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Abstract

This paper deals with skew ruled surfaces in the Euclidean space E3 which are equipped
with polar normalizations, that is, relative normalizations such that the relative normal
at each point of the ruled surface lies on the corresponding polar plane. We determine
the invariants of a such normalized ruled surface and we study some properties of the
Tchebychev vector field and the support vector field of a polar normalization. Furthermore,
we study a special polar normalization, the relative image of which degenerates into a curve.

1. Introduction

In 1989 F. Manhart introduced the one-parameter family of relative normalizations (a)y of a hypersurface with non-vanishing Gaussian
curvature K̃ in the Euclidean space En+1 which are characterized by the support functions (a)q = |K̃|a, a ∈ R and called Manhart’s
normalizations (see [2]).
G. Stamou and A. Magkos in [9] and G. Stamou, St. Stamatakis and I. Delivos in [10] studied ruled surfaces in the Euclidean space E3

which are equipped with Manhart’s normalizations. Later, S. Stamatakis and I. Kaffas studied in [5] the asymptotic relative normalizations of
a ruled surface Φ, that is, relative normalizations such that the relative normals at each point P of Φ lie on the corresponding asymptotic
plane of Φ .
Following this idea the authors introduced in [7] three special relative normalizations:

1. the central normalizations, i.e, relative normalizations such that the relative normals at each point P of Φ lie on the corresponding
central plane,

2. the polar normalizations, i.e, relative normalizations such that the relative normals at each point P of Φ lie on the corresponding polar
plane and finally

3. the right normalizations, that is relative normalizations of Φ whose relative images Φ are also ruled surfaces with the additional
property that their generators are parallel to those of Φ . Some of these relative normalizations degenerate into a curve.

The central and the right normalizations were studied thoroughly in [7] and [8], respectively. In this paper we will study the polar
normalizations.

2. Preliminaries

A brief discussion of some definitions, results and formulae of relative Differential Geometry of surfaces and Differential Geometry of ruled
surfaces in the Euclidean space E3 appears in this section. We refer the reader to [3] and [4].
In the three-dimensional Euclidean space E3 let Φ = (U,x) be a ruled Cr-surface of nonvanishing Gaussian curvature, r ≥ 3, defined by
an injective Cr-immersion x = x(u,v) on a region U := I×R (I ⊂ R open interval) of R2. We introduce the so-called standard parameters
u ∈ I,v ∈ R of Φ , such that

x(u,v) = s(u)+ ve(u), (2.1)
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and

|e|= |e′|= 1, 〈s′,e′〉= 0,

where the differentiation with respect to u is denoted by a prime and 〈 ,〉 denotes the standard scalar product in E3. Here Γ : s = s(u) is the
striction curve of Φ and the parameter u is the arc length along the spherical curve e = e(u).
The distribution parameter δ (u) := (s′,e,e′), the conical curvature κ(u) := (e,e′,e′′) and the function λ (u) := cotσ , where σ(u) := ^(e,s′)
is the striction of Φ (− π

2 < σ ≤ π

2 , signσ = signδ ), are the fundamental invariants of Φ and determine uniquely the ruled surface Φ up to
Euclidean rigid motions. We also consider the central normal vector n(u) := e′ and the central tangent vector z(u) := e×n. It is known that
the vectors of the moving frame D := {e,n,z} of Φ fulfil the following equations [3, p. 280]

e′ = n, n′ =−e+κ z, z′ =−κ n. (2.2)

Then we have

s′ = δ λ e+δ z. (2.3)

We denote partial derivatives of a function (or a vector-valued function) f in the coordinates u1 := u, u2 := v by f/i, f/i j etc. Then from (2.1)
and (2.3) we take

x/1 = δ λ e+ vn+δ z, x/2 = e, (2.4)

and thus the unit normal vector ξ (u,v) to Φ is given by

ξ =
δ n− vz

w
, where w :=

√
δ 2 + v2.

Let I = gi jduidu j and II = hi jduidu j, i, j = 1,2 be the first and the second fundamental form of Φ , respectively, where

g11 = w2 +δ
2
λ

2, g12 = δλ , g22 = 1, (2.5)

h11 =−
κ w2 +δ ′ v−δ 2 λ

w
, h12 =

δ

w
, h22 = 0. (2.6)

The Gaussian curvature K̃(u,v) and the mean curvature H̃(u,v) of Φ are given by (see [3])

K̃ =− δ 2

w4 , H̃ =−κw2 +δ ′v+δ 2λ

2w3 . (2.7)

A Cs-relative normalization of Φ is a Cs-mapping y = y(u,v),1≤ s < r, defined on U , such that

rank({x/1,x/2,y}) = 3, rank({x/1,x/2,y/i}) = 2, i = 1,2, ∀(u,v) ∈U. (2.8)

The pair (Φ ,y) is called a relatively normalized ruled surface in R3 and the straight line issuing from a point P ∈Φ in the direction of y is
called the relative normal of (Φ ,y) at P. The pair Φ = (U,y) is called the relative image of (Φ ,y).
The support function of the relative normalization y is defined by q(u,v) := 〈ξ ,y〉 (see [1]). For q = 1, we have y = ξ , that is, the
normalization is the Euclidean one.
Due to (2.8), q never vanishes on U . Conversely, when a support function q is given, the relative normalization y of the ruled surface Φ is
uniquely determined and can be expressed in terms of the moving frame D as follows [5, p. 179]:

y = y1 e+ y2 n+ y3 z, (2.9)

where

y1 =−w
δq/1 +q/2(κ w2 +δ ′v)

δ 2 , y2 =
δ 2 q−w2 vq/2

δw
, y3 =−

vq+w2 q/2

w
. (2.10)

For the coefficients Gi j(u,v) of the relative metric G(u,v) of (Φ ,y), which is indefinite, we have

Gi j = q−1 hi j. (2.11)

Then, because of (2.6), the coefficients of the inverse relative metric tensor are

G(11) = 0, G(12) =
wq
δ

, G(22) = wq
κ w2 +δ ′v−δ 2 λ

δ 2 . (2.12)

For a function (or a vector-valued function) f we denote by ∇G
i f the covariant derivatives in the direction of ui, both with respect to the

relative metric. The coefficients Ai jk(u,v) of the Darboux tensor are given by

Ai jk := q−1 〈ξ , ∇
G
k ∇

G
j x/i〉.

Then, by using the relative metric tensor Gi j for “raising and lowering the indices”, the Pick invariant J(u,v) of (Φ ,y) is defined by

J :=
1
2

Ai jk Ai jk.
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As we proved in [7] (see equation (2.2)) the Pick invariant is calculated by

J =
3
(

w2q/2 + vq
)

2δ 2w3 q

{
w2
[
κqv+2δq/1 +q/2

(
κ w2 +δ

′v−δ
2
λ

)]
−δ

2q
(
λv−δ

′)}. (2.13)

The relative shape operator has the coefficients B j
i (u,v) given by

y/i =:−B j
i x/ j. (2.14)

Then, for the relative curvature K(u,v) and the relative mean curvature H(u,v) of (Φ ,y) we have

K := det
(

B j
i

)
, H :=

B1
1 +B2

2
2

. (2.15)

We conclude this section by mentioning that, among the surfaces of E3 with negative Gaussian curvature the ruled surfaces are characterized
by the relation

3H− J−3S = 0 (2.16)

(see [6]), where S(u,v) is the scalar curvature of the relative metric G of such a surface Φ , which is defined formally as the curvature of the
pseudo-Riemannian manifold (Φ ,G).

3. Polar normalizations

We concentrate now on the main topic of this paper, namely the polar normalizations of a skew ruled surface Φ , i.e., relative normalizations
such that the relative normal at each point P of Φ lies on the corresponding polar plane {P;n,z}. In [7] it was shown that the support function
of y is of the form

q = f (V ), (3.1)

where f (V ) is an arbitrary C2-function of

V = arctan
v
δ
−
∫

κdu. (3.2)

By means of (2.9), (2.10), (3.1) and (3.2) we deduce that the arising relative normalization, i.e., the polar normalization of the given ruled
surface Φ is

y =
δq− q̇v

w
n− qv+δ q̇

w
z, (3.3)

where the dot denotes the differentiation with respect to V . Then, from (2.2), (2.4), (2.14) and (3.3), we take the coefficients B j
i of the relative

shape operator of a polar normalization:

B1
1 =−

(κw2 +δ ′v)(q+ q̈)
w3 ,

B2
1 =

1
w3

{
− q̇v3−δ

2q̇v+δ
3 [q(κλ +1)+κλ q̈]+δv

[
q
(
κλv+ v+δ

′
λ
)
+λ q̈

(
κv+δ

′)]},
B1

2 =
δ (q+ q̈)

w3 ,

B2
2 =−

δ 2λ (q+ q̈)
w3 .

Hence, by using (2.15) and (2.7b), we obtain the relative curvature K and the relative mean curvature H:

K =−δ
(δq− q̇v)(q+ q̈)

w4 , H = H̃ (q+ q̈) . (3.4)

From (3.4a) we deduce that the relative curvature K of a polar normalization vanishes identically iff

δq− q̇v = 0 or q+ q̈ = 0,

or, equivalently, iff

q = ce
δV
v ,c ∈ R∗ or q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2

1 + c2
2 6= 0.

We reject the first support function since it leads to a non polar normalization. Thus we have the following

Theorem 3.1. Let Φ ⊂ E3 be a polar normalized ruled surface. The relative curvature K of (Φ ,y) vanishes identically iff the support
function is of the form

q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0.
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By taking (2.7b) and (3.4b) into consideration we arrive at

Theorem 3.2. Let Φ ⊂ E3 be a polar normalized ruled surface. (Φ ,y) is relatively minimal (H = 0) iff one of the following holds true
(a) the support function is of the form

q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0,

(b) (Φ ,y) is a polar normalized right helicoid (δ = c ∈ R∗ and κ = λ = 0).

We notice that both the relative curvature K and the relative mean curvature H vanish identically iff the support function is of the form

q = c1 cosV + c2 sinV, c1,c2 ∈ R, c2
1 + c2

2 6= 0. (3.5)

By using (2.7b) and (2.13) we find the Pick invariant

J = (qv+δ q̇)

(
JEUK

v
+

3H̃ q̇
δ q

)
, (3.6)

where

JEUK = 3v
κv3 +δ 2 (κ−λ )v+δ 2δ ′

2δ 2w3 (3.7)

is the Pick invariant of the Euclidean normalization. The Pick invariant vanishes identically iff

qv+δ q̇ = 0 or
JEUK

v
+

3H̃ q̇
δ q

= 0,

or, equivalently, iff

• the support function is of the form

q = c1e
−V v

δ , c1 ∈ R∗, or

• Φ is not a right helicoid and the support function is of the form

q = c2e
V[κv3+δ2(κ−λ )v+δ2δ ′]

δ [κv2+δ ′v+δ2(κ+λ )] , c2 ∈ R∗, or

• Φ is a right helicoid.

We reject the two support functions since they are not polar. Hence, we deduce

Theorem 3.3. Let Φ ⊂ E3 be a polar normalized ruled surface. The Pick invariant J of (Φ ,y) vanishes identically iff Φ is a right helicoid.

From (2.16), (3.4b), (3.6) and (3.7) we evaluate the scalar curvature of the relative metric

S =
1

2δ 2w3q

{
−q2

{
κw4 +δ

2
[(
−v2 +δ

2
)

λ +2δ
′v
]}

+δ
2
(

κw2 +δ
2
λ +δ

′v
)

q̇2

+δq
{[

2δ
2
λv+

(
v2−δ

2
)

δ
′
]

q̇−δ

(
κw2 +δ

′v+δ
2
λ

)
q̈
}}

.

4. The Tchebychev vector field and the support vector field of a polar normalization

In [5] it was shown that the coordinate functions of the Tchebychev vector T (u,v) of (Φ ,y), which is defined by

T := T m x/m, where T m :=
1
2

Aim
i ,

are given by

T 1 =
w2q/2 + vq

δ w
, T 2 =

2δ w2q/1 +δ ′q(δ 2− v2)

2δ 2 w
+

T 1(κw2 +δ ′v−δ 2λ )

δ
.

Hence, by using (3.1) and (3.2), we deduce that the coordinate functions of the Tchebychev vector of a polar normalization are

T 1 =
qv+δ q̇

δw
, T 2 =

q
(
2κvw2−2δ 2λv+δ ′w2)−2δ 3λ q̇

2δ 2w
. (4.1)

The divergence divI T of T with respect to the first fundamental form I of Φ , which initially reads (see [5])

divI T =

(
wT i)

/i

w
, (4.2)
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becomes, on account of (4.1),

divI T =
1

2δ 2w3

{
2w2q

[(
3v2 +δ

2
)

κ−δ
2
λ

]
+δ

{[
−δ
′v2 +δ

2 (−2λv+δ
′)]q̇−2δ

(
κw2 +δ

2
λ +δ

′v
)

q̈
}}

.

The rotation curlI T of T with respect to the first fundamental form I of Φ , which initially reads (see [5])

curlI T =

(
g12T 1 +g22T 2)

/1−
(
g11T 1 +g12T 2)

/2

w
, (4.3)

becomes, by taking (2.5) and (4.1) into consideration,

curlI T =− 1
2δ 3w2

{
2δ
′qv2 (2κv+δ

′)+δ
2q
[
4(κλ +1)v2 +δ

′ (2κ +λ )v+δ
′2
]

+δ
3
{

q̇
[
4v+(κ +λ )

(
2κv+δ

′)]−q
(
2κ
′v+δ

′′)}
+δv

[
2κ

2q̇ v2 +3κδ
′q̇ v+δ

′2q̇−qv
(
2κ
′v+δ

′′)]+2δ
4
[
q(κλ +1)+ q̈

]}
.

Analogously we calculate the divergence and the rotation of T with respect to the relative metric of Φ :

divG T =
1

δ 2w3q

{
q2{

κw4 +δ
2
[(

v2−δ
2
)

λ −2δ
′v
]}

+δ
2q̇2
(

κw2 +δ
′v+δ

2
λ

)
+δq

{
q̇
[
2δ

2
λv+δ

′
(

v2−δ
2
)]
−δ q̈

(
κw2 +δ

′v+δ
2
λ

)}}
,

curlG T = 0.

Last relation agrees with

T = ∇
G
(

ln
q

qAFF
,x
)

(see [6]), where qAFF = |K̃|1/4 and ∇G denotes the first Beltrami differential operator with respect to G for which holds ∇G( f ,g)=G(i j) f/ig/ j .
So, we have

Theorem 4.1. Let Φ ⊂ E3 be a polar normalized ruled surface. The rotation of the Tchebychev vector field with respect to the relative
metric of Φ vanishes identically and its potential is given by

τ (u,v) = ln
wq
|δ |1/2

+ c, c ∈ R.

Now let

Q :=
1
4
5G
(1

q
,x
)

(4.4)

be the support vector Q(u,v) of (Φ ,y), which is introduced in [5]. By taking (2.12), (3.1) and (3.2) into consideration we find that the
coordinate functions of the support vector field of a polar normalization are

Q1 =− q̇
4wq

, Q2 =
δλ q̇
4wq

. (4.5)

By means of (2.7b), (4.2) and (4.5), we find the divergence divI Q of Q with respect to the first fundamental form I of Φ

divI Q = H̃
q̇2−qq̈

2q2 .

Hence, we derive

Theorem 4.2. Let Φ ⊂ E3 be a polar normalized ruled surface. The support vector field is incompressible with respect to the first
fundamental form of Φ (divI Q = 0) iff
(a) the support function is of the form

q = c2ec1V , c1 ∈ R, c2 ∈ R∗, or

(b) Φ is a right helicoid.
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By taking (2.5), (4.3) and (4.5) into account we deduce that the rotation curlI Q of Q with respect to the first fundamental form I of Φ is

curlI Q =
−δ q̇2 +q(q̇v+δ q̈)

4w2q2 .

By taking (2.11), (4.2) and (4.5) into consideration we find the divergence divG Q of Q with respect to the relative metric of Φ

divG Q =
1

4δw3q2

{
q̇
{

q
[
−δ
′v2 +δ

2 (−2λv+δ
′)]−2δ q̇

(
κw2 +δ

′v+δ
2
λ

)}
+δqq̈

(
κw2 +δ

2
λ +δ

′v
)}

.

By using (2.6), (2.11), (3.1), (3.2), (4.3) and (4.5) we have the rotation curlG Q of Q with respect to the relative metric of Φ

curlG Q = 0,

which agrees with the relation (4.4). Thus, we have

Theorem 4.3. Let Φ ⊂ E3 be a polar normalized ruled surface. The rotation of the support vector field with respect to the relative metric of
Φ vanishes identically and its potential is given by

τ (u,v) =
1

4q
+ c, c ∈ R.

5. A special polar normalization

In this section we will study the support function of the form (3.5), which arises when the relative curvature K or the relative mean curvature
H vanishes identically (see Sec. 3). By using (3.3) the corresponding relative normalization takes the form

y =
[

c1 cos
(∫

κdu
)
− c2 sin

(∫
κdu

)]
n−
[

c2 cos
(∫

κdu
)
+ c1 sin

(∫
κdu

)]
z,

i.e., the relative normalization degenerates into a curve Γ ∗ with curvature

κ
∗ =

1
|c1 cos(

∫
κdu)− c2 sin(

∫
κdu) |

and torsion

σ
∗ =

−κ

c1 cos(
∫

κdu)− c2 sin(
∫

κdu)
.

Since
κ∗

σ∗
=± 1

κ
,

we deduce that y is a curve of constant slope iff Φ is a ruled surface of constant slope.
By means of (3.6) and (3.7) we find the Pick invariant of this normalization:

J =
3 [c2 cos(

∫
κdu)+ c1 sin(

∫
κdu)]

2δ 2w(c1 cosV + c2 sinV )

{
cos
(∫

κdu
)[

κ

(
c2v2 +2c1δv− c2δ

2
)

+δ
(
−c2δλ + c1δ

′)]+ sin
(∫

κdu
)[

κ

(
c1v2−2c2δv− c1δ

2
)
−δ

(
c1δλ + c2δ

′)]}.
Then by using (2.4) and (4.1) we deduce the Tchebychev vector

T =
w

2δ 2 (c1 cosV + c2 sinV )
(
2κv+δ

′)e+
v
δ

[
c2 cos

(∫
κdu

)
+ c1 sin

(∫
κdu

)]
n

+

[
c2 cos

(∫
κdu

)
+ c1 sin

(∫
κdu

)]
z.

Finally, by taking (2.4) and (4.5) into consideration we derive the support vector

Q =
c1 sinV − c2 cosV

4w(c1 cosV + c2 sinV )
(vn+δ z) .
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