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Abstract. In this work, the general form of all normal quasi-differential operators for first order in the weighted
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spectrum set of these operators will be investigated.

2010 AMS Classification: 47A10, 47B25.

Keywords: Formally normal and normal operator, quasi-differential operator, spectrum.

1. Introduction

It is known that a densely defined closed operator N in any Hilbert space is called formally normal if D(N) ⊂ D(N∗)
and ‖N f ‖ = ‖N∗ f ‖ for all f ∈ D(N), where N∗ is the adjoint to the operator N. If a formally normal operator has
no formally normal extension, then it is called maximal formally normal operator. If a formally normal operator N
satisfied the condition D(N) = D(N∗), then it is called a normal operator [1].

Generalization of J. von Neumann’s theory to the theory of normal extensions of formally normal operators in
Hilbert space has been done by E. A. Coddington in work [1]. And also the first results in the area of normal extension
of unbounded formally normal operators in a Hilbert space are due to Y. Kilpi [6–8] and R. H. Davis [2]. Some
applications of this theory to two-point regular type first order differential operators in Hilbert space of vector functions
can be found in [5] ( also see references therein).

In this work, in the third section all normal extensions of the minimal formally normal operator generated by a
linear quasi-differential expression in weighted Hilbert space of vector-functions defined in right half-infinite interval
are described. Furthermore, the spectrum of such extensions is investigated.
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2. Statement of the Problem

Let H be a separable Hilbert space and a ∈ R. And also assumed that α : (a,∞) → (0,∞), α ∈ C(a,∞) and
α−1 ∈ L1(a,∞). In the weighted Hilbert space L2

α(H, (a,∞)) of H− valued vector-functions defined on the right semi-
axis consider the following linear quasi-differential expression with operator coefficient for first order in a form

l(u) = (αu)′(t) + Au(t),

where A : D(A) ⊂ H → H is a selfadjoint operator with condition A ≥ E, where E : H → H is an identity operator.
By a standard way the minimal L0 and maximal L operators corresponding to quasi-differential expression l( . ) in

L2
α(H, (a,∞)) can be defined (see [4, 5]). In this case the minimal operator L0 is formally normal, but it is not maximal

in L2
α(H, (a,∞)).

The main purpose of this work is to describe of all normal extensions of the minimal operator L0 in terms of
boundary conditions in L2

α(H, (a,∞)). Moreover, structure of the spectrum of these extensions will be surveyed.

3. The General Form of The Normal Extensions

In this section the general form of all normal extensions of the minimal operator L0 in L2
α(H, (a,∞)) will be investi-

gated.
In a similar way the minimal operator L+

0 generated by quasi-differential-operator expression

l+(v) = −(αv)′(t) + Av(t)

can be defined in L2
α(H, (a,∞)) (see [4, 5]).

In this case the operator L+ = (L0)∗ in L2
α(H, (a,∞)) is called the maximal operator generated by l+( . ).

It is clear that
L0 ⊂ L, L+

0 ⊂ L+.

In this case the following assertion is true.

Lemma 3.1. If L̃ is any normal extension of the minimal operator L0 in L2
α(H, (a,∞)), then

αD(L̃) ⊂ W1
2,α(H, (a,∞)), AD(L̃) ⊂ L2

α(H, (a,∞)),

where W1
2,α(H, (a,∞)) is a weighted Sobolev space.

Proof. In this case for any u ∈ D(L̃) = D(L̃∗) we have

L̃u = (αu)′(t) + Au(t) ∈ L2
α(H, (a,∞)),

L̃∗u = −(αu)′(t) + Au(t) ∈ L2
α(H, (a,∞)).

From these relations we have (αu)′ ∈ L2
α(H, (a,∞)) and Au ∈ L2

α(H, (a,∞)).
Therefore αD(L̃) ⊂ W1

2,α(H, (a,∞)) and AD(L̃) ⊂ L2
α(H, (a,∞)).

The minimal operator M0 generated by following differential expression

m(u) = −i(αu)′

in L2
α(H, (a,∞)) is a symmetric. And also a operator M = M∗0 in L2

α(H, (a,∞)) it will be indicated a maximal operator
corresponding to differential expression m( . ).

Lemma 3.2. The deficiency indices of the minimal operator M0 in L2
α(H, (a,∞)) are in form

(n+(M0), n−(M0)) = (dimH, dimH).

Proof. For this consider the following differential equation

−i(αu±)′(t) ± iu±(t) = 0, u ∈ D(M).

Then

u±(t) =
1
α(t)

exp

±
t∫

a

1
α(s)

ds

 f , f ∈ H.
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Consequently,

‖u±‖2L2
α(H,(a,∞)) =

∞∫
a

‖u±(t)‖2Hdt

=

∞∫
a

‖
1
α(t)

exp

±
t∫

a

1
α(s)

ds

 f ‖2Hα(t)dt

=

∞∫
a

1
α(t)

exp

±2

t∫
a

1
α(s)

ds

 dt‖ f ‖2H

=

∞∫
a

exp

±2

t∫
a

1
α(s)

ds

 d


t∫

a

1
α(s)

ds

 ‖ f ‖2H
=
±1
2

exp

±2

∞∫
a

1
α(s)

ds

 − 1

 ‖ f ‖2H < ∞.

This shows that deficiency indices of the minimal operator M0 in L2
α(H, (a,∞)) have the form

(n+(M0), n−(M0)) = (dimH, dimH).

For the description of all selfadjoint extensions of the minimal operator M0 in L2
α(H, (a,∞)) we must be construct

space of boundary values of M0.

Definition 3.3 ( [3]). Let H be any Hilbert space and S : D(S ) ⊂ H → H be a closed densely defined symmetric
operator in the Hilbert space H having equal finite or infinite deficiency indices. A triplet (H, γ1, γ2), where H is a
Hilbert space, γ1 and γ2 are linear mappings from D(S ∗) into H, is called a space of boundary values for the operator
S if for any f , g ∈ D(S ∗)

(S ∗ f , g)H − ( f , S ∗g)H = (γ1( f ), γ2(g))H − (γ2( f ), γ1(g))H

while for any F1, F2 ∈ H, there exists an element f ∈ D(S ∗) such that γ1( f ) = F1 and γ2( f ) = F2.

Lemma 3.4. The triplet (H, γ1, γ2),

γ1 : D(M)→ H, γ1(u) =
1
√

2
((αu)(∞) − (αu)(a)) and

γ2 : D(M)→ H, γ2(u) = −
1

i
√

2
((αu)(∞) + (αu)(a)) , u ∈ D(M)

is a space of boundary values of the minimal operator M0 in L2
α(H, (a,∞)).

Proof. For any u, v ∈ D(M)

(Mu, v)L2
α(H,(a,∞)) − (u,Mv)L2

α(H,(a,∞)) = (−i(αu)′, v)L2
α(H,(a,∞)) − (u,−i(αv)′)L2

α(H,(a,∞))

=

∞∫
a

(−i(αu)′(t), v(t))Hα(t)dt −

∞∫
a

(u(t),−i(αv)′(t))Hα(t)dt

= −i


∞∫

a

((αu)′(t), (αv)(t))Hdt +

∞∫
a

((αu)(t), (αv)′(t))Hdt


= −i

∞∫
a

((αu)(t), (αv)(t))′Hdt

= −i
[
((αu)(∞), (αv)(∞))H − ((αu)(a), (αv)(a))H

]
= (γ1(u), γ2(v))H − (γ2(u), γ1(v))H .
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Now for any given elements f , g ∈ H find the function u ∈ D(M) such that

γ1(u) =
1
√

2
((αu)(∞) − (αu)(a)) = f and γ2(u) = −

1

i
√

2
((αu)(∞) + (αu)(a)) = g.

From this it is obtained that

(αu)(∞) =
1
√

2
( f − ig) and (αu)(a) =

−1
√

2
( f + ig).

If choose the functions u( . ) in following forms

u(t) =
1
α(t)

(1 − ea−t)( f − ig)/
√

2 +
1
α(t)

ea−t(− f − ig)/
√

2,

then it is clear that u ∈ D(M) and γ1(u) = f , γ2(u) = g.

Theorem 3.5. If M̃ is a selfadjoint extension of the minimal operator M0 in L2
α(H, (a,∞)) , then it generates by the

differential-operator expression m( . ) and boundary condition

(αu)(∞) = W(αu)(a),

where W : H → H is a unitary operator. Moreover, the unitary operator W in H is determined uniquely by the
extension M̃, i.e. M̃ = MW and vice versa.

Proof. It is known that each selfadjoint extensions of the minimal operator M0 are described by differential-operator
expression m( . ) with boundary condition

(V − E)γ1(u) + i(V + E)γ2(u) = 0,

where V : H → H is a unitary operator. So from Lemma 3.4 we have

(V − E) ((αu)(∞) − (αu)(a)) + (V + E) (−((αu)(∞) + (αu)(a))) = 0.

Hence it is obtained that
(αu)(∞) = −V(αu)(a).

Choosing W = −V in last boundary condition we have

(αu)(∞) = W(αu)(a).

Now we describe the general form of all normal extensions of minimal operator L0 in L2
α(H, (a,∞)).

Theorem 3.6. Let A1/2W1
2,α(H, (a,∞)) ⊂ W1

2 (H, (a,∞)). Each normal extension L̃, L0 ⊂ L̃ ⊂ L of the minimal operator
L0 in L2

α(H, (a,∞)) generates by the quasi-differential-operator expression l( . ) with boundary condition

(αu)(∞) = W(αu)(a),

where W and A1/2WA−1/2 are unitary operators in H. The unitary operator W is determined uniquely by the extension
L̃, i.e. L̃ = LW .

On the contrary, the restriction of the maximal operator L to the linear manifold of vector-functions (αu) ∈
W1

2,α(H, (a,∞)) that satisfy mentioned above condition for some unitary operator W, where A1/2WA−1/2 also unitary
operator in H, is a normal extension of the minimal operator L0 in L2

α(H, (a,∞)).

Proof. If L̃ is any normal extension of the minimal operator L0 in L2
α(H, (a,∞)), then

Re(L̃) = A ⊗ E, Re(L̃) : D(L̃)→ L2
α(H, (a,∞)),

Im(L̃) = E ⊗ −i
d
dt

(α), Im(L̃) : D(L̃)→ L2
α(H, (a,∞)),

where the symbol ⊗ denotes a tensor product, are selfadjoint extensions of Re(L0) and Im(L0) in L2
α(H, (a,∞)), respec-

tively. Then the extension Im(L̃) is generated by quasi-differential expression m( . ) and boundary condition

(αu)(∞) = W(αu)(a),
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where W is a unitary operators in H such that it determined uniquely by the extension L̃, i.e. L̃ = LW [3].
On the other hand since the extension L̃ is a normal operator, then for every u ∈ D(L̃) the following equality holds(

Re(L̃)u, Im(L̃)u
)

L2
α(H,(a,∞))

=
(
Im(L̃)u,Re(L̃)u

)
L2
α(H,(a,∞))

.

In other words, for every u ∈ D(L̃) we have(
(αu)′, Au

)
L2
α(H,(a,∞)) +

(
Au, (αu)′

)
L2
α(H,(a,∞)) = 0.

From last relation and condition of theorem

A1/2W1
2,α(H, (a,∞)) ⊂ W1

2 (H, (a,∞))

we have (
(αA1/2u)′, αA1/2u

)
L2(H,(a,∞))

+
(
αA1/2u, (αA1/2u)′

)
L2(H,(a,∞))

= 0,

that is, for every u ∈ D(L̃)
∞∫

a

(
αA1/2u, αA1/2u

)′
H

dt = ‖
(
αA1/2u

)
(∞)‖2H − ‖

(
αA1/2u

)
(a)‖2H = 0.

Hence there exists a isometry operator V in H, such that

A1/2(αu)(∞) = VA1/2(αu)(a),

that is,
(αu)(∞) = A−1/2VA1/2(αu)(a), u ∈ D(L̃).

Since the unitary operator W in H uniquely is determined by the extension L̃, then from last equation it is obtained
that

A−1/2VA1/2 = W,

that is,
V = A1/2WA−1/2

is unitary in H.
On the other hand, a sufficient part of this theorem can be easily to check.
Hence the proof of theorem is completed.

4. Spectrum of The Normal Extensions

Here the spectrum of the normal extension of the minimal operator L0 generated by linear quasi-differential expres-
sion l( . ) with corresponding boundary condition in Theorem 3.6 in L2

α(H, (a,∞)) will be investigated.
Firstly let us prove the following results.

Theorem 4.1. The spectrum of any normal extension LW in L2
α(H, (a,∞)) of the minimal operator L0 has a form

σ(LW ) =

λ ∈ C : λ =


∞∫

a

ds
α(s)


−1

(ln|µ|−1 + 2nπi − iargµ), n ∈ Z, µ ∈ σ

W∗exp

−A

∞∫
a

ds
α(s)



 .

Proof.Consider a problem for the spectrum for the any normal extension LW , that is

(αu)′(t) + Au(t) = λu(t) + f (t), λ ∈ C, Reλ = λr ≥ 1, u, f ∈ L2
α(H, (a,∞))

with boundary condition
(αu)(∞) = W(αu)(a),
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where W and A1/2WA−1/2 are the unitary operators in H.
Then it is clear that a general solution of above differential equation is in form

u(t; λ) =
1
α(t)

exp

(λE − A)

t∫
a

ds
α(s)

 fλ

+
1
α(t)

t∫
a

exp

(λE − A)

t∫
s

dτ
α(τ)

 f (s)ds, fλ ∈ H.

In this case

‖
1
α(t)

exp

(λE − A)

t∫
a

ds
α(s)

 fλ‖2L2
α(H,(a,∞))

=

∞∫
a

‖
1
α(t)

exp

(λE − A)

t∫
a

ds
α(s)

 fλ‖2Hα(t)dt

=

∞∫
a

 1
α(t)

exp

(λE − A)

t∫
a

ds
α(s)

 fλ,
1
α(t)

exp

(λE − A)

t∫
a

ds
α(s)

 fλ


H

α(t)dt

=

∞∫
a

1
α(t)

exp

2λr

t∫
a

ds
α(s)


exp

−A

t∫
a

ds
α(s)

 fλ, exp

−A

t∫
a

ds
α(s)

 fλ

 dt

=

∞∫
a

1
α(t)

exp

2λr

t∫
a

ds
α(s)

 ‖exp

−A

t∫
a

ds
α(s)

 fλ‖2Hdt

≤

∞∫
a

1
α(t)

exp

2λr

t∫
a

ds
α(s)

 dt‖ fλ‖2H

=
1

2λr

exp

2λr

∞∫
a

ds
α(s)

 − 1

 ‖ fλ‖2H < ∞

and

‖
1
α(t)

t∫
a

exp

(λE − A)

t∫
s

dτ
α(τ)

 f (s)ds‖2L2
α(H,(a,∞))

=

∞∫
a

‖
1
α(t)

t∫
a

exp

(λE − A)

t∫
s

dτ
α(τ)

 f (s)ds‖2Hα(t)dt

=

∞∫
a

1
α(t)
‖

t∫
a

exp

(λE − A)

t∫
s

dτ
α(τ)

 f (s)ds‖2Hdt

=

∞∫
a

1
α(t)
‖

t∫
a

exp

λE

t∫
s

dτ
α(τ)


exp

−A

t∫
s

dτ
α(τ)

 f (s)

 ds‖2Hdt
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=

∞∫
a

1
α(t)
‖

t∫
a

exp

(λr + iλi)E

t∫
s

dτ
α(τ)


exp

−A

t∫
s

dτ
α(τ)

 1
α(s)

(α(s) f (s))

 ds‖2Hdt

≤

∞∫
a

1
α(t)


∞∫

a

1
α(s)

exp

λrE

t∫
s

dτ
α(τ)

 ds



∞∫

a

α(s)‖ f ‖2Hds

 dt

=

∞∫
a

1
α(t)


∞∫

a

1
α(s)

exp

λrE

∞∫
a

dτ
α(τ)

 ds

 ‖ f ‖2L2
α(H,(a,∞))

= exp

λrE

∞∫
a

dτ
α(τ)



∞∫

a

ds
α(s)


2

‖ f ‖2L2
α(H,(a,∞)) < ∞.

Hence for u( . , λ) ∈ L2
α(H, (a,∞)) for λ ∈ C, λr ≥ 1.

In this case the boundary condition we get the following relationexp

−λ
∞∫

a

ds
α(s)

 −W∗exp

−A

∞∫
a

ds
α(s)


 fλ = exp

−λ
∞∫

a

ds
α(s)

 W∗

∞∫
a

exp

(λE − A)

∞∫
s

dτ
α(τ)

 f (s)ds.

From this it is seen that in order to λ ∈ σ(LW ) the necessary and sufficient condition is

exp

−λ
∞∫

a

ds
α(s)

 = µ ∈ σ

W∗exp

−A

∞∫
a

ds
α(s)


 .

Therefore

λ =


∞∫

a

ds
α(s)


−1

(ln|µ|−1 + 2nπi − iargµ), n ∈ Z, µ ∈ σ

W∗exp

−A

∞∫
a

ds
α(s)


 .

Example 4.2. The spectrum of boundary value problem Lγ

(tγu(t, x))′ −
∂2u(t, x)
∂x2 = (λ − 1)u(t, x) + f (t, x), t > 1, 0 < x < 1, γ > 1,

u(t, 0) = u(t, 1) = 0, t > 1,
(tγu)(1, x) = (tγu)(∞, x), 0 < x < 1

in L2
tγ ((1,∞) × (0, 1)) is in form

σ(L(γ)) =



∞∫

1

ds
sγ


−1 (τ + 1)

∞∫
1

ds
sγ

+ 2nπi

 , n ∈ Z, τ ∈ σ
(
−
∂2

∂x2

)
=

{
(τ + 1) + 2nπi(γ − 1) : n ∈ Z, τ ∈ σ

(
−
∂2

∂x2

)}
.
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