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Abstract. Using the six parameters truncated Mittag-Leffler function, we introduce a convenient truncated
function to define the so-called truncated V-fractional derivative type. In this sense, we propose the derivative
of a vector valued function and define the V-fractional Jacobian matrix whose properties allow us to say that:
the multivariable truncated V-fractional derivative type, as proposed here, generalizes the truncated V-fractional
derivative type and can be extended to obtain a truncated V-fractional partial derivative type. As applications, we
discuss and prove the order change associated with two indexes of two truncatedV-fractional partial derivative type
and propose the truncated V-fractional Green theorem. Finally, we obtain the analytical solution of theV-fractional
heat equation and present a graphical analysis.
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1. Introduction

Recently, Sousa and Oliveira [10] introduced the truncated V-fractional derivative in the domain R, satisfying
classical properties of the integer-order calculus, having as special property, to unify five other formulations of local
fractional derivatives of which we mention the derivatives: conformable fractional, alternative fractional, truncated
alternative fractional, M-fractional and truncated M-fractional [5, 6, 9, 11].

In 2015, Atangana et al. [1],performed a work approaching new properties of the conformable fractional derivative,
being the domain of the functions considered in Rn. In 2017, Gözütok and Gözütok [4] introduced the multivariable
conformable fractional calculus, presenting interesting results found in Rn. However, such a result is restricted only to
the conformable fractional derivative. In this sense, we extend our definition of the truncatedV-fractional derivative to
the Rn [10], since such a derivative formulation unifies the remaining five. We denote this new differential operator by
ρ
iV

δ,p,q
γ,β,α(z), z ∈ Rn, to differentiate from the operator ρiV

δ,p,q
γ,β,α(z), z ∈ R, where the parameter α, associated with the order

of the derivative is such that 0 < α < 1, where γ, β, ρ, δ ∈ C and p, q > 0 such that Re (γ) > 0, Re (β) > 0, Re (ρ) > 0,
Re (δ) > 0 and Re (γ) + p ≥ q.

The article is organized as follows: in section 2, we present the truncated V-fractional derivative by means of the
truncated six parameters Mittag-Leffler function. Also, three theorems have been introduced that address linearity,

*Corresponding Author
Email addresses: ra160908@ime.unicamp.br (J. Vanterler da C. Sousa), capelas@ime.unicamp.br (E. Capelas de Oliveira)



A TruncatedV-Fractional Derivative in Rn 50

product, divisibility, continuity, and the α-differentiable chain rule. In section 3, we introduce our main result, the
multivariable truncated V-fractional derivative as well as results that justifies its continuity and uniqueness. In this
sense, we introduce the V-fractional Jacobian matrix and introduce and prove two theorems dealing with: chain rule,
linearity and the product of functions through the α-differentiable operator. In section 4, we present the concept of
V-fractional partial derivative and discuss two applications i.e., a theorem associated with the commutativity of two
truncated V-fractional derivatives and V-fractional Green’s theorem. Finally, we obtain the analytical solution of the
V-fractional heat equation and present a graphical analysis. Concluding remarks close the article.

2. Preliminaries

We will present the definition of the truncatedV-fractional derivative through the truncated six parameters Mittag-
Leffler function and the gamma function. In this sense, we will present theorems that relate to the continuity and
linearity, product, divisibility, as well as the chain rule.

Then, we begin with the definition of the six parameters truncated Mittag-Leffler function given by [10],

iE
ρ,δ,q
γ,β,p (z) =

i∑
k=0

(ρ)qk

(δ)pk

zk

Γ (γk + β)
, (2.1)

being γ, β, ρ, δ ∈ C and p, q > 0 such that Re (γ) > 0, Re (β) > 0, Re (ρ) > 0, Re (δ) > 0, Re (γ) + p ≥ q and (δ)pk, (ρ)qk
given by

(ρ)qk =
Γ (ρ + qk)

Γ (ρ)
, (2.2)

a generalization of the Pochhammer symbol and Γ(·) is the function gamma.
From Eq. (2.1), we introduce the following truncated function, denoted by iH

ρ,δ,q
γ,β,p(z), by means of

iH
ρ,δ,q
γ,β,p (z) := Γ (β) iE

ρ,δ,q
γ,β,p (z) = Γ (β)

i∑
k=0

(ρ)kq

(δ)kp

zk

Γ (γk + β)
. (2.3)

In order to simplify notation, in this work, if the truncatedV-fractional derivative of order α, according to Eq. (2.4)
below, of a function f exists, we simply say that the f function is α-differentiable.

So, we start with the following definition, which is a generalization of the usual definition of a derivative presented
as a particular limit.

Definition 2.1. Let f : [0,∞) → R. For 0 < α < 1 the truncated V-fractional derivative of f of order α, denoted by
ρ
iV

δ,p,q
γ,β,α(·), is defined as

ρ
iV

δ,p,q
γ,β,α f (t) := lim

ε→0

f
(
t iH

ρ,δ,q
γ,β,p (εt−α)

)
− f (t)

ε
, (2.4)

for ∀t > 0, iH
ρ,δ,q
γ,β,p (·) is a truncated function as defined in Eq. (2.3) and being γ, β, ρ, δ ∈ C and p, q > 0 such that

Re (γ) > 0, Re (β) > 0, Re (ρ) > 0, Re (δ) > 0, Re (γ) + p ≥ q and (δ)pk, (ρ)qk given by Eq. (2.2) [10].

Theorem 2.2. [10] If the function f : [0,∞) → R is α-differentiable for t0 > 0, with 0 < α ≤ 1, then f is continuous
in t0.

Theorem 2.3. Let 0 < α ≤ 1, a, b ∈ R, γ, β, ρ, δ ∈ C and p, q > 0 such that Re (γ) > 0, Re (β) > 0, Re (ρ) > 0,
Re (δ) > 0, Re (γ) + p ≥ q and f , g α-differentiable, for t > 0. Then,

(1) ρ
iV

δ,p,q
γ,β,α (a f + bg) (t) = a ρ

iV
δ,p,q
γ,β,α f (t) + b ρ

iV
δ,p,q
γ,β,αg (t)

(2) ρ
iV

δ,p,q
γ,β,α ( f · g) (t) = f (t) ρ

iV
δ,p,q
γ,β,αg (t) + g (t) ρ

iV
δ,p,q
γ,β,α f (t)

(3) ρ
iV

δ,p,q
γ,β,α

(
f
g

)
(t) =

g (t) ρ
iV

δ,p,q
γ,β,α f (t) − f (t) ρ

iV
δ,p,q
γ,β,αg (t)[

g (t)
]2

(4) ρ
iV

δ,p,q
γ,β,α (c) = 0, where f (t) = c is a constant.
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(5) If f is differentiable, then ρ
iV

δ,p,q
γ,β,α f (t) =

t1−αΓ (β) (ρ)q

Γ (γ + β) (δ)p

d f (t)
dt

.

(6) ρ
iV

δ,p,q
γ,β,α (ta) =

Γ (β) (ρ)q

Γ (γ + β) (δ)p
ata−α.

Proof. See [10]. �

Theorem 2.4. (Chain rule) Assume f , g : (0,∞) → R be two α-differentiable functions where 0 < α ≤ 1. Let
γ, β, ρ, δ ∈ C and p, q > 0 such that Re (γ) > 0, Re (β) > 0, Re (ρ) > 0, Re (δ) > 0, Re (γ) + p ≥ q then ( f ◦ g) is
α-differentiable and for all t > 0, we have

ρ
iV

δ,p,q
γ,β,α ( f ◦ g) (t) = f ′ (g (t)) ρ

iV
δ,p,q
γ,β,αg (t) ,

for f differentiable in g(t).

Proof. See [10]. �

Definition 2.5. [10] (V-fractional integral) Let a ≥ 0 and t ≥ a. Also, let f be a function defined on (a, t] and
0 < α < 1. Then, theV-fractional integral of f of order α is defined by

ρ
aI

δ,p,q
γ,β,α f (t) :=

Γ (γ + β) (δ)p

Γ (β) (ρ)q

∫ t

a

f (x)
x1−α dx,

with γ, β, ρ, δ ∈ C and p, q > 0 such that Re (γ) > 0, Re (β) > 0, Re (ρ) > 0, Re (δ) > 0 and Re (γ) + p ≥ q.

Theorem 2.6. Let a ≥ 0 and t ≥ a. Also, let f be a function defined on (a, t] and 0 < α < 1. Then, the V-fractional
integral of f of order α is unique.

Proof. Consider the V-fractional integral of f of order 0 < α ≤ 1 given by Eq. (25). Assume that L1 and L2 are
V-fractional integrals of f on [a, b]. We want to prove that L1 = L2. Let ε > 0. Then for each j = 1, 2, exist δ j > 0
such that ‖P‖ < δ j ⇒

∣∣∣σ − L j

∣∣∣ < ε
2 , where P is a partition on [a, b]. Taking δ = min {δ1, δ2}. Fixed a partition P on the

interval [a, b] and suppose that ‖P‖ < δ.
Note that δ ≤ δ j, for j = 1, 2. Then

0 ≤ |L1 − L2| ≤ |σ − L1| + |σ − L2| < ε

for all ε > 0. Like this, we conclude that |L1 − L2| = 0, so L1 = L2. Therefore, theV-fractional integral is unique. �

Remark 2.7. In order to simplify notation, in this work, theV-fractional integral of order α, will be denoted by

Γ (γ + β) (δ)p

Γ (β) (ρ)q

∫ b

a

f (t)
t1−α dt =

∫ b

a
f (t) dωt

where, dωt =
Γ (γ + β) (δ)p

Γ (β) (ρ)q
tα−1dt.

3. V-Fractional Derivative of A Vector Valued Function

In this section, we present our main result, the truncated V-fractional derivative in Rn and check its continuity
as well as the uniqueness of linear transformation. We present the definition of the truncated V-fractional Jacobian
matrix, the chain rule and the theorem that refers to linearity and product. We conclude the section discussing some
examples.

Definition 3.1. Let f be a vector valued function with n real variables such that f (x1, x2, ..., xn) = ( f1(x1, x2, ..., xn),
f2(x1, x2, ..., xn), ..., fm(x1, x2, ..., xn)). We say that f is α-differentiable at a = (a1, ..., an) ∈ Rn where each ai > 0, if
there is a linear transformation L : Rn → Rm such that

lim
ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an) − L (ε)

∥∥∥∥
‖ε‖

= 0,



A TruncatedV-Fractional Derivative in Rn 52

where ε = (ε1, ..., εn), 0 < α ≤ 1, iH
ρ,δ,q
γ,β,p (·) is the truncated function and ρ, δ, γ, β ∈ C, p, q > 0 with, Re(ρ) > 0,

Re(δ) > 0, Re(γ) > 0, Re(β) > 0 and Re(γ) + p ≥ q. The linear transformation is denoted by ρ
iV

δ,p,q
γ,β,α f (a) and called the

multivariable truncatedV-fractional derivative of f of order α at a.

Remark 3.2. Taking m = n = 1 in Definition 3.1, we have

L (ε) = f
(
a iH

ρ,δ,q
γ,β,p

(
εa−α

))
− f (a) − r (ε) . (3.1)

Dividing by ε both sides of Eq. (3.1) and taking the limit ε→ 0, we have

lim
ε→0

L (ε)
ε

= lim
ε→0

f
(
a iH

ρ,δ,q
γ,β,p (εa−α)

)
− f (a) − r (ε)

ε

= lim
ε→0

f
(
a iH

ρ,δ,q
γ,β,p (εa−α)

)
− f (a)

ε

=
ρ
iV

δ,p,q
γ,β,α f (a) ,

where lim
ε→0

r (ε)
ε

= 0. Thus, we conclude that, Definition 3.1 is equivalent to Definition 2.1.

Theorem 3.3. Let f be a vector valued function with n variables. If f is α-differentiable at a = (a1, ..., an) ∈ Rn with
ai > 0, then there is a unique linear transformation L : Rn → Rm such that

lim
ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an) − L (ε)

∥∥∥∥
‖ε‖

= 0,

with 0 < α ≤ 1, iH
ρ,δ,q
γ,β,p (·) is the truncated function and ρ, δ, γ, β ∈ C, p, q > 0 such that, Re(ρ) > 0, Re(δ) > 0,

Re(γ) > 0, Re(β) > 0 and Re(γ) + p ≥ q.

Proof. Let M : Rn → Rm such that

lim
ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an) − M (ε)

∥∥∥∥
‖ε‖

= 0.

Hence,

lim
ε→0

‖L(ε) − M(ε)‖
‖ε‖

≤ lim
ε→0

∥∥∥∥L(ε) − f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
+ f (a)

∥∥∥∥
‖ε‖

+lim
ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a) − M (ε)

∥∥∥∥
‖ε‖

= 0,

then

lim
ε→0

‖L(ε) − M(ε)‖
‖ε‖

≤ 0.

If x ∈ Rn, then εx→ 0 as ε→ 0. Hence, for x , 0 we have

0 = lim
ε→0

‖L(εx) − M(εx)‖
‖εx‖

=
‖L(x) − M(x)‖

‖x‖
.

Therefore L(x) = M(x). We conclude that, L is unique. �

Example 3.4. Let us consider the function f defined by f (x, y) = sin(x) and the point (a, b) ∈ R2 such that a, b > 0,

then ρ
iV

δ,p,q
γ,β,α f (a, b) = L satisfies L(x, y) =

Γ(β)(ρ)q

Γ(γ + β)(δ)p
xa1−αcos(a).
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To prove this, we note that

lim
(ε1,ε2)→(0,0)

∣∣∣∣ f (
a iH

ρ,δ,q
γ,β,p (ε1a−α) , b iH

ρ,δ,q
γ,β,p (ε2b−α)

)
− f (a, b) − L (ε1, ε2)

∣∣∣∣
‖(ε1, ε2)‖

= lim
(ε1,ε2)→(0,0)

∣∣∣∣sin
(
a iH

ρ,δ,q
γ,β,p (ε1a−α)

)
− sin (a) − L (ε1, ε2)

∣∣∣∣√
ε2

1 + ε2
2

≤ lim
ε1→0

∣∣∣∣sin
(
a iH

ρ,δ,q
γ,β,p (ε1a−α)

)
− sin (a) −

Γ(β)(ρ)q

Γ(γ+β)(δ)p
ε1a1−α cos (a)

∣∣∣∣
|ε1|

= 0

Example 3.5. Let us consider the function f defined by f (x, y) = ex and the point (a, b) ∈ R2 such that a, b > 0, then
ρ
iV

δ,p,q
γ,β,α f (a, b) = L satisfies L(x, y) =

Γ(β)(ρ)q

Γ(γ + β)(δ)p
xa1−αea.

To prove this, we note that

lim
(ε1,ε2)→(0,0)

∣∣∣∣ f (
a iH

ρ,δ,q
γ,β,p (ε1a−α) , b iH

ρ,δ,q
γ,β,p (ε2b−α)

)
− f (a, b) − L (ε1, ε2)

∣∣∣∣
‖(ε1, ε2)‖

= lim
(ε1,ε2)→(0,0)

∣∣∣∣ea iH
ρ,δ,q
γ,β,p(ε1a−α) − ea − L (ε1, ε2)

∣∣∣∣√
ε2

1 + ε2
2

≤

∣∣∣∣∣∣∣ limε1→0

ea iH
ρ,δ,q
γ,β,p(ε1a−α) − ea

ε1
−

Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−αea

∣∣∣∣∣∣∣ = 0.

Definition 3.6. Consider the matrix of the linear transformation ρ
iV

δ,p,q
γ,β,α f (a) : Rn → Rm with respect to the usual

base of Rn and Rm. This m × n matrix is called the truncated V-fractional Jacobian matrix of f at a, and denoted by
ρJδ,p,qγ,β,α f (a), where ρ, δ, γ, β ∈ C, p, q > 0 with, Re(ρ) > 0, Re(δ) > 0, Re(γ) > 0, Re(β) > 0 and Re(γ) + p ≥ q.

Example 3.7. If f (x, y) = sin(x), then we have the matrix

ρJδ,p,qγ,β,α f (a, b) =

[
Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−α cos (a) 0

]
.

Theorem 3.8. If a vector valued function f with n variables is α-differentiable at a = (a1, a2, ..., an) ∈ Rn, with ai > 0,
then f is continuous at a ∈ Rn.

Proof. Note that, ∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an)

∥∥∥∥
≤

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an) − L (ε)

∥∥∥∥ ‖ε‖
‖ε‖

+ ‖L (ε)‖ . (3.2)

Taking the limit ε→ 0 in both sides of the Eq. (3.2), we have

lim
ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an)

∥∥∥∥
≤ lim

ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a1, ..., an) − L (ε)

∥∥∥∥
‖ε‖

×lim
ε→0
‖ε‖ + lim

ε→0
‖L (ε)‖ .

Let (u1, ..., un) = (ε1a−α1 , ..., εna−αn ), then u→ 0 as ε→ 0. Since

lim
ε→0

∥∥∥∥ f
(
a iH

ρ,δ,q
γ,β,p (u)

)
− f (a)

∥∥∥∥ ≤ 0,
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we have,

lim
ε→0

∥∥∥∥ f
(
a iH

ρ,δ,q
γ,β,p (u)

)
− f (a)

∥∥∥∥ = 0.

Hence, f is continuous at a ∈ Rn. �

Theorem 3.9. (Chain rule) Let x ∈ Rn, y ∈ Rm. If f (x) = ( f1(x), ..., fm(x)) is α-differentiable at a = (a1, ..., an) ∈ Rn,
with ai > 0 such that α ∈ (0, 1], and g(y) = (g1(y), ..., gp(y)) is α-differentiable at f (a) ∈ Rm, with fi(a) > 0 such that
α ∈ (0, 1], then the composition g ◦ f is α-differentiable at a and

ρ
iV

δ,p,q
γ,β,α (g ◦ f ) (a) = g′ ( f (a)) ρ

iV
δ,p,q
γ,β,α f (a) ,

for g differentiable in f (a) and ρ, δ, γ, β ∈ C, p, q > 0 such that, Re(ρ) > 0, Re(δ) > 0, Re(γ) > 0, Re(β) > 0 and
Re(γ) + p ≥ q.

Proof. Taking L =
ρ
iV

δ,p,q
γ,β,α f (t) and M = Dg ( f (a)), where D is the derivative operator of integer order, we define,

ϕ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
= f

(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a) − L (ε) ,

ψ
(

f1 (a) iH
ρ,δ,q
γ,β,p

(
k1 f1 (a)−α

)
, ..., fn (a) iH

ρ,δ,q
γ,β,p

(
kn fn (a)−α

))
= g

(
f1 (a) iH

ρ,δ,q
γ,β,p

(
k1 f1 (a)−α

)
, ..., fn (a) iH

ρ,δ,q
γ,β,p

(
kn fn (a)−α

))
− g ( f (a)) − M (k)

and

ρ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
= g ◦ f

(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
−g ◦ f (a) − M ◦ L (ε) . (3.3)

Hence, taking ε→ 0 and k → 0 in both sides of Eq.(3.3) and Eq.(3.3), we have

lim
ε→0

∥∥∥∥ϕ (
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))∥∥∥∥
‖ε‖

= lim

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a) − L (ε)

∥∥∥∥
‖ε‖

= 0

(3.4)

and

lim
k→0

∥∥∥∥ψ (
f1 (a) iH

ρ,δ,q
γ,β,p

(
k1 f1 (a)−α

)
, ..., fn (a) iH

ρ,δ,q
γ,β,p

(
kn fn (a)−α

))∥∥∥∥
‖k‖

= lim
k→0

∥∥∥∥g
(

f1 (a) iH
ρ,δ,q
γ,β,p

(
k1 f1 (a)−α

)
, ..., fn (a) iH

ρ,δ,q
γ,β,p

(
kn fn (a)−α

))
− g ( f (a)) − M (k)

∥∥∥∥
‖k‖

= 0.

(3.5)

On the other hand, taking ε→ 0 and k → 0 on both sides of Eq.(3.3), we will show that

lim
ε→0

∥∥∥∥ρ (
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))∥∥∥∥
‖ε‖

= 0.
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Now, let

ρ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
= g

(
f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

)))
− g ( f (a)) − M ◦ L (ε)

= g

 f1
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
, ...

..., fm
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))  − g ( f (a))

−M

 f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a) − ϕ

(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

)) 
=

g  f1
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
, ...

..., fm
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))  − g ( f (a))

−M

 f1
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f1 (a) , ...

..., fm
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− fm (a)


+M

[
ϕ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))]
.

If we put u j = f j

(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f j (a), with j = 1, 2, ...,m, then we have

f j

(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
= u j + f j (a) , and u→ 0 as ε→ 0. Hence, using Eq. (3.3), we have

ρ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
=

g  f1
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
, ...

..., fm
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))  − g ( f (a)) − M (u)


+M

[
ϕ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))]
= ψ

(
f1 (a) iH

ρ,δ,q
γ,β,p

(
u1 f (a)−α

)
, ..., fm (a) iH

ρ,δ,q
γ,β,p

(
um fm (a)−α

))
+M

[
ϕ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))]
.

Thus we will show,

lim
u→0

∥∥∥∥ψ (
f1 (a) iH

ρ,δ,q
γ,β,p

(
u1 f (a)−α

)
, ..., fm (a) iH

ρ,δ,q
γ,β,p

(
um fm (a)−α

))∥∥∥∥
‖u‖

= 0 (3.6)

and

lim
ε→0

∥∥∥∥M
(
ϕ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

)))∥∥∥∥
‖ε‖

= 0. (3.7)

For Eq. (3.6), it is obvious from of Eq. (3.5). Now, for Eq. (3.7), we have∥∥∥∥M
(
ϕ
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

)))∥∥∥∥ ≤ ‖M‖
∥∥∥∥(ϕ (

a1 iH
ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

)))∥∥∥∥
≤ K

∥∥∥∥(ϕ (
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

)))∥∥∥∥ , (3.8)

such that K > 0. Taking the limit ε → 0 on both sides of Eq. (3.8) and using Eq. (3.4), we get Eq. (3.6). Hence, we
conclude the proof. �

Corollary 3.10. For m = n = p = 1, the Theorem 3.9 states that

ρ
iV

δ,p,q
γ,β,α (g ◦ f ) (a) = g′ ( f (a)) ρ

iV
δ,p,q
γ,β,α f (a) .

Corollary 3.10 says that Theorem 3.9 generalizes Theorem (2.3).
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Corollary 3.11. Consider all the conditions of Theorem 3.9 satisfied. Then
ρ
iV

δ,p,q
γ,β,α (g ◦ f ) (a)

= g′ ( f (a))



Γ (β) (ρ)q

Γ (γ + β) (δ)p
f1 (a)1−α 0 ... 0

0
Γ (β) (ρ)q

Γ (γ + β) (δ)p
f2 (a)1−α ... 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 ...
Γ (β) (ρ)q

Γ (γ + β) (δ)p
fn (a)1−α



where,



Γ (β) (ρ)q

Γ (γ + β) (δ)p
f1 (a)1−α 0 ... 0

0
Γ (β) (ρ)q

Γ (γ + β) (δ)p
f2 (a)1−α ... 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 ...
Γ (β) (ρ)q

Γ (γ + β) (δ)p
fn (a)1−α


, is the matrix corresponding to the linear transforma-

tion ρ
iV

δ,p,q
γ,β,α f (a).

Corollary 3.12. Consider all the conditions of Theorem 3.9 satisfied. For f (a) = a, Corollary 3.11, says that

ρ
iV

δ,p,q
γ,β,αg (a) = g′ (a)



Γ(β)(ρ)q
Γ(γ+β)(δ)p

a1−α
1 0 ... 0

0
Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−α

2 ... 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 ...
Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−α

n


= g′ (a)

Γ (β) (ρ)q

Γ (γ + β) (δ)p
L1−α
α .

Remark 3.13. The Corollary 3.12 generalizes part 5 of the Theorem 2.3.

Theorem 3.14. Let f be a vector valued function with n variables such that f (x1, ..., xn) = ( f1(x1, ..., xn), ..., fn(x1, ..., xn)).
Then f is α-differentiable function at a = (a1, ..., an) ∈ Rn, with ai > 0 if, and only if, each fi is,

ρ
iV

δ,p,q
γ,β,α f (a) =

(
ρ
iV

δ,p,q
γ,β,α f1 (a) , ..., ρiV

δ,p,q
γ,β,α fm (a)

)
,

where α ∈ (0, 1] and ρ, δ, γ, β ∈ C, p, q > 0 with, Re(ρ) > 0, Re(δ) > 0, Re(γ) > 0, Re(β) > 0 and Re(γ) + p ≥ q.

Proof. If each fi is α-differentiable at a and L =
(
ρ
iV

δ,p,q
γ,β,α f1 (a) , ..., ρiV

δ,p,q
γ,β,α fm (a)

)
, then

f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a) − L (ε)

=
[
f1

(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f1 (a) − ρ

iV
δ,p,q
γ,β,α f1 (a) (ε) , ...

..., fm
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− fm (a) − ρ

iV
δ,p,q
γ,β,α fm (a) (ε)

]
.

(3.9)

Taking the limit ε→ 0 on both sides of Eq. (3.9), we have

lim
ε→0

∥∥∥∥ f
(
a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
, ..., an iH

ρ,δ,q
γ,β,p

(
εna−αn

))
− f (a) − L (ε)

∥∥∥∥
‖ε‖

= lim
ε→0

∥∥∥∥∥∥ n∑
j=1

f j

(
a j iH

ρ,δ,q
γ,β,p

(
ε ja−αj

))
− f j (a) − ρ

iV
δ,p,q
γ,β,α f j (a) (ε)

∥∥∥∥∥∥
‖ε‖

≤ lim
ε→0

n∑
j=1

∥∥∥∥ f j

(
a j iH

ρ,δ,q
γ,β,p

(
ε ja−αj

))
− f j (a) − ρ

iV
δ,p,q
γ,β,α f j (a) (ε)

∥∥∥∥
‖ε‖

= 0,

which is the result. �
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Theorem 3.15. Let 0 < α ≤ 1, λ, µ ∈ R, γ, β, ρ, δ ∈ C and p, q > 0 such that Re (γ) > 0, Re (β) > 0, Re (ρ) > 0,
Re (δ) > 0, Re (γ) + p ≥ q and f , g α-differentiable at a = (a1, ..., an) ∈ Rn, with ai > 0. Then,

(1) ρ
iV

δ,p,q
γ,β,α (λ f + µg) (a) = λ

ρ
iV

δ,p,q
γ,β,α f (a) + µ

ρ
iV

δ,p,q
γ,β,αg (a).

(2) ρ
iV

δ,p,q
γ,β,α ( f · g) (a) = f (a)ρi V

δ,p,q
γ,β,αg (a) + g (a)ρi V

δ,p,q
γ,β,α f (a).

Proof. 1. Let A = a1 iH
ρ,δ,q
γ,β,p

(
ε1a−α1

)
+ · · · + an iH

ρ,δ,q
γ,β,p

(
ε1a−αn

)
, then we have,

lim
ε→0

∥∥∥∥(λ f + µg) (A) − (λ f + µg) (a) −
(
λ
ρ
iV

δ,p,q
γ,β,α f (a) + µ

ρ
iV

δ,p,q
γ,β,αg (a)

)
(ε)

∥∥∥∥
‖ε‖

= lim
ε→0

∥∥∥∥λ f (A) − λ f (a) − λρiV
δ,p,q
γ,β,α f (a) (ε) + µg (A) − µg (a) − µ ρ

iV
δ,p,q
γ,β,αg (a) (ε)

∥∥∥∥
‖ε‖

≤ lim
ε→0

∥∥∥∥λ f (A) − λ f (a) − λρiV
δ,p,q
γ,β,α f (a) (ε)

∥∥∥∥
‖ε‖

+ lim
ε→0

∥∥∥∥µg (A) − µg (a) − µ ρ
iV

δ,p,q
γ,β,αg (a) (ε)

∥∥∥∥
‖ε‖

= λlim
ε→0

∥∥∥∥ f (A) − f (a) − ρ
iV

δ,p,q
γ,β,α f (a) (ε)

∥∥∥∥
‖ε‖

+ µlim
ε→0

∥∥∥∥g (A) − g (a) − ρ
iV

δ,p,q
γ,β,αg (a) (ε)

∥∥∥∥
‖ε‖

= 0.

So, the proof is complete.
2. Let A = a1 iH

ρ,δ,q
γ,β,p

(
ε1a−α1

)
+ · · · + an iH

ρ,δ,q
γ,β,p

(
ε1a−αn

)
, then we have,

lim
ε→0

∥∥∥∥( f · g) (A) − ( f · g) (a) −
(

f (a) ρ
iV

δ,p,q
γ,β,αg (a) + g (a)ρi V

δ,p,q
γ,β,α f (a)

)
(ε)

∥∥∥∥
‖ε‖

= lim
ε→0

∥∥∥∥∥∥∥ f (A) g (A) − f (a) g (A) − g (A)ρi V
δ,p,q
γ,β,α f (a) (ε) + f (a) g (A) − f (a) g (a)

− f (a)ρi V
δ,p,q
γ,β,αg (a) (ε) + g (A)ρi V

δ,p,q
γ,β,α f (a) (ε) − g (a)ρi V

δ,p,q
γ,β,α f (a) (ε)

∥∥∥∥∥∥∥
‖ε‖

≤ lim
ε→0

∥∥∥∥ f (A) g (A) − f (a) g (A) − g (A)ρi V
δ,p,q
γ,β,α f (a) (ε)

∥∥∥∥
‖ε‖

+

lim
ε→0

∥∥∥∥ f (a) g (A) − f (a) g (a) − f (a)ρi V
δ,p,q
γ,β,αg (a) (ε)

∥∥∥∥
‖ε‖

+

lim
ε→0

∥∥∥∥g (A)ρi V
δ,p,q
γ,β,α f (a) (ε) − g (a)ρi V

δ,p,q
γ,β,α f (a) (ε)

∥∥∥∥
‖ε‖

= lim
ε→0

∥∥∥∥ρiVδ,p,qγ,β,α f (a) (ε)
∥∥∥∥ ‖g (A) − g (a)‖

‖ε‖

≤ Klim
ε→0
‖(ε)‖

‖g (A) − g (a)‖
‖ε‖

= 0,

with K > 0. So, the proof is complete. �

4. TruncatedV-Fractional Partial Derivatives and Applications

In this section, we introduce the truncated V-fractional partial derivative and discuss applications: the theorem
associated with the commutativity property of two truncatedV-fractional partial derivatives, the truncatedV-fractional
Green’s theorem and analytical solution of theV-fractional heat equation and present a graphical analysis.

Definition 4.1. Let f be a real valued function with n variables and a = (a1, ..., an) ∈ Rn be a point whose ith component
is positive. Then, the limit

lim
ε→0

f
(
a1, ..., a j iH

ρ,δ,q
γ,β,p

(
εa−αj

)
, ..., an

)
− f (a1, ..., an)

ε
,
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if it exists, is denoted by
∂α

∂xα
f (a) :=

∂α

∂xα
f (x) |x=a, and called the ith truncatedV-fractional partial derivative of f of

order α ∈ (0, 1] at a.

Theorem 4.2. Let f be a vector valued function with n variables. If f is α-differentiable at a = (a1, ..., an) ∈ Rn, with

a j > 0, then
∂α

∂xαp
f j (a) of order α ∈ (0, 1] exists for 1 ≤ j ≤ m, 1 ≤ p ≤ n and the Jacobian of f at a is the m× n matrix(

∂α

∂xαp
f j (a)

)
.

Proof. Let f (x1, ..., xn) = ( f1 (x1, ..., xn) , ..., fm (x1, ..., xn)). Suppose first that m = 1, so that f (x1, ..., xn) ∈ Rn. Define

h : R → Rn by h (y) = (a1, ..., y, ..., an) with y in the place of pth. Then
∂α

∂xαp
f j (a) =

ρ
iV

δ,p,q
γ,β,α ( f ◦ h)

(
ap

)
. Hence, by

Corollary (3.11), we have

ρ
iV

δ,p,q
γ,β,α ( f ◦ h)

(
ap

)
= f ′

(
h
(
ap

))


Γ (β) (ρ)q

Γ (γ + β) (δ)p
h1

(
ap

)1−α
0 ... 0

0
Γ (β) (ρ)q

Γ (γ + β) (δ)p
h2

(
ap

)1−α
... 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 ...
Γ (β) (ρ)q

Γ (γ + β) (δ)p
hn

(
ap

)1−α



= f ′ (a)



Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−α

1 0 ... 0

0
Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−α

j ... 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 ...
Γ (β) (ρ)q

Γ (γ + β) (δ)p
a1−α

n


=

ρ
iV

δ,p,q
γ,β,α f (a) .

Since ( f ◦ h)
(
ap

)
has a single entry

∂α

∂xαp
f j (a), this shows that

∂α

∂xαp
f j (a) exists and is the pth entry of the 1×n matrix

ρ
iV

δ,p,q
γ,β,α f (a). The theorem now follows for arbitrary m since, by Theorem (3.14), each f j, is α-differentiable and the pth

row of ρ
iV

δ,p,q
γ,β,α f (a) is ρ

iV
δ,p,q
γ,β,α f j (a). �

For the next result, we use the Clairaut-Schwarz theorem integer order [12], and realize an application of the trun-
catedV-fractional partial derivative.

Theorem 4.3. Assume that f (t, s) is a function for which ∂αt
(
∂κs f (t, s)

)
is of order α ∈ (0, 1] and ∂κs

(
∂αt f (t, s)

)
is of

order κ ∈ (0, 1] exist and are continuous over the domain D ⊂ R2, then

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=
∂κ

∂tκ

(
∂α

∂tα
f (t, s)

)
.

Proof. By means of the Definition (2.1), truncatedV-fractional derivative at the s variable, we have

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=

∂α

∂tα

lim
ε→0

f
(
t, s iH

ρ,δ,q
γ,β,p (εs−κ)

)
− f (t, s)

ε


=

∂α

∂tα

lim
ε→0

f
(
t, s +

Γ (β) (ρ)q

Γ (γ + β) (δ)p
εs1−κ + O

(
ε2

))
− f (t, s)

ε

 .
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Introducing the following change of variable h = εs1−κ
(

Γ (β) (ρ)q

Γ (γ + β) (δ)p
+ O (ε)

)
implies ε =

h

s1−κ

(
Γ (β) (ρ)q

Γ (γ + β) (δ)p
+ O (ε)

) ,

we get

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=
∂α

∂tα

lim
ε→0

f (t, s + h) − f (t, s)
hsκ−1

Γ (β) (ρ)q

Γ (γ + β) (δ)p
+ O (ε)

 .
Since f is differentiable in s-direction, we obtain

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
= s1−κ

Γ (β) (ρ)q

Γ (γ + β) (δ)p

∂α

∂tα

(
∂

∂s
f (t, s)

)
.

Again, by the definition of the truncatedV-fractional derivative we have

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
= s1−κ

Γ (β) (ρ)q

Γ (γ + β) (δ)p

lim
ε→0

∂
∂s f

(
t iH

ρ,δ,q
γ,δ,p (εt−α) , s

)
− ∂

∂s f (t, s)

ε

 .
In analogy to the expression, after making a similar change of variable, we have

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=

Γ (β) (ρ)q s1−κt1−α

Γ (γ + β) (δ)p
lim
k→0

∂
∂s f (t + k, s) − ∂

∂s f (t, s)

k
.

Since f is differentiable in t-direction, we obtain

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=

(
Γ (β) (ρ)q

Γ (γ + β) (δ)p

)2

s1−κt1−α ∂2

∂t∂s
f (t, s) . (4.1)

Being f a continuous function and using the Clairaut-Schwarz theorem for partial derivative, it follows that

∂2

∂t∂s
f (t, s) =

∂2

∂s∂t
f (t, s) .

Therefore the Eq. (4.1), becomes

∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=

(
Γ (β) (ρ)q

Γ (γ + β) (δ)p

)2

s1−κt1−α ∂2

∂s∂t
f (t, s)

=

(
Γ (β) (ρ)q

Γ (γ + β) (δ)p

)2

s1−κt1−αlim
h→0

∂
∂t f (t, s + h) − ∂

∂t f (t, s)

h
.

(4.2)

Thus, taking h = εs1−κ
(

Γ (β) (ρ)q

Γ (γ + β) (δ)p
+ O (ε)

)
and later k = εt1−α

(
Γ (β) (ρ)q

Γ (γ + β) (δ)p
+ O (ε)

)
in the Eq. (4.2), we arrive

at
∂α

∂tα

(
∂κ

∂tκ
f (t, s)

)
=
∂κ

∂tκ

lim
h→0

∂
∂t f (t, s + h) − ∂

∂t f (t, s)

h

 =
∂κ

∂tκ

(
∂α

∂tα
f (t, s)

)
,

which completes the proof. �

We define theV-fractional vector at the point a, given by

5α f (a) =

(
∂α

∂tα
f (a) ,

∂κ

∂sκ
f (a)

)
.

The next example, is a direct application of the Theorem 4.3.
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Example 4.4. Consider f (t, s) = ea(t+s) with a ∈ R satisfying the conditions of Theorem 4.3, then we have

∂α

∂tα

(
∂κ

∂sκ
f (t, s)

)
=

∂α

∂tα

 s1−κΓ (β) (ρ)q

Γ (γ + β) (δ)p

∂

∂s
ea(s+t)


= a

s1−κΓ (β) (ρ)q

Γ (γ + β) (δ)p

∂α

∂tα
ea(s+t)

= a2s1−κt1−α
(

Γ (β) (ρ)q

Γ (γ + β) (δ)p

)2

ea(t+s) (4.3)

and

∂κ

∂sκ

(
∂α

∂tα
f (t, s)

)
=

∂κ

∂sκ

 t1−αΓ (β) (ρ)q

Γ (γ + β) (δ)p

∂

∂t
ea(s+t)


= a

t1−αΓ (β) (ρ)q

Γ (γ + β) (δ)p

∂κ

∂sκ
ea(s+t)

= a2s1−κt1−α
(

Γ (β) (ρ)q

Γ (γ + β) (δ)p

)2

ea(t+s). (4.4)

Thus, by Eq. (4.3) and Eq. (4.4) we conclude that

∂α

∂tα

(
∂κ

∂sκ
f (t, s)

)
=

∂κ

∂sκ

(
∂α

∂tα
f (t, s)

)
.

Theorem 4.5. (truncated V-fractional Green theorem) Let C be a simple positively oriented, piecewise smooth and
close curve in R2, say for instance the x − y plane, furthermore assume D in the interior of C. If f (x, y) and g(x, y) are
two functions having continuous partial truncatedV-fractional derivative on D then∫ ∫

D

(
∂α

∂xα
g −

∂α

∂yα
f
)

dωS =

∫
C

∂α−1

∂yα−1 f dωx −
∂α−1

∂xα−1 gdωy,

where dωS =

(
Γ (γ + β) (δ)p

Γ (β) (ρ)q

)2

xα−1yα−1dxdy, with dωx and dωy, given by Remark 2.7.

Proof. In fact, note that∫ ∫
D

(
∂α

∂xα
g −

∂α

∂yα
f
)

dωS =

∫ ∫
D

[
∂

∂x

(
∂α−1

∂xα−1 g
)
−
∂

∂y

(
∂α−1

∂yα−1 f
)]

dωS . (4.5)

Applying the classical version of the Green’s theorem [7],∫ ∫
D

(
∂Q
∂x
−
∂

∂y
P
)

dS =

∫
C

(Pdx + Qdy)

into Eq. (4.5), we conclude that∫ ∫
D

(
∂α

∂xα
g −

∂α

∂yα
f
)

dωS =

∫
C

∂α−1

∂yα−1 f dωx +
∂α−1

∂xα−1 gdωy.

�

The following application by means of the heat equation will be discussed in R. However, it can be extended to Rn.
Using aV-fractional derivative type, we propose aV-fractional heat equation given by

∂αu (x, t)
∂tα

= k
∂2u (x, t)
∂x2 , 0 < x < L, t > 0, (4.6)

where 0 < α < 1 and with the initial condition and boundary conditions given by

u (0, t) = 0 , t ≥ 0, (4.7)
u (L, t) = 0 , t ≥ 0,
u (x, 0) = f (x) , 0 ≤ x ≤ L.
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We start, considering the so-calledV-fractional linear differential equation with constant coefficients

∂αv (x, t)
∂tα

± µ2v (x, t) = 0, (4.8)

where µ2 is a positive constant.
Using the item 5 in Theorem 2.3, the Eq. (4.6) can be written as follows

t1−αΓ(β)(ρ)q

Γ (β + γ) (δ)p

dv (x, t)
dt

± µ2v (x, t) = 0,

whose solution is given by

v (t) = c exp
(
±

Γ (β + γ) (δ)p

Γ(β)(ρ)q

µ2tα

α

)
, (4.9)

with 0 < α < 1 and β, γ, ρ, δ, p, q > 0.
Now, we will use separation of variables method to obtain the solution of the V-fractional heat equation. Then,

considering u (x, t) = P (x) Q (t) and replacing in Eq. (4.6), we get

dα

dtα
Q (t) P (x) = k

d2

dx2 P (x) Q (t)

which implies
1

kQ (t)
dα

dtα
Q (t) =

1
P (x)

d2

dx2 P (x) = ξ, (4.10)

where ξ is a constant.
From Eq. (4.10), we obtain a system of differential equations, given by

dα

dtα
Q (t) − kξQ (t) = 0

and
d2

dx2 P (x) − ξP (x) = 0. (4.11)

First, let’s find the solution of Eq. (4.11). For this, we must study three cases, that is, ξ = 0, ξ = −µ2 and ξ = µ2,
with µ > 0

The Case 1, i.e. ξ = 0 and the Case 3, i.e. ξ = µ2, we do not present the calculations, since it is a trivial solution.
Case 2: ξ = −µ2.
Substituting ξ = −µ2 into Eq. (4.11), we get

d2

dx2 P (x) + µ2P (x) = 0,

whose solution is given by P (x) = c2 sin (µx)+c1 cos (µx), with c1 and c2 arbitrary constant. Using the initial conditions
Eq. (4.7), we obtain c1 = 0 and 0 = c2 sin (µx) which implies that µ = nπ

L , with n = 1, 2, .... Then, we obtain

Pn (x) = an sin
(nπx

L

)
and µ =

nπ
L
.

Therefore, the solution of Eq. (4.11) is given by

Pn (x) = an sin
(nπx

L

)
andµ =

nπ
L
. (4.12)

Using the Eq. ( 4.8) and Eq. (4.9), we have

Qn (t) = bn exp
(
−

Γ (β + γ) (δ)p

Γ(β)(ρ)q

(nπ
L

)2 k
α

tα
)
, (4.13)

where bn are constant coefficients.
So, using the Eq. (4.12) and Eq. (4.13), the partial solutions of Eq. (4.6), is given by

αuδ,ρ,qβ,γ,p (x, t) =

∞∑
n=1

cn sin
(nπx

L

)
exp

(
−

Γ (β + γ) (δ)p

Γ(β)(ρ)q

(nπ
L

)2 k
α

tα
)
.
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Using Eq. (4.7), we get

u (x, 0) = f (x) =

∞∑
n=1

cn sin
(nπx

L

)
which provides cn through

cn =
2
L

∫ L

0
f (x) sin

(nπx
L

)
dx.

So, we conclude that the solution of V-fractional heat equation Eq. (4.6), satisfying the conditions Eq. (4.7), is
given by

αuδ,ρ,qβ,γ,p (x, t) =

∞∑
n=1

sin
(nπx

L

)
exp

(
−

Γ (β + γ) (δ)p

Γ(β)(ρ)q

(nπ
L

)2 k
α

tα
) (

2
L

∫ L

0
f (x) sin

(nπx
L

)
dx

)
. (4.14)

Choosing p = q = γ = δ = ρ = β = 1 in the Eq. (4.14), we have

αu (x, t) =

∞∑
n=1

sin
(nπx

L

)
exp

(
−

(nπ
L

)2 k
α

tα
) (

2
L

∫ L

0
f (x) sin

(nπx
L

)
dx

)
, (4.15)

the solution of Eq. (4.8), in this sense of the conformable fractional derivative. (Note that, taking the limit i→ 1 in the
Eq. (2.4)). We have the parameter α free.

Choosing p = q = γ = δ = ρ = 1 in the Eq. (4.14), we get

αuβ (x, t) =

∞∑
n=1

sin
(nπx

L

)
exp

(
−Γ(β + 1)

(nπ
L

)2 k
α

tα
) (

2
L

∫ L

0
f (x) sin

(nπx
L

)
dx

)
, (4.16)

the solution of Eq. (4.8), in this sense of the M-fractional derivative. (Note that, taking the limit i → ∞ in the Eq.
(2.4). We have the parameter α and β free.

Next, we will present some plots by choosing values for the parameters α, β, γ, δ, ρ, p, q, k, t and L, to see the behavior
of the solution presented in Eq (4.14) and recover the Eq. (4.15) and Eq. (4.16). The graphics were plotted using
MATLAB 7:10 software (R2010a). For the elaboration of the following plots, we choose the function f (x) = 50x(1−x).

Figure 1. Analytical solution of the V-fractional heat equation Eq. (4.14). We consider the values
t = 50, L = 1, k = 0.01 and α = 0.2.
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Figure 2. Analytical solution of the V-fractional heat equation Eq. (4.14). We consider the values
t = 50, L = 1, k = 0.01 and α = 0.5.
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Figure 3. Analytical solution of the V-fractional heat equation Eq. (4.14). We consider the values
t = 50, L = 1, k = 0.01 and α = 0.9.
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5. Concluding Remarks

After a brief introduction to the truncated six-parameters Mittag-Leffler function and the truncated V-fractional
derivative with domain of function in R and the validity of some important results, we have introduced the multivariable
truncated V-fractional derivative, that is, with domain of the function in Rn. In this sense, we discussed and proved
classical theorems such as: the chain rule, the commutativity of the exponent of two truncatedV-fractional derivatives
and Green’s theorem.

We concluded that: a variety of new fractional derivatives of said local have been recently introduced, all them
satisfy the requirements of the integer-order derivative, and have been employed to deal more effectively with real
problems and their physical properties [2, 3, 7, 8]. The dynamics of systems over time, becomes more complex and
more precise mathematical tools are needed to solve certain theoretical and practical problems. In this theoretical and
applicable sense, we extended the idea of truncatedV-fractional derivative of a variable, so it is possible to work with
differential equations with several variables consequently make comparisons with the results obtained by means of
other fractional derivatives. Studies in direction will be published in a forthcoming paper.
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