positive 

section, and 𝑫 is the differential matrix. Characteristic equation of the differential matrix is 

 

|𝑫 − 𝜆𝑰| = 𝜆4 = 0 (3) 

where 𝑰 refers the unit matrix. Cayley-Hamilton theorem states that every square matrix 

satisfies its own characteristic equation, and so 𝑫4 = 0. Equation (3) suggests that the higher 

powers of the differential matrix which are equal or greater than four are identically zero. The 

transfer matrix satisfies the similar type of differential equation for the state vector given in Eq. 

(2),  
𝑭′(𝑥) = 𝑫 𝑭(𝑥). If the elements of the differential matrix are constants as in Eq. (2), it is 

possible to get an exact solution to the transfer matrix. In this case, solution of 𝑭′(𝑥) = 𝑫 𝑭(𝑥)  
with the initial conditions, 𝑭(𝑥 = 0) = 𝑰,  gives us the exact transfer matrix in the form of a 

matrix exponential 

 

𝑭(𝑥) = 𝑒𝑥𝑫 = 𝑰 + 𝑥𝑫 +
𝑥2

2!
𝑫2 +

𝑥3

3!
𝑫3 

 

(4) 

In the series solution in Eq. (4), the remaining terms including forth and higher than forth 

powers of the differential matrix are taken as identical to the zero since 𝑫4 = 0.  
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𝑭(𝑥) =

[
 
 
 
 
 1 −𝑥 −

𝑥2

2𝐸𝐼
−
𝑥3

6EI

0 1
𝑥

EI

𝑥2

2EI
0 0 1 𝑥
0 0 0 1 ]

 
 
 
 
 

 

 

 

(5) 

Suppose that a beam is subjected to both a distributed force 𝑞(𝑥) and a distributed couple 

moment m(𝑥) along the beam axis.  together with a concentrated force 𝑃𝑜 and a couple moment  

𝜇𝑜 acting at section 𝑥 = 𝑎. Under this assumption, the overall transfer matrix relates the state 

vectors at both ends of the beam as follows 

𝑺(𝐿) =𝑭(𝐿)𝑺(0) + ∫ 𝑭(𝐿 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝐿

0

+ 𝑭(𝐿 − 𝑎)𝑲(𝑎) 
 

(6) 

where 

𝑺(𝐿) = {

𝑤(𝐿)

𝜃(𝐿)

𝑀(𝐿)

𝑇(𝐿)

} = {

𝑤𝐿
𝜃𝐿
𝑀𝐿
𝑇𝐿

} 

 

(7) 

 

𝑭(𝐿 − 𝜉) =

[
 
 
 
 
 1 𝜉 − 𝐿 −

(𝐿 − 𝜉)2

2𝐸𝐼
−
(𝐿 − 𝜉)3

6𝐸𝐼

0 1
𝐿 − 𝜉

𝐸𝐼

(𝐿 − 𝜉)2

2𝐸𝐼
0 0 1 𝐿 − 𝜉
0 0 0 1 ]

 
 
 
 
 

 

 

 

(8) 

 

𝑺(0) = {

𝑤(0)

𝜃(0)

𝑀(0)

𝑇(0)

} = {

𝑤𝑜
𝜃𝑜
𝑀𝑜
𝑇𝑜

} 

 

(9) 

 

𝒌(𝜉) = {

0
0

−𝑚(𝜉)
−𝑞(𝜉)

} 

 

(10) 

and 

 

𝑲(𝑎) = {

0
0
−𝜇𝑜
−𝑃𝑜

} 

 

(11) 

In Eq. (6), column matrix 𝒌(𝜉) signifies the nonhomogeneous solution due to the distributed 

forces, and 𝑲(𝑎) is referred to as a discontinuity matrix due to the concentrated intermediate 

loads. By letting  
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𝝌 = ∫ 𝑭(𝐿 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝐿

0
,      𝜿 = 𝑭(𝐿 − 𝑎)𝑲(𝑎) 

 

(12) 

Eq. (6) reads 

𝑤𝐿=F(L)1,1𝑤𝑜 + F(L)1,2𝜃𝑜 + F(L)1,3𝑀𝑜 + F(L)1,4𝑇𝑜 + 𝜒1 + 𝜅1 

𝜃𝐿 = F(L)2,1𝑤𝑜 + F(L)2,2𝜃𝑜 + F(L)2,3𝑀𝑜 + F(L)2,4𝑇𝑜 + 𝜒2 + 𝜅2 

𝑀𝐿=F(L)3,1𝑤𝑜 + F(L)3,2𝜃𝑜 + F(L)3,3𝑀𝑜 + F(L)3,4𝑇𝑜 + 𝜒3 + 𝜅3 

𝑇𝐿 = F(L)4,1𝑤𝑜 + F(L)4,2𝜃𝑜 + F(L)4,3𝑀𝑜 + F(L)4,4𝑇𝑜 + 𝜒4 + 𝜅4 

 

 

 

(13) 

Boundary conditions for the beam considered in the present study is given in Table 1. In the 

transfer matrix method, it is necessary to determine all the elements of the initial state vector to 

get a general solution to the problem. Some of elements of the initial state vector may be given 

directly as boundary conditions. To find the remaining unknown ones, the boundary conditions 

given at both ends should be implemented into Eq. (18) by considering Table 1. After 

determining of the full elements of the initial state vector, all sectional quantities at any section 

may be easily computed as follows 

 𝐹𝑜𝑟 (0 ≤ 𝑥 < 𝑎),      𝑺𝑰(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝑥

0
 

 𝐹𝑜𝑟 (𝑎 ≤ 𝑥 ≤ 𝐿),     𝑺𝑰𝑰(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝑥

0
+ 𝑭(𝑥 − 𝑎)𝑲(𝑎) 

 

(14) 

If there are more than one discontinuities along the beam axis the following may be observed 

[4]. 

S(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) ⅆ𝜉
𝑥

0

+∑𝑭(𝑥 − 𝜉𝑖)𝑲(𝜉𝑖)

𝑛

𝑖=1

 

 

(15) 

Table 1. Boundary conditions considered 

 Classically supported beams 𝑥 = 0 𝑥 = 𝐿 

Simple-Simple (S-S) 

  

𝑤𝑜 = 0, 𝑀𝑜 = 0 𝑤𝐿 = 0,𝑀𝐿 = 0 

Clamped-Clamped (C-

C) 

 

 

𝑤𝑜 = 0, 𝜃𝑜 = 0 𝑤𝐿 = 0, 𝜃𝐿 = 0 

Clamped-Free (C-F) 

 
 

𝑤𝑜 = 0, 𝜃𝑜 = 0 𝑇𝐿 = 0, 𝑀𝐿 = 0 

Clamped-Simple (C-S) 

  

𝑤𝑜 = 0, 𝜃𝑜 = 0 𝑤𝐿 = 0,𝑀𝐿 = 0 
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In the following sections the analytical formulas are to be presented for beams under separate 

distributed and concentrated loads. Since small deformations are assumed, the superposition 

principle is hold when necessary.    

3. Solutions for Uniformly Distributed Forces 

For only uniformly distributed forces and couple moments acting along the beam, 

𝑞(𝑥) = −𝑞𝑜,     𝑚(𝑥) = −𝑚𝑑 
 

(16) 

a general solution takes the following form (0 ≤ 𝑥 ≤ 𝐿) 

S(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉)𝑑𝜉 = 𝑭(𝑥)𝑺(0) +

{
 
 
 

 
 
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
 
 
 

 
 
 

𝑥

0

 

 

 

 

(17) 

3.1. S-S Beam under Uniformly Distributed Loads 

Distribution of stress resultants, displacements and rotations in a simply supported beam are 

found as 

𝑺𝑆−𝑆
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝑆−𝑆

=𝑭(𝑥)𝑺(0) +∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉
𝒙

0

 

= 𝑭(𝑥) 

{
 
 

 
 

0

−
𝐿3𝑞𝑜
24EI
0

𝑚𝑑 +
𝐿𝑞𝑜
2 }
 
 

 
 

+

{
  
 

  
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
  
 

  
 

= 

{
 
 
 
 

 
 
 
 
𝑥(𝐿3 − 2𝐿𝑥2 + 𝑥3)𝑞𝑜

24EI

−
(𝐿3 − 6𝐿𝑥2 + 4𝑥3)𝑞𝑜

24EI
1

2
𝑥(𝐿 − 𝑥)𝑞𝑜

𝑚𝑑 +
1

2
(𝐿 − 2𝑥)𝑞𝑜 }

 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

(18) 

For the sake of comparison the followings values at specific sections may be used. 

𝑤𝐿 2⁄ =
5𝐿4𝑞𝑜
384EI

 

𝜃𝑜 = −
𝐿3𝑞𝑜
24EI

, 𝜃𝐿 2⁄ = 0, 𝜃𝐿 =
𝐿3𝑞𝑜
24EI

 

𝑀𝐿 2⁄ =
𝐿2𝑞𝑜
8

 

𝑇𝑜 = 𝑚𝑑 +
𝐿𝑞𝑜
2
,      𝑇𝐿 2⁄ = 𝑚𝑑 ,     𝑇𝐿 = 𝑚𝑑 −

𝐿𝑞𝑜
2

 

 

 

 

 

(19a) 

 

 

 

 

(19b) 
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Comparison of Bernoulli-Euler and Timoshenko beam’s dimensionless displacements, �̅�, when 

𝑚𝑑 = 0 is shown in Fig. 2.  

�̅� =
𝐸𝐼

𝑞𝑜𝐿
4
𝑤 

 

(20) 

For 𝐿 ℎ⁄ = 10, 20, 50, anⅆ 100, the maximum displacements in Euler beam remain constant 

as �̅�𝑚𝑎𝑥
𝐸 = 0.0130208 while it takes different values in Timoshenko beams as �̅�𝑚𝑎𝑥

𝑇 =
0.0133458, 0.0131021, 0.0130338, anⅆ 0.0130241 , respectively. The maximum 

displacements in a S-S Euler beam is found as �̅�𝑚𝑎𝑥
𝐸 =0.013130 in Ref. [7],   as 

�̅�𝑚𝑎𝑥
𝐸 =0.013152 in Ref. [8], and as �̅�𝑚𝑎𝑥

𝐸 = 0.0130208 in Ref. [9]. 

It is worth noting that there is no difference in the values of rotation, bending moment, and 

shearing force  in S-S beams subjected to a uniform distributed force along the beam based on 

the two beam theories. From Fig. 3, it is observed that Timoshenko’s beam theory gives 

somewhat higher displacements in S-S beams than Euler-Bernoulli beam theory.  

 

Fig. 2. Dimensionless transverse displacements in a S-S beam based on the two beam theories 

3.2. C-S Beam under Uniformly Distributed Loads 

Variations of stress resultants, displacements and rotations in a fixed-simple supported Euler-

Bernoulli beam along the beam axis are  

𝑺𝐶−𝑆
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝐶−𝑆

=𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥)𝑑𝜉
𝒙

0

 

= 𝑭(𝑥) 

{
 
 

 
 

0
0

−
1

8
𝐿2𝑞𝑜

𝑚𝑑 +
5𝐿𝑞𝑜
8 }
 
 

 
 

+

{
  
 

  
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
  
 

  
 

=

{
 
 
 
 

 
 
 
 

𝑥2(3𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜
48EI

−
𝑥(6𝐿2 − 15𝐿𝑥 + 8𝑥2)𝑞𝑜

48EI

−
1

8
(𝐿 − 4𝑥)(𝐿 − 𝑥)𝑞𝑜

𝑚𝑑 +
1

8
(5𝐿 − 8𝑥)𝑞𝑜 }

 
 
 
 

 
 
 
 

 

 

 

(21a) 

 

 

 

 

 

 

 

 

 

 

 

(21b) 
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Some specific values of Eq. (21) are as follows 

𝑤𝐿 2⁄ =
𝐿4𝑞𝑜
192EI

 

𝜃𝑜 = 0, 𝜃𝐿 2⁄ = −
𝐿3𝑞𝑜
192EI

, 𝜃𝐿 =
𝐿3𝑞𝑜
48EI

 

𝑀𝑜  = −
1

8
𝐿2𝑞𝑜,    𝑀𝐿 2⁄ =

𝐿2𝑞𝑜
16

,       𝑀𝐿 = 0 

𝑇𝑜 = 𝑚𝑑 +
5𝐿𝑞𝑜
8

,    𝑇𝐿 2⁄ = 𝑚𝑑 +
𝐿𝑞𝑜
8
,    𝑇𝐿 = 𝑚𝑑 −

3𝐿𝑞𝑜
8

 

 

 

 

 

(22) 

Elementary theory states that the maximum displacement occurs approximately at 𝑥 =
(1 − 0.421535)𝐿 [3]. For 𝐿 ℎ⁄ = 10, 20, 50, 𝑎𝑛𝑑 100, the dimensionless displacements in 

Euler beam at the section of  𝑥 𝐿⁄ = 0.6 remain constant as �̅�𝑥/𝐿=0.6
𝐸 = 0.0054 while it takes 

different values in Timoshenko beams as �̅�𝑥 𝐿⁄ =0.6
𝑇 = 0.00576618, 0.00549162,

0.00541466, anⅆ 0.00540367, respectively. The transverse deflection was found as 

�̅�𝑥/𝐿=0.5
𝐸 =  0.00520833 in both the present study and in Ref. [9].  It may be noted that there 

are also differences in the bending moment, shearing force, and the rotation in a C-S beam 

based on the two beam theories. Figure 3 shows the dimensionless transverse displacements in 

a C-S beam based on the two beam theories. In a C-S beam the differences in the results of the 

two beam theories become much clearer than S-S beam. 

 

 

Fig. 3. Dimensionless transverse displacements in a C-S beam based on the two beam theories 

3.3. C-F Beam under Uniformly Distributed Loads 

Stress resultants, displacements and rotations in a fixed-free supported beam vary along the 

beam axis as  

𝑺𝐶−𝐹
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝐶−𝐹

=𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉
𝒙

0

 

 

 

(23a) 
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𝑺𝐶−𝐹
𝐸 (x) = 𝑭(𝑥) 

{
 
 

 
 

0
0

𝐿𝑚𝑑 −
𝐿2𝑞𝑜
2

𝐿𝑞𝑜 }
 
 

 
 

+

{
  
 

  
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
  
 

  
 

 

 =

{
 
 
 

 
 
 
𝑥2(4𝑚𝑑(𝑥 − 3𝐿) + (6𝐿

2 − 4𝐿𝑥 + 𝑥2)𝑞𝑜)

24EI

−
𝑥(3𝑚𝑑(𝑥 − 2𝐿) + (3𝐿

2 − 3𝐿𝑥 + 𝑥2)𝑞𝑜)

6EI
1

2
(𝐿 − 𝑥)(2𝑚𝑑 + (𝑥 − 𝐿)𝑞𝑜)

(𝐿 − 𝑥)𝑞𝑜 }
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(23b) 

Certain values of sectional quantities in a C-F beam are 

𝑤𝐿 2⁄ =
𝐿3(17𝐿𝑞𝑜 − 40𝑚𝑑)

384EI
,     𝑤𝐿 =

𝐿3(3𝐿𝑞𝑜 − 8𝑚𝑑)

24EI
 

 

𝜃𝐿 2⁄ =
𝐿2(18𝑚𝑑 − 7𝐿𝑞𝑜)

48EI
,      𝜃𝐿 = −

𝐿2(𝐿𝑞𝑜 − 3𝑚𝑑)

6EI
 

𝑀𝑜  = 𝐿𝑚𝑑 −
𝐿2𝑞𝑜
2

,       𝑀𝐿 2⁄ = −
1

8
𝐿(𝐿𝑞𝑜 − 4𝑚𝑑) 

𝑇𝑜 = 𝐿𝑞𝑜,     𝑇𝐿 2⁄ =
𝐿𝑞𝑜
2
, 𝑇𝐿 = 0 

 

 

 

 

 

 

(24) 

 

 

 

Fig. 4. Dimensionless transverse displacements in a C-F beam based on the two beam theories 
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Dimensionless transverse displacements in a C-F beam based on the two beam theories is 

illustrated in Fig. 4 when the beam is subjected only distributed uniform forces. Euler-Bernoulli 

displacements are again independent from  𝐿 ℎ⁄  ratios. The maximum displacement in an Euler-

Bernoulli beam is calculated at the free end as �̅�𝐿
𝐸 = 0.125. In Timoshenko beams, those values 

are to be �̅�𝐿
𝑇 = 0.1263  (𝐿 ℎ⁄ = 10), 0.125325 (𝐿 ℎ⁄ = 20), 0.125052  (𝐿 ℎ⁄ = 50),

anⅆ 0.125013 (𝐿 ℎ⁄ = 100). Similar to the S-S beam, there is no difference between the results 

of two beam theories for the rotations, bending moments and shear forces in a C-F beam. 

3.4. C-C Beam under Uniformly Distributed Loads 

Let’s consider a fixed-fixed beam. Analytical formulas derived are as follows 

𝑺𝐶−𝐶
𝐸 (x) ={

𝑤(𝑥)

𝜃(𝑥)

𝑀(𝑥)
T(x)

}

𝐶−𝐶

=𝑭(𝑥)𝑺(0)∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉
𝒙

0

 

 = 𝑭(𝑥) 

{
 
 

 
 

0
0

−
1

12
𝐿2𝑞𝑜

𝐿𝑞𝑜
2 }

 
 

 
 

+

{
 
 
 

 
 
 
𝑥3(4𝑚𝑑 + 𝑥𝑞𝑜)

24EI

−
𝑥2(3𝑚𝑑 + 𝑥𝑞𝑜)

6EI

−
1

2
𝑥(2𝑚𝑑 + 𝑥𝑞𝑜)

−𝑥𝑞𝑜 }
 
 
 

 
 
 

=

{
 
 
 
 

 
 
 
 

𝑥2(𝐿 − 𝑥)2𝑞𝑜
24EI

−
𝑥(𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜

12EI

−
1

12
(𝐿2 − 6𝐿𝑥 + 6𝑥2)𝑞𝑜

𝑚𝑑 +
1

2
(𝐿 − 2𝑥)𝑞𝑜 }

 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

(25) 

Selected values of sectional quantities in a C-C beam are 

𝑤𝐿 2⁄ =
𝐿4𝑞𝑜
384EI

 

𝜃𝑜 = 𝜃𝐿 2⁄ = 𝜃𝐿 = 0 

𝑀𝑜  = −
1

12
𝐿2𝑞𝑜,  𝑀𝐿 2⁄ =

𝐿2𝑞𝑜
24

,   𝑀𝐿  = −
1

12
𝐿2𝑞𝑜 

𝑇𝑜 = 𝑚𝑑 +
𝐿𝑞𝑜
2
,   𝑇𝐿 2⁄ = 𝑚𝑑 ,   𝑇𝐿 = 𝑚𝑑 −

𝐿𝑞𝑜
2

 

 

 

 

(26) 

Variation of the dimensionless transverse displacement in a C-C beam is demonstrated in Fig. 

5 for 𝑞(𝑥) = 𝑞𝑜. As seen from Fig. 5, the maximum dimensionless transverse displacement in 

a C-C beam occurs at the mid-span of the beam. Based on the Euler-Bernoulli beam theory, the 

maximum displacement is evaluated as �̅�𝑚𝑎𝑥
𝐸 = 0.00260417. In Timoshenko beams, these 

values are to be �̅�𝑚𝑎𝑥
𝑇 = 0.00292917 (𝐿 ℎ⁄ = 10), 0.00268542 (𝐿 ℎ⁄ = 20),

0.00261717 (𝐿 ℎ⁄ = 50), anⅆ 0.00260742(𝐿 ℎ⁄ = 100). Similar to the S-S and C-F beams, 

there is no difference between the results of two beam theories for the rotations, bending 

moments and shear forces in a C-C beam under uniformly distributed forces. 
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Fig. 5. Dimensionless transverse displacements in a C-C beam based on the two beam theories 

4. Solutions for Sinusoidal Distributed Forces 

A generalized sinusoidal distributed force [10] may be in the form of (Fig. 6) 

𝑞(𝑥) = −𝑞𝑜 sin (
𝑛𝜋𝑥

𝐿
) ,        𝑛 ≥ 0 

 

(27) 

 

 

Fig. 6. Generalized sinusoidal loading 

In the case of sinusoidal distributed forces in Eq. (27), the particular solution becomes 
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∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) 𝑑𝜉
𝑥

0

= 

{
 
 
 
 
 

 
 
 
 
 𝐿𝑞𝑜 (6𝐿

3 sin (
𝜋𝑛𝑥
𝐿
) − 6𝜋𝐿2𝑛𝑥 + 𝜋3𝑛3𝑥3)

6𝜋4EI𝑛4

−
𝐿𝑞𝑜 (2𝐿

2 cos (
𝜋𝑛𝑥
𝐿 ) − 2𝐿2 + 𝜋2𝑛2𝑥2)

2𝜋3EI𝑛3

𝐿𝑞𝑜 (Lsin (
𝜋𝑛𝑥
𝐿
) − 𝜋𝑛𝑥)

𝜋2𝑛2

𝐿𝑞𝑜 (cos (
𝜋𝑛𝑥
𝐿
) − 1)

𝜋𝑛 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

(28) 

A general solution takes the form of S(x) =𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉)𝑑𝜉
𝑥

0
. 

4.1. S-S Beam under Sinusoidal Distributed Loads 

The rotation of the section about y- axis and the shearing force at the initial end is found as 

(𝑤𝑜 = 0,𝑀𝑜 = 0) 

𝜃𝑜 =
𝐿3((𝜋2𝑛2 + 6)sin (𝜋𝑛) − 6𝜋𝑛)𝑞𝑜

6𝜋4EI𝑛4
 

𝑇𝑜 =
𝐿(𝜋𝑛 − sin (𝜋𝑛))𝑞𝑜

𝜋2𝑛2
 

 

 

(29) 

With the help of Eq. (29), the general solution in a closed form is obtained for simply supported 

beam under a general sinusoidal load as follows 

𝑺(𝑥)𝑆−𝑆
𝐸 =

{
 
 
 
 
 
 

 
 
 
 
 
 𝐿𝑞𝑜 (

6𝐿3 sin (
𝜋𝑛𝑥
𝐿 )

+xsin(𝜋𝑛) (𝜋2𝑛2𝑥2 − 𝐿2(𝜋2𝑛2 + 6))
)

6𝜋4EI𝑛4

𝐿𝑞𝑜 (
sin(𝜋𝑛) (𝐿2(𝜋2𝑛2 + 6) − 3𝜋2𝑛2𝑥2)

−6𝜋𝐿2 ncos (
𝜋𝑛𝑥
𝐿 )

)

6𝜋4EI𝑛4

𝐿𝑞𝑜 (Lsin (
𝜋𝑛𝑥
𝐿 ) − xsin(𝜋𝑛))

𝜋2𝑛2

𝐿𝑞𝑜 (𝜋 ncos (
𝜋𝑛𝑥
𝐿 ) − sin(𝜋𝑛))

𝜋2𝑛2 }
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(30) 

As may be guessed, in a S-S beam, the variation of  𝜃(𝑥),𝑀(𝑥), anⅆ 𝑇(𝑥) remain unchanged 

in both beam theories. Some chosen values of the sectional quantities are 

 

𝑤𝐿 2⁄ =

𝐿4 (
16 sin (

𝜋𝑛
2 )

−(𝜋2𝑛2 + 8) sin(𝜋𝑛)
)𝑞𝑜

16𝜋4EI𝑛4
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𝜃𝐿 2⁄ =

𝐿3𝑞𝑜 (
(𝜋2𝑛2 + 24) sin(𝜋𝑛)

−24𝜋 ncos (
𝜋𝑛
2
)

)

24𝜋4EI𝑛4
,     𝜃𝐿=−

𝐿3𝑞𝑜 (
(𝜋2𝑛2 − 3) sin(𝜋𝑛)

+3𝜋 ncos(𝜋𝑛)
)

3𝜋4EI𝑛4
 

 

𝑀𝐿 2⁄ =
4𝐿2sin3 (

𝜋𝑛
4 ) cos (

𝜋𝑛
4 )𝑞𝑜

𝜋2𝑛2
 

 

 𝑇𝐿 2⁄ =
𝐿𝑞𝑜 (𝜋 ncos (

𝜋𝑛
2 ) − sin

(𝜋𝑛))

𝜋2𝑛2
,      𝑇𝐿 =

𝐿𝑞𝑜(𝜋 ncos(𝜋𝑛) − sin(𝜋𝑛))

𝜋2𝑛2
 

 

 

 

(31) 

 

 

 

 

 

 

 

 

If 𝑛 is a positive integer (sin(𝜋𝑛) = 0), then Eq. (30) turns to be 

 

𝑺(𝑥)𝑆−𝑆(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 

 
 
 
 
 𝑞𝑜𝐿

4 sin (
𝜋𝑛𝑥
𝐿 )

𝜋4EI𝑛4

−(
𝑞𝑜𝜋𝐿

3 ncos (
𝜋𝑛𝑥
𝐿
)

𝜋4EI𝑛4
)

𝐿2𝑞𝑜 sin (
𝜋𝑛𝑥
𝐿 )

𝜋2𝑛2

𝐿𝑞𝑜𝜋 ncos (
𝜋𝑛𝑥
𝐿 )

𝜋2𝑛2 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(32) 

where 𝑤𝑆−𝑆(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 = 𝑞𝑜𝐿

4 sin (
𝜋𝑛𝑥

𝐿
) 𝜋4EI𝑛4⁄  overlaps with the result in Ref. [10]. 

 

4.2. C-F Beam under Sinusoidal Distributed Loads 

In the case of C-F beam, the unknown elements of the initial state vector becomes (𝑤𝑜 =
0, 𝜃𝑜 = 0) 

 

𝑀𝑜 =
𝐿2𝑞𝑜(𝜋 ncos(𝜋𝑛) − sin(𝜋𝑛))

𝜋2𝑛2
 

 

𝑇𝑜 = −
𝐿(cos(𝜋𝑛) − 1)𝑞𝑜

𝜋𝑛
 

 

 

 

 

(33) 

The general solution may be written with the help of Eq. (33) as 
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𝑺(𝑥)𝐶−𝐹
𝐸 =

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

 
 

6𝐿3 sin (
𝜋𝑛𝑥
𝐿
)

+𝜋𝑛𝑥 (
𝜋𝑛𝑥 (

𝜋𝑛(𝑥 − 3𝐿) cos(𝜋𝑛)

+3𝐿 sin(𝜋𝑛)
)

−6𝐿2
)

)

 
 

6𝜋4EI𝑛4

−

𝐿𝑞𝑜 (

𝜋2𝑛2𝑥(𝑥 − 2𝐿) cos(𝜋𝑛)

+2𝐿 (
𝐿 (cos (

𝜋𝑛𝑥
𝐿
) − 1)

+𝜋 nxsin(𝜋𝑛)
)
)

2𝜋3EI𝑛3

𝐿𝑞𝑜 (
𝐿 (sin (

𝜋𝑛𝑥
𝐿 ) − sin(𝜋𝑛))

+𝜋𝑛(𝐿 − 𝑥) cos(𝜋𝑛)
)

𝜋2𝑛2

𝐿𝑞𝑜 (cos (
𝜋𝑛𝑥
𝐿
) − cos(𝜋𝑛))

𝜋𝑛 }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(34) 

Solutions for the rotation, bending moment and shearing force are found as the same in two 

beam theories. Some particular values of sectional quantities are 

𝑤𝐿 2⁄ =

𝐿4𝑞𝑜(
6(

8 sin (
𝜋𝑛
2
)

+𝜋𝑛(𝜋 nsin(𝜋𝑛) − 4)
)

−5𝜋3𝑛3 cos(𝜋𝑛)

)

48𝜋4EI𝑛4
,     𝑤𝐿 = −

𝐿4𝑞𝑜 (
2𝜋3𝑛3 cos(𝜋𝑛)

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛)
+6𝜋𝑛

)

6𝜋4EI𝑛4
 

 

𝜃𝐿 2⁄ =

𝐿3𝑞𝑜(
−8 cos (

𝜋𝑛
2
)

+𝜋𝑛 (
3𝜋 ncos(𝜋𝑛)

−4 sin(𝜋𝑛)
) + 8

)

8𝜋3EI𝑛3
,    𝜃𝐿=

𝐿3𝑞𝑜 (
(𝜋2𝑛2 − 2) cos(𝜋𝑛)

−2𝜋 nsin(𝜋𝑛) + 2
)

2𝜋3EI𝑛3
 

 

𝑀𝐿 2⁄ =

𝐿2𝑞𝑜 (
2 sin (

𝜋𝑛
2 )

−2 sin(𝜋𝑛) + 𝜋 ncos(𝜋𝑛)
)

2𝜋2𝑛2
 

 

𝑇𝐿 2⁄ =
𝐿(cos (

𝜋𝑛
2 ) − cos (𝜋𝑛))𝑞𝑜

𝜋𝑛
,        𝑇𝐿 = 0 

 

 

 

 

 

 

 

 

 

 

(35) 

Since sin(𝜋𝑛) = 0  when 𝑛 is a positive integer, Eq. (34) may be cast as follows 
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𝑺(𝑥)𝐶−𝐹(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝐿𝑞𝑜 (

6𝐿3 sin (
𝜋𝑛𝑥
𝐿
)

+𝜋𝑛𝑥 (
𝜋𝑛𝑥(𝜋𝑛(𝑥 − 3𝐿) cos(𝜋𝑛))

−6𝐿2
)
)

6𝜋4EI𝑛4

−

𝐿𝑞𝑜 (
𝜋2𝑛2𝑥(𝑥 − 2𝐿) cos(𝜋𝑛)

+2𝐿2 (cos (
𝜋𝑛𝑥
𝐿
) − 1)

)

2𝜋3EI𝑛3

𝐿𝑞𝑜 (
𝐿 sin (

𝜋𝑛𝑥
𝐿
)

+𝜋𝑛(𝐿 − 𝑥) cos(𝜋𝑛)
)

𝜋2𝑛2

𝐿𝑞𝑜 (cos (
𝜋𝑛𝑥
𝐿
) − cos(𝜋𝑛))

𝜋𝑛 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(36) 

4.3. C-S Beam under Sinusoidal Distributed Loads 

For a fixed-simple supported beam, the elements of the initial state vector are obtained as  

𝑤𝑜 = 0,          𝜃𝑜 = 0 
 

𝑀𝑜 =
𝐿2((𝜋2𝑛2 + 6) sin(𝜋𝑛) − 6𝜋𝑛)𝑞𝑜

2𝜋4𝑛4
 

𝑇𝑜 =
𝐿(2𝜋𝑛(𝜋2𝑛2 + 3) − 3(𝜋2𝑛2 + 2) sin(𝜋𝑛))𝑞𝑜

2𝜋4𝑛4
 

 

 

 

(37) 

The elements of the state vector at any section are found as 
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𝑺(𝑥)𝐶−𝑆
𝐸 =

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

 
 

4𝐿3 sin (
𝜋𝑛𝑥
𝐿 )

−2𝜋𝑛𝑥(2𝐿2 − 3𝐿𝑥 + 𝑥2)

+𝑥2 sin(𝜋𝑛) (
(𝜋2𝑛2 + 2)𝑥

−𝐿(𝜋2𝑛2 + 6)
)
)

 
 

4𝜋4EI𝑛4

𝐿𝑞𝑜

(

 
 

2𝜋𝑛 (
−2𝐿2 cos (

𝜋𝑛𝑥
𝐿
)

+2𝐿2 − 6𝐿𝑥 + 3𝑥2
)

+xsin(𝜋𝑛) (
2𝐿(𝜋2𝑛2 + 6)

−3(𝜋2𝑛2 + 2)𝑥
)
)

 
 

4𝜋4EI𝑛4

𝐿𝑞𝑜(
sin(𝜋𝑛) (

𝐿(𝜋2𝑛2 + 6)

−3(𝜋2𝑛2 + 2)𝑥
)

+2𝜋𝑛 (𝜋 Lnsin (
𝜋𝑛𝑥
𝐿
) − 3𝐿 + 3𝑥)

)

2𝜋4𝑛4

𝐿𝑞𝑜 (
2𝜋3𝑛3 cos (

𝜋𝑛𝑥
𝐿 )

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛)
+6𝜋𝑛

)

2𝜋4𝑛4 }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

(38) 

Specific values of the elements of the state vector are 

𝑤𝐿 2⁄ = −

𝐿4 (
(𝜋2𝑛2 + 10) sin(𝜋𝑛)

+6𝜋𝑛 − 32 sin (
𝜋𝑛
2
)
)𝑞𝑜

32𝜋4EI𝑛4
 

𝜃𝐿 2⁄ =

𝐿3𝑞𝑜 (
(𝜋2𝑛2 + 18) sin(𝜋𝑛)

−2𝜋𝑛 (8 cos (
𝜋𝑛
2 ) + 1)

)

16𝜋4EI𝑛4
, 𝜃𝐿=−

𝐿3𝑞𝑜 (
(𝜋2𝑛2 − 6) sin(𝜋𝑛)

+2𝜋𝑛 + 4𝜋 ncos(𝜋𝑛)
)

4𝜋4EI𝑛4
 

𝑀𝐿 2⁄ =

𝐿2 (
(6 − 𝜋2𝑛2) sin(𝜋𝑛)

+2𝜋𝑛 (2𝜋 nsin (
𝜋𝑛
2 ) − 3)

)𝑞𝑜

4𝜋4𝑛4
 

𝑇𝐿 2⁄ =

𝐿𝑞𝑜 (
2𝜋3𝑛3 cos (

𝜋𝑛
2 )

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛) + 6𝜋𝑛
)

2𝜋4𝑛4
 

𝑇𝐿 =

𝐿𝑞𝑜 (
2𝜋3𝑛3 cos(𝜋𝑛)

−3(𝜋2𝑛2 + 2) sin(𝜋𝑛) + 6𝜋𝑛
)

2𝜋4𝑛4
 

 

 

 

 

 

 

 

 

 

 

(39) 

In the case of 𝑛 is a positive integer then the followings are obtained from Eq. (38) (sin(𝜋𝑛) =
0  ). 
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𝑺(𝑥)𝐶−𝑆(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 
 

 
 
 
 
 
 

𝐿𝑞𝑜 (
4𝐿3 sin (

𝜋𝑛𝑥
𝐿 )

−2𝜋𝑛𝑥(2𝐿2 − 3𝐿𝑥 + 𝑥2)
+

)

4𝜋4EI𝑛4

𝐿𝑞𝑜2𝜋𝑛 (
−2𝐿2 cos (

𝜋𝑛𝑥
𝐿 )

+2𝐿2 − 6𝐿𝑥 + 3𝑥2
)

4𝜋4EI𝑛4

𝐿𝑞𝑜(2𝜋𝑛 (𝜋 Lnsin (
𝜋𝑛𝑥
𝐿
) − 3𝐿 + 3𝑥))

2𝜋4𝑛4

𝐿𝑞𝑜(2𝜋
3𝑛3 cos (

𝜋𝑛𝑥
𝐿 ) + 6𝜋𝑛)

2𝜋4𝑛4 }
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 

(40) 

4.4. C-S Beam under Sinusoidal Distributed Loads 

In this case, the initial bending moment and the initial shearing force are found as (𝑤𝑜 = 0, 𝜃𝑜 =
0) 

𝑀𝑜 = −
2𝐿2𝑞𝑜(𝜋𝑛(cos(𝜋𝑛) + 2) − 3 sin(𝜋𝑛))

𝜋4𝑛4
 

𝑇𝑜 =

𝐿𝑞𝑜 (
𝜋𝑛(𝜋2𝑛2 + 6cos(𝜋𝑛) + 6)

−12 sin(𝜋𝑛)
)

𝜋4𝑛4
 

 

 

 

(41) 

The state vector at any section reads 
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𝑺(𝑥)𝐶−𝐶
𝐸 = 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

  
 

𝐿3 sin (
𝜋𝑛𝑥
𝐿
)

+𝑥(

𝑥(2𝑥 − 3𝐿) sin(𝜋𝑛)

−𝜋𝑛(𝑥 − 𝐿)(
−𝐿

+xcos(𝜋𝑛)
+𝑥

)
)

)

  
 

𝜋4EI𝑛4

𝐿𝑞𝑜

(

 
 

𝜋𝐿2(−𝑛) cos (
𝜋𝑛𝑥
𝐿
)

+(𝐿 − 𝑥) (
𝜋𝑛(𝐿 − 3𝑥)

+6𝑥 sin(𝜋𝑛)
)

+𝜋𝑛𝑥(3𝑥 − 2𝐿) cos(𝜋𝑛))

 
 

𝜋4EI𝑛4

𝐿𝑞𝑜

(

 
 

6(𝐿 − 2𝑥) sin(𝜋𝑛)

+𝜋𝑛 (
𝜋 Lnsin (

𝜋𝑛𝑥
𝐿
)

−4𝐿 + 6𝑥
)

−2𝜋𝑛(𝐿 − 3𝑥) cos(𝜋𝑛))

 
 

𝜋4𝑛4

𝐿𝑞𝑜 (
𝜋𝑛(

𝜋2𝑛2 cos (
𝜋𝑛𝑥
𝐿 )

+6 cos(𝜋𝑛) + 6
)

−12 sin(𝜋𝑛)

)

𝜋4𝑛4 }
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(42) 

Some values of the elements of the state vector at sections at  𝑥 = 𝐿 2⁄  anⅆ 𝑥 = 𝐿 are 

𝑤𝐿 2⁄ =

𝐿4𝑞𝑜 (
−𝜋𝑛 + 8 sin (

𝜋𝑛
2 )

−4 sin(𝜋𝑛) + 𝜋 ncos(𝜋𝑛)
)

8𝜋4EI𝑛4
 

𝜃𝐿 2⁄ = −

𝐿3𝑞𝑜(
𝜋𝑛(

4 cos (
𝜋𝑛
2 )

+cos(𝜋𝑛) + 1
)

−6 sin(𝜋𝑛)

)

4𝜋4EI𝑛4
 

𝑀𝐿 2⁄ =
𝐿2𝑞𝑜 (𝜋 nsin (

𝜋𝑛
2 ) + cos

(𝜋𝑛) − 1)

𝜋3𝑛3
,    𝑀𝐿 =

𝐿2𝑞𝑜 (
(𝜋2𝑛2 − 6) sin(𝜋𝑛)

+2𝜋𝑛 + 4𝜋 ncos(𝜋𝑛)
)

𝜋4𝑛4
 

 𝑇𝐿 2⁄ =

𝐿𝑞𝑜 (
𝜋3𝑛3 cos (

𝜋𝑛
2 ) − 12 sin

(𝜋𝑛)

+6𝜋𝑛(cos(𝜋𝑛) + 1)
)

𝜋4𝑛4
,     𝑇𝐿 =

𝐿𝑞𝑜 (
𝜋(𝜋2𝑛2 + 6)ncos(𝜋𝑛)

+6𝜋𝑛 − 12 sin(𝜋𝑛)
)

𝜋4𝑛4
 

 

 

 

 

 

 

 

 

 

(43) 

When 𝑛 is chosen as a positive integer (sin(𝜋𝑛) = 0) then  
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     𝑺(𝑥)𝐶−𝐶(𝑛=𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
𝐸 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝐿𝑞𝑜

(

 
 

𝐿3 sin (
𝜋𝑛𝑥
𝐿 )

−𝑥𝜋𝑛(𝑥 − 𝐿)(
−𝐿

+xcos(𝜋𝑛)
+𝑥

)

)

 
 

𝜋4EI𝑛4

𝐿𝑞𝑜(

𝜋𝐿2(−𝑛) cos (
𝜋𝑛𝑥
𝐿
)

+(𝐿 − 𝑥)(𝜋𝑛(𝐿 − 3𝑥))

+𝜋𝑛𝑥(3𝑥 − 2𝐿) cos(𝜋𝑛)

)

𝜋4EI𝑛4

𝐿𝑞𝑜 (
𝜋𝑛(

𝜋 Lnsin (
𝜋𝑛𝑥
𝐿
)

−4𝐿 + 6𝑥
)

−2𝜋𝑛(𝐿 − 3𝑥) cos(𝜋𝑛)

)

𝜋4𝑛4

𝐿𝑞𝑜𝜋𝑛(
𝜋2𝑛2 cos (

𝜋𝑛𝑥
𝐿
)

+6cos(𝜋𝑛) + 6
)

𝜋4𝑛4 }
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

(44) 

5. Solutions for Parabolically Distributed Forces 

If a generalized power-type distributed force [10] is concerned (Fig. 7) 

𝑞(𝑥) = −𝑞𝑜 (
𝑥

𝐿
)
𝑛

,        𝑛 ≥ 0 

 

(45) 

 

 

Fig. 7. Generalized power distributed loads 
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The inhomogeneous solution reads 

∫ 𝑭(𝑥 − 𝜉)𝒌(𝜉) 𝑑𝜉
𝑥

0

=

{
 
 
 
 

 
 
 
 

𝐿−𝑛𝑥𝑛+4𝑞𝑜
EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

−
𝐿−𝑛𝑥𝑛+3𝑞𝑜

EI(𝑛3 + 6𝑛2 + 11𝑛 + 6)

−
𝐿−𝑛𝑥𝑛+2𝑞𝑜
𝑛2 + 3𝑛 + 2

−
𝐿−𝑛𝑥𝑛+1𝑞𝑜
𝑛 + 1 }

 
 
 
 

 
 
 
 

 

 

 

 

 

(46) 

5.1. S-S Beam under Parabolically Distributed Loads 

In this case the state vector is found as 

𝑺(𝑥)𝑆−𝑆
𝐸 = 𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉

𝒙

0

=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑥𝑞𝑜(

𝐿3(𝑛 + 1)(𝑛 + 6)

+6𝑥3 (
𝑥
𝐿
)
𝑛

−𝐿(𝑛 + 3)(𝑛 + 4)𝑥2

)

6EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑞𝑜(

−𝐿3(𝑛 + 1)(𝑛 + 6)

−6(𝑛 + 4)𝑥3 (
𝑥
𝐿
)
𝑛

+3𝐿(𝑛 + 3)(𝑛 + 4)𝑥2

)

6EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑥𝑞𝑜 (𝐿 − 𝑥 (
𝑥
𝐿
)
𝑛
)

𝑛2 + 3𝑛 + 2

𝑞𝑜 (𝐿 − (𝑛 + 2)𝑥 (
𝑥
𝐿
)
𝑛
)

(𝑛 + 1)(𝑛 + 2) }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(47) 

where the initial rotation and the initial shearing force are found as (𝑤𝑜 = 0,𝑀𝑜 = 0) 

𝜃𝑜 = −
𝐿3(𝑛 + 6)𝑞𝑜

6EI(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)
 

𝑇𝑜 =
𝐿𝑞𝑜

𝑛2 + 3𝑛 + 2
 

 

 

 

(48) 

In both theories 𝜃(𝑥),𝑀(𝑥) 𝑎𝑛𝑑 𝑇(𝑥) are the same for the beam with simply supported at both 

ends. In Eq. (47) 𝑛 = 0 offers a uniformly distributed force (See Eq. 18). 

𝑤(𝑆−𝑆)(𝑛=0)
𝐸 =

𝑥(𝐿3 − 2𝐿𝑥2 + 𝑥3)𝑞𝑜
 24EI

=
𝑞𝑜𝐿

4

24EI
((
𝑥

𝐿
) − 2 (

𝑥

𝐿
)
3

+ (
𝑥

𝐿
)
4

) 

𝜃(𝑆−𝑆)(𝑛=0)
𝐸 = −

(𝐿3 − 6𝐿𝑥2 + 4𝑥3)𝑞𝑜
24EI

 

𝑀(𝑆−𝑆)(𝑛=0)
𝐸 =

1

2
𝑥(𝐿 − 𝑥)𝑞𝑜,              𝑇(𝑆−𝑆)(𝑛=0)

𝐸 =
1

2
(𝐿 − 2𝑥)𝑞𝑜 

 

 

 

 

(49) 
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In the above, 𝑤(𝑆−𝑆)(𝑛=0)
𝐸  overlaps with the result in Ref. [9]. In Eq. (47) 𝑛 = 1 proposes a 

linearly distributed force (triangular shape). 

𝑤(𝑆−𝑆)(𝑛=1)
𝐸 =

𝑥 (14𝐿3 +
6𝑥4

𝐿
− 20𝐿𝑥2) 𝑞𝑜

720EI
 

𝜃(𝑆−𝑆)(𝑛=1)
𝐸 =

(−14𝐿3 −
30𝑥4

𝐿
+ 60𝐿𝑥2) 𝑞𝑜

720EI
 

𝑀(𝑆−𝑆)(𝑛=1)
𝐸 =

1

6
𝑥 (𝐿 −

𝑥2

𝐿
)𝑞𝑜 

𝑇(𝑆−𝑆)(𝑛=1)
𝐸 =

1

6
(𝐿 −

3𝑥2

𝐿
)𝑞𝑜 

 

 

 

 

 

(50) 

These formulas coincides with the open literature [3]. 

𝑤(𝑥)𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
𝑞𝑜𝐿

3𝑥 (7 + 3
𝑥4

𝐿4
− 10𝐿

𝑥2

𝐿2
)

360EI
 

θ𝑜−𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
7𝑞𝑜𝐿

3

360EI
, θ𝐿−𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =

8𝑞𝑜𝐿
3

360EI
 

𝑀(𝑥)𝑡𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 =
𝑞𝑜𝐿𝑥

6
(1 −

𝑥2

𝐿2
) 

 

 

 

 

(51) 

5.2. C-F Beam under Parabolically Distributed Loads 

The non-zero elements of the initial state vector are 

𝑀𝑜 = −
𝐿2𝑞𝑜
𝑛 + 2

, 𝑇𝑜 =
𝐿𝑞𝑜
𝑛 + 1

 

 

(52) 

Longitudinal variation of the sectional quantities are  

𝑺(𝑥)𝐶−𝐹
𝐸 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥2𝑞𝑜(

6𝐿−𝑛𝑥𝑛+2

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

+
3𝐿2

𝑛 + 2 −
𝐿𝑥
𝑛 + 1

)

6EI

𝑥𝐿−𝑛𝑞𝑜 (
(𝑛 + 3)𝐿𝑛+1 (

(𝑛 + 2)𝑥
−2𝐿(𝑛 + 1)

)

−2𝑥𝑛+2
)

2EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)

𝐿−𝑛𝑞𝑜 (𝐿
𝑛+1 (

(𝑛 + 2)𝑥
−𝐿(𝑛 + 1)

) − 𝑥𝑛+2)

(𝑛 + 1)(𝑛 + 2)

𝐿𝑞𝑜 − 𝐿
−𝑛𝑥𝑛+1𝑞𝑜

𝑛 + 1 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(53) 
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In a cantilever beam 𝜃(𝑥),𝑀(𝑥) 𝑎𝑛𝑑 𝑇(𝑥) are the same in both beam theories. A uniformly 

distributed load is obtained with 𝑛 = 0 in Eq. (53) (see Eqn. 23). 

𝑤(𝐶−𝐹)(𝑛=0)
𝐸 =

𝑥2(6𝐿2 − 4𝐿𝑥 + 𝑥2)𝑞𝑜
24EI

=
𝑞𝑜𝐿

4

24EI
(6 (

𝑥

𝐿
)
2

− 4(
𝑥

𝐿
)
3

+ (
𝑥

𝐿
)
4

) 

𝜃(𝐶−𝐹)(𝑛=0)
𝐸 = −

𝑥(3𝐿2 − 3𝐿𝑥 + 𝑥2)𝑞𝑜
6EI

 

𝑀(𝐶−𝐹)(𝑛=0)
𝐸 = −

1

2
(𝐿 − 𝑥)2𝑞𝑜 

𝑇(𝐶−𝐹)(𝑛=0)
𝐸 = (𝐿 − 𝑥)𝑞𝑜 

 

 

 

(54) 

In the above, the deflection formula overlaps by Armagan’s [10] expression. Sectional 

quantities in a cantilever beam under linearly distributed forces is obtained with 𝑛 = 1 in Eq. 

(53) as follows [3]. 

𝑤(𝐶−𝐹)(𝑛=1)
𝐸 =

𝑥2𝑞𝑜
6EI

(𝐿2 +
𝑥3

20𝐿
−
𝐿𝑥

2
) 

𝜃(𝐶−𝐹)(𝑛=1)
𝐸 = −

𝑥(8𝐿3 − 6𝐿2𝑥 + 𝑥3)𝑞𝑜
24EI𝐿

 

𝑀(𝐶−𝐹)(𝑛=1)
𝐸 = −

(𝐿 − 𝑥)2(2𝐿 + 𝑥)𝑞𝑜
6𝐿

 

𝑇(𝐶−𝐹)(𝑛=1)
𝐸 =

(𝐿 − 𝑥)(𝐿 + 𝑥)𝑞𝑜
2𝐿

 

 

 

 

 

(55) 

Peddieson et al. [10] presented the following 

𝑤(𝐶−𝐹)−𝑃𝑒𝑑𝑑𝑖𝑒𝑠𝑜𝑛 𝑒𝑡 𝑎𝑙.[10]
𝐸 =

𝐿4𝑞𝑜 (
(
𝑥
𝐿)

4+𝑛
+
(𝑛 + 1)(𝑛 + 3)(𝑛 + 4)

2 

−
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

6 
(
𝑥
𝐿
)
)

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) 
 

 

 

 

 

(56) 

However, the transverse displacement in Eq. (53) may be rewritten as 

𝑤(𝐶−𝐹)
𝐸 =

𝐿4𝑞𝑜

(

 
 
 

(
𝑥
𝐿)

4+𝑛

+
(𝑛 + 1)(𝑛 + 3)(𝑛 + 4)

2 (
𝑥
𝐿)

2

−
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

6 (
𝑥
𝐿)

3

)

 
 
 

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) 
 

 

 

 

 

(57) 

The author thinks that there must be typographical errors in Peddieson and et al.’s [10] results. 

 

5.3. C-S Beam under Parabolically Distributed Loads 

The bending moment and the shearing force at the initial section are found as (𝑤𝑜 = 0, 𝜃𝑜 = 0) 
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𝑀𝑜 = −
𝐿2(𝑛 + 6)𝑞𝑜

2(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)
 

𝑇𝑜 =
3𝐿(𝑛 + 5)𝑞𝑜

2(𝑛 + 1)(𝑛 + 3)(𝑛 + 4)
 

 

 

(58) 

The state vector is to be 

𝑺(𝑥)𝐶−𝑆
𝐸 = 𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉

𝒙

0

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑥2𝐿−𝑛𝑞𝑜 (

𝐿𝑛+1 (
𝐿(𝑛 + 1)(𝑛 + 6)

−(𝑛 + 2)(𝑛 + 5)𝑥
)

+4𝑥𝑛+2
)

4EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑥𝐿−𝑛𝑞𝑜 (
𝐿𝑛+1 (

3(𝑛 + 2)(𝑛 + 5)𝑥
−2𝐿(𝑛 + 1)(𝑛 + 6)

)

−4(𝑛 + 4)𝑥𝑛+2
)

4EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝐿−𝑛𝑞𝑜 (
𝐿𝑛+1 (

3(𝑛 + 2)(𝑛 + 5)𝑥
−𝐿(𝑛 + 1)(𝑛 + 6)

)

−2(𝑛 + 3)(𝑛 + 4)𝑥𝑛+2
)

2(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑞𝑜 (
3𝐿(𝑛 + 5)

(𝑛 + 3)(𝑛 + 4)
− 2𝐿−𝑛𝑥𝑛+1)

2(𝑛 + 1) }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

(59) 

As stated above, a uniformly distributed force is obtained by substituting 𝑛 = 0 in Eq. (59) (see 

Eq. 21) 

𝑤(𝐶−𝑆)(𝑛=0)
𝐸 =

𝑥2(3𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜
48EI

 

𝜃(𝐶−𝑆)(𝑛=0)
𝐸 = −

𝑥(6𝐿2 − 15𝐿𝑥 + 8𝑥2)𝑞𝑜
48EI

 

𝑀(𝐶−𝑆)(𝑛=0)
𝐸 = −

1

8
(𝐿 − 4𝑥)(𝐿 − 𝑥)𝑞𝑜 

𝑇(𝐶−𝑆)(𝑛=0)
𝐸 =

1

8
(5𝐿 − 8𝑥)𝑞𝑜 

 

 

 

(60) 

To get a linearly distributed force, 𝑛 = 1 should be used in Eq. (59). 

𝑤(𝐶−𝑆)(𝑛=1)
𝐸 =

𝑥2(7𝐿3 − 9𝐿2𝑥 + 2𝑥3)𝑞𝑜
240EI𝐿

 

𝜃(𝐶−𝑆)(𝑛=1)
𝐸 =−

𝑥(14𝐿3 − 27𝐿2𝑥 + 10𝑥3)𝑞𝑜
240EI𝐿

  

𝑀(𝐶−𝑆)(𝑛=1)
𝐸 = −

(7𝐿3 − 27𝐿2𝑥 + 20𝑥3)𝑞𝑜
120𝐿

 

𝑇(𝐶−𝑆)(𝑛=1)
𝐸 =

1

4
(
9𝐿

10
−
2𝑥2

𝐿
)𝑞𝑜 

 

 

 

 

 

(61) 
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5.4. C- C Beam under Parabolically Distributed Loads 

Initial bending moment and shearing force at the initial section of a C-C Euler-Bernoulli beam 

are obtained as (𝑤𝑜 = 0, 𝜃𝑜 = 0) 

𝑀𝑜 = −
2𝐿2𝑞𝑜

𝑛3 + 9𝑛2 + 26𝑛 + 24
 

𝑇𝑜 =
6𝐿𝑞𝑜

𝑛3 + 8𝑛2 + 19𝑛 + 12
 

 

 

(62) 

The state vector at any section is 

𝑺(𝑥)𝐶−𝐶
𝐸 = 𝑭(𝑥)𝑺(0) + ∫ 𝑭(𝑥 − 𝜉)𝒌(𝑥) 𝑑𝜉

𝒙

0

=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑥2𝐿−𝑛𝑞𝑜 (

𝐿𝑛+1 (
𝐿(𝑛 + 1)

−(𝑛 + 2)𝑥
)

+𝑥𝑛+2
)

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑥𝐿−𝑛𝑞𝑜 (
𝐿𝑛+1 (

3(𝑛 + 2)𝑥
−2𝐿(𝑛 + 1)

)

−(𝑛 + 4)𝑥𝑛+2
)

EI(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝐿−𝑛𝑞𝑜 (
−2𝐿𝑛+1 (

𝐿(𝑛 + 1)

−3(𝑛 + 2)𝑥
)

−(𝑛 + 3)(𝑛 + 4)𝑥𝑛+2
)

(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

𝑞𝑜(

6𝐿

𝑛3 + 8𝑛2 + 19𝑛 + 12

−
𝐿−𝑛𝑥𝑛+1

𝑛 + 1

)

}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

(63) 

In the above 𝑛 = 0 means a uniformly distributed force as follows (see Eq. 25) 

𝑤(𝐶−𝐶)(𝑛=0)
𝐸 =

𝑥2(𝐿 − 𝑥)2𝑞𝑜
24EI

 

𝜃(𝐶−𝐶)(𝑛=0)
𝐸 =−

𝑥(𝐿 − 2𝑥)(𝐿 − 𝑥)𝑞𝑜
12EI

 

𝑀(𝐶−𝐶)(𝑛=0)
𝐸 =−

1

12
(𝐿2 − 6𝐿𝑥 + 6𝑥2)𝑞𝑜 

𝑇(𝐶−𝐶)(𝑛=0)
𝐸 =

1

2
(𝐿 − 2𝑥)𝑞𝑜 

 

 

 

 

 

(64) 

For 𝑛 = 1 the following is achieved  

𝑤(𝐶−𝐶)(𝑛=1)
𝐸 =

𝑥2(𝐿 − 𝑥)2(2𝐿 + 𝑥)𝑞𝑜
120EI𝐿

,    𝜃(𝐶−𝐶)(𝑛=1)
𝐸 =−

𝑥(4𝐿3 − 9𝐿2𝑥 + 5𝑥3)𝑞𝑜
120EI𝐿

 

𝑀(𝐶−𝐶)(𝑛=1)
𝐸 =−

(2𝐿3 − 9𝐿2𝑥 + 10𝑥3)𝑞𝑜
60𝐿

,    𝑇(𝐶−𝐶)(𝑛=1)
𝐸 =(

3𝐿

20
−
𝑥2

2𝐿
) 𝑞𝑜 

 

 

 

(65) 
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It may be noted that, when  𝑛 = 0, 𝜃(𝑥),𝑀(𝑥), anⅆ 𝑇(𝑥) are all the same in both two beam 

theories. However, they are no longer the same for different values of  𝑛. 

6. Solutions for Concentrated Force and Moments 

 

 

Fig. 8. Concentrated force and couple acting at section 𝑥 = 𝑎 

With the help of a discontinuity matrix due to a single couple moment,  𝜇𝑜, and a single force, 

𝑃𝑜, at section  x = 𝑎 in Eq. (11), 𝑲(𝑎) = {0 0 −𝜇𝑜 −𝑃𝑜}
𝑇, the following may be obtained 

for 𝑎 ≤ 𝑥 ≤ 𝐿 (Fig. 8) 

𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
  
 

  
 
(𝑎 − 𝑥)2((𝑥 − 𝑎)𝑃𝑜 + 3𝜇𝑜)

6EI
(𝑎 − 𝑥)((𝑥 − 𝑎)𝑃𝑜 + 2𝜇𝑜)

2EI
(𝑎 − 𝑥)𝑃𝑜 − 𝜇𝑜

−𝑃𝑜 }
  
 

  
 

 

 

 

 

(66) 

When only concentrated loads are considered, the general solution is defined in two regions, 

which are defined as before and after 𝑥 = 𝑎, as follows (see Eq. 14) 

𝑺(𝑥)𝐼 = 𝑭(𝑥)𝑺(0) 

𝑺(𝑥)𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) 

 

 

(67) 

6.1. S-S Beam under Concentrated Force and Moments 

In this case the non-zero elements of 𝑺(0) are 

𝜃𝑜 =
(3𝑎2 − 6𝑎𝐿 + 2𝐿2)𝜇𝑜 − 𝑎(𝑎 − 2𝐿)(𝑎 − 𝐿)𝑃𝑜

6EI𝐿
 

𝑇𝑜 =
(𝐿 − 𝑎)𝑃𝑜 + 𝜇𝑜

𝐿
 

 

 

 

(68) 

The elements of the state vector are 
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𝑺(𝑥)𝑆−𝑆
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 
 
 
 
 

 
 
 
 
 
 
(
𝑥(𝑎 − 𝐿)𝑃𝑜(𝑎

2 − 2𝑎𝐿 + 𝑥2)

−𝑥𝜇𝑜 (
3𝑎2 − 6𝑎𝐿
+2𝐿2 + 𝑥2

)
)

6EI𝐿

(
𝜇𝑜(3𝑎

2 − 6𝑎𝐿 + 2𝐿2 + 3𝑥2)

−(𝑎 − 𝐿)𝑃𝑜 (
𝑎2 − 2𝑎𝐿
+3𝑥2

)
)

6EI𝐿
𝑥((𝐿 − 𝑎)𝑃𝑜 + 𝜇𝑜)

𝐿
(𝐿 − 𝑎)𝑃𝑜 + 𝜇𝑜

𝐿 }
 
 
 
 
 
 

 
 
 
 
 
 

 

𝑺(𝑥)𝑆−𝑆
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 
 
 

 
 
 
 
 
((𝐿 − 𝑥)(

𝜇𝑜(3𝑎
2 + 𝑥(𝑥 − 2𝐿))

−𝑎𝑃𝑜(𝑎
2 + 𝑥(𝑥 − 2𝐿))

))

6EI𝐿

(
𝜇𝑜(3𝑎

2 + 2𝐿2 − 6𝐿𝑥 + 3𝑥2)

−𝑎𝑃𝑜(𝑎
2 + 2𝐿2 − 6𝐿𝑥 + 3𝑥2)

)

6EI𝐿
(𝐿 − 𝑥)(𝑎𝑃𝑜 − 𝜇𝑜)

𝐿
𝜇𝑜 − 𝑎𝑃𝑜

𝐿 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

(69) 

When the beam is only subjected to a single force at the mid-span (𝜇𝑜 = 0, 𝑎 = 𝐿 2)⁄  then Eq. 

(69) becomes 

𝑺(𝑥)𝑆−𝑆
𝐼 =

{
 
 
 
 

 
 
 
 
(3𝐿2𝑥 − 4𝑥3)𝑃𝑜

48EI

−
(𝐿2 − 4𝑥2)𝑃𝑜

16EI
𝑥𝑃𝑜
2
𝑃𝑜
2 }

 
 
 
 

 
 
 
 

,     𝑺(𝑥)𝑆−𝑆
𝐼𝐼 =

{
 
 
 
 

 
 
 
 −

(𝐿 − 𝑥)(𝐿2 − 8𝐿𝑥 + 4𝑥2)𝑃𝑜
48EI

−
(𝐿 − 2𝑥)(3𝐿 − 2𝑥)𝑃𝑜

16EI
1

2
(𝐿 − 𝑥)𝑃𝑜

−
𝑃𝑜
2 }

 
 
 
 

 
 
 
 

 

 

 

 

(70) 

The dimensionless displacement may be defined as �̅� = 𝐸𝐼𝑤 (𝑃𝑜𝐿
3)⁄  for a point force. From 

Eq. (70) with 𝑥 = 𝐿/2 it is found as �̅�𝑚𝑎𝑥 = 1 48⁄ = 0.020833. Aydoğdu [12] reported it as 

�̅�𝑚𝑎𝑥 = 0.022222.  

 

6.2. C-C Beam under Concentrated Force and Moments 

The unknown elements of the initial state vector are  

𝑀𝑜 = −
(𝑎 − 𝐿)((𝐿 − 3𝑎)𝜇𝑜 + 𝑎(𝑎 − 𝐿)𝑃𝑜)

𝐿2
,     𝑇𝑜 =

(𝑎 − 𝐿)((𝑎 − 𝐿)(2𝑎 + 𝐿)𝑃𝑜 − 6𝑎𝜇𝑜)

𝐿3
 

 

(71) 
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With the help of the above, the following is written 

 

𝑺(𝑥)𝐶−𝐶
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑥2(𝑎 − 𝐿)(

3𝜇𝑜(−3𝑎𝐿 + 2𝑎𝑥 + 𝐿
2)

+(𝑎 − 𝐿)𝑃𝑜 (
3𝑎𝐿

−𝑥(2𝑎 + 𝐿)
)
)

6EI𝐿3

−

𝑥(𝑎 − 𝐿)(
2𝜇𝑜(3𝑎(𝑥 − 𝐿) + 𝐿

2)

+(𝑎 − 𝐿)𝑃𝑜 (
2𝑎𝐿

−𝑥(2𝑎 + 𝐿)
)
)

2EI𝐿3

−

(𝑎 − 𝐿)(
𝜇𝑜(−3𝑎𝐿 + 6𝑎𝑥 + 𝐿

2)

+(𝑎 − 𝐿)𝑃𝑜 (
𝑎𝐿

−𝑥(2𝑎 + 𝐿)
)
)

𝐿3

(𝑎 − 𝐿)((𝑎 − 𝐿)(2𝑎 + 𝐿)𝑃𝑜 − 6𝑎𝜇𝑜)

𝐿3 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

𝑺(𝑥)𝐶−𝐶
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 
 
 

 
 
 
 
 𝑎(𝐿 − 𝑥)2 (

3𝜇𝑜(𝑎(𝐿 + 2𝑥) − 2𝐿𝑥)

−𝑎𝑃𝑜(𝑎(𝐿 + 2𝑥) − 3𝐿𝑥)
)

6EI𝐿3

−

𝑎(𝐿 − 𝑥) (
𝑎𝑃𝑜(2𝑎𝑥 + 𝐿

2 − 3𝐿𝑥)

−2𝜇𝑜(3𝑎𝑥 + 𝐿
2 − 3𝐿𝑥)

)

2EI𝐿3

𝑎 (
𝑎𝑃𝑜(−𝑎𝐿 + 2𝑎𝑥 + 2𝐿

2 − 3𝐿𝑥)

+𝜇𝑜(3𝑎(𝐿 − 2𝑥) − 4𝐿
2 + 6𝐿𝑥)

)

𝐿3

𝑎(6(𝐿 − 𝑎)𝜇𝑜 + 𝑎(2𝑎 − 3𝐿)𝑃𝑜)

𝐿3 }
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(72) 

When C-C Euler beam is only subjected to a single force at the mid-span (𝜇𝑜 = 0, 𝑎 = 𝐿 2)⁄  

then Eq. (72) becomes 

𝑺(𝑥)𝐶−𝐶
𝐼 =

{
 
 
 
 

 
 
 
 
𝑥2(3𝐿 − 4𝑥)𝑃𝑜

48EI

−
𝑥(𝐿 − 2𝑥)𝑃𝑜

8EI

−
1

8
(𝐿 − 4𝑥)𝑃𝑜

𝑃𝑜
2 }

 
 
 
 

 
 
 
 

,         𝑺(𝑥)𝐶−𝐶
𝐼𝐼 =

{
 
 
 
 

 
 
 
 −

(𝐿 − 4𝑥)(𝐿 − 𝑥)2𝑃𝑜
48EI

−
(𝐿 − 2𝑥)(𝐿 − 𝑥)𝑃𝑜

8EI
1

8
(3𝐿 − 4𝑥)𝑃𝑜

−
𝑃𝑜
2 }

 
 
 
 

 
 
 
 

 

 

 

(73) 

 

6.3. C-F Beam under Concentrated Force and Moments 

For a C-F Euler-Bernoulli beam under concentrated force and moments, the initial state vector 

is determined as 

𝑺(0) = {0 0 (𝜇𝑜 − 𝑎𝑃𝑜) 𝑃𝑜}
𝑇 

 

(74) 
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Variation of the sectional quantities along the beam is 

 

 

𝑺(𝑥)𝐶−𝐹
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 

 
 −

𝑥2((𝑥 − 3𝑎)𝑃𝑜 + 3𝜇𝑜)

6EI
𝑥((𝑥 − 2𝑎)𝑃𝑜 + 2𝜇𝑜)

2EI
(𝑥 − 𝑎)𝑃𝑜 + 𝜇𝑜

𝑃𝑜 }
 
 

 
 

 

𝑺(𝑥)𝐶−𝐹
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 

 
 
 (

3𝑎(𝑎 − 2𝐿)𝜇𝑜
−(𝑎3 − 3𝑎2𝐿 + 3𝑎𝐿2 − 3𝐿3)𝑃𝑜

)

6EI
2𝑎𝜇𝑜 − (𝑎

2 − 2𝑎𝐿 + 2𝐿2)𝑃𝑜
2EI

(𝑎 − 𝐿)𝑃𝑜
0 }

 
 
 

 
 
 

 

 

 

 

 

 

(75) 

If only a single force acts on a C-F Euler-Bernoulli beam at section 𝑥 = 𝐿, solutions in two 

regions become (𝜇𝑜 = 0 𝑎𝑛𝑑   𝑎 = 𝐿) 

𝑺(𝑥)𝐶−𝐹
𝐼 =

{
 
 

 
 
𝑥2(3𝐿 − 𝑥)𝑃𝑜

6EI
𝑥(𝑥 − 2𝐿)𝑃𝑜

2EI
(𝑥 − 𝐿)𝑃𝑜

𝑃𝑜 }
 
 

 
 

 

 𝑺(𝑥)𝐶−𝐹
𝐼𝐼 =

{
 
 

 
 
𝐿3𝑃𝑜
3EI

−
𝐿2𝑃𝑜
2EI
0
0 }

 
 

 
 

 

 

 

 

 

 

 

(76) 

 

6.4. C-S Beam under Concentrated Force and Moments 

Unknown elements of the initial state vector are 

𝑀𝑜 =
(3𝑎2 − 6𝑎𝐿 + 2𝐿2)𝜇𝑜 − 𝑎(𝑎 − 2𝐿)(𝑎 − 𝐿)𝑃𝑜

2𝐿2
 

𝑇𝑜 =
(𝑎3 − 3𝑎2𝐿 + 2𝐿3)𝑃𝑜 − 3𝑎(𝑎 − 2𝐿)𝜇𝑜

2𝐿3
 

 

 

(77) 

For this boundary condition, the whole elements of the state vector at any section are defined 

by 
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𝑺(𝑥)𝐶−𝑆
𝐼 = 𝑭(𝑥)𝑺(0)=

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

𝑥2

(

 
 

3𝜇𝑜 (
𝑎2(𝑥 − 3𝐿)

+2𝑎𝐿(3𝐿 − 𝑥) − 2𝐿3
)

+(𝑎 − 𝐿)𝑃𝑜 (
𝑎2(3𝐿 − 𝑥)

+2𝑎𝐿(𝑥 − 3𝐿) + 2𝐿2𝑥
)
)

 
 

12EI𝐿3

(

 
𝑥𝜇𝑜 (

𝑎2(6𝐿 − 3𝑥)

+6𝑎𝐿(𝑥 − 2𝐿) + 4𝐿3
)

+𝑥(𝑎 − 𝐿)𝑃𝑜 (
𝑥(𝑎2 − 2𝑎𝐿 − 2𝐿2)

−2𝑎𝐿(𝑎 − 2𝐿)
)
)

 

4EI𝐿3

(

 
 

𝜇𝑜 (
3𝑎2(𝐿 − 𝑥)

+6𝑎𝐿(𝑥 − 𝐿) + 2𝐿3
)

−(𝑎 − 𝐿)𝑃𝑜 (
𝑎2(𝐿 − 𝑥)

+2𝑎𝐿(𝑥 − 𝐿) + 2𝐿2𝑥
)
)

 
 

2𝐿3

(
(𝑎3 − 3𝑎2𝐿 + 2𝐿3)𝑃𝑜
−3𝑎(𝑎 − 2𝐿)𝜇𝑜

)

2𝐿3 }
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

𝑺(𝑥)𝐶−𝑆
𝐼𝐼 = 𝑭(𝑥)𝑺(0) + 𝑭(𝑥 − 𝑎)𝑲(𝑎) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑎(𝐿 − 𝑥)

(

 
𝑎𝑃𝑜 (

−2𝑎𝐿2 + 𝑥2(𝑎 − 3𝐿)

−2𝐿𝑥(𝑎 − 3𝐿)
)

+3𝜇𝑜 (
𝑎(2𝐿2 + 2𝐿𝑥 − 𝑥2)

+2𝐿𝑥(𝑥 − 2𝐿)
)
)

 

12EI𝐿3

𝑎(

𝑎𝑃𝑜 (
−𝐿𝑥(2𝑎 + 3𝑥)

+𝑎𝑥2 − 2𝐿3 + 6𝐿2𝑥
)

+𝜇𝑜 (
6𝐿𝑥(𝑎 + 𝑥) − 3𝑎𝑥2

+4𝐿3 − 12𝐿2𝑥
)
)

4EI𝐿3

𝑎(𝐿 − 𝑥)(3(𝑎 − 2𝐿)𝜇𝑜 − 𝑎(𝑎 − 3𝐿)𝑃𝑜)

2𝐿3

𝑎(𝑎(𝑎 − 3𝐿)𝑃𝑜 − 3(𝑎 − 2𝐿)𝜇𝑜)

2𝐿3 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(78) 

If 𝜇𝑜 = 0 and  𝑎 = 𝐿/2, Eq. (77) turns to be 

  

𝑺(𝑥)𝐶−𝑆
𝐼 =

{
 
 
 
 

 
 
 
 
𝑥2(9𝐿 − 11𝑥)𝑃𝑜

96EI
𝑥(11𝑥 − 6𝐿)𝑃𝑜

32EI
1

16
(11𝑥 − 3𝐿)𝑃𝑜

11𝑃𝑜
16 }

 
 
 
 

 
 
 
 

,    𝑺(𝑥)𝐶−𝑆
𝐼𝐼 =

{
 
 
 
 

 
 
 
 −

(𝐿 − 𝑥)(2𝐿2 − 10𝐿𝑥 + 5𝑥2)𝑃𝑜
96EI

−
(4𝐿2 − 10𝐿𝑥 + 5𝑥2)𝑃𝑜

32EI
5

16
(𝐿 − 𝑥)𝑃𝑜

−
5𝑃𝑜
16 }

 
 
 
 

 
 
 
 

 

 

 

 

(79) 
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7. Conclusions 

In the present study some remarkable formulas are proposed for the bending behavior of 

classically supported Euler-Bernoulli beams under both distributed and concentrated loads via 

the transfer matrix approach. For classical boundary conditions it is observed that, Euler-

Bernoulli beam solutions are independent from 𝐿/ℎ ratios. This is an expected conclusion. The 

present formulas which also comprise the point and distributed couple moments may be very 

useful to the readers. It is worth noting that sectional quantities at positive sections may be 

obtained by using those formulas. Since the present analysis is a linear elastic, the superposition 

principle is hold under combined loads. 
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