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LEFT-HOM-SYMMETRIC AND HOM-POISSON DIALGEBRAS

BAKAYOKO I. AND BANGOURA M.

Abstract. The aim of this paper is to introduce left-Hom-symmetric dial-
gebras (which contain left-Hom-symmetric algebras or Hom-preLie algebras

and Hom-dialgebras as special cases) and Hom-Poisson dialgebras. We give

some examples and some construction theorems by using the composition con-
struction. We prove that the commutator bracket of any left-Hom-symmetric

dialgebra provides Hom-Leibniz algebra. We also prove that bimodules over

Hom-dialgebras are closed under twisting. Next, we show that bimodules over
Hom-dendriform algebras D extend to bimodules over the left-Hom-symmetric

algebra associated to D. Finally, we give some examples of Hom-Poisson dial-

gebras and prove that the commutator bracket of any Hom-dialgebra structure
map leads to Hom-Poisson dialgebra.

1. Introduction

Leibniz algebras are introduced by J.-L. Loday in [8] as a generalization of Lie
algebras where the skew-symmetry of the bracket is dropped and the Jacobi iden-
tity is changed by the Leibniz identity. The author showed that the relationship
between Lie algebras and associative algebras translates into an analogous relation-
ship between Leibniz algebras and the so-called diassociative algebras or associative
dialgebras, which are a generalization of associative algebras possessing two prod-
ucts. In particular, he showed that any dialgebra becomes a Leibniz algebra under
the commutator bracket.

Otherwise, left-symmetric dialgebras appear in the work of R. Felipe [10] as
an algebraic structure with two products containing dialgebras as particular case,
and Poisson dialgebras are introduced in [7] as a vector space endowed with both
dialgebra structure and Leibniz structure which are compatible in certain sense.

The purpose of this paper is to study Left-Hom-symmetric dialgebras and Hom-
Poisson dialgebras. We define bimodules over Hom-dialgebras and Hom-dendriform
algebras [2] and give some construction theorems. Next, we introduce Hom-Poisson
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dialgebras as Hom-type of Poisson dialgebras which are generalization of “non-
commutative Poisson algebras”.

The paper is organized as follows. In section 2, we recall some basic notions
related to Hom-algebras, Hom-Lie algebras and Hom-Leibniz algebras. In Section
3, we show that one can obtain a left-Hom-symmetric algebra from a left-symmetric
algebra and an algebra endomorphism. We prove that twisting a Hom-dialgebra
module structure map by an endomorphism of Hom-dialgebras, we get another
one. Next, we show that any left-Hom-symmetric dialgebra leads to Hom-Leibniz
algebra via the Loday commutator. Finally, we introduce affine Hom-Leibniz struc-
ture on Hom-Leibniz algebras and point out that one may associate a left-Hom-
symmetric algebra to any affine Hom-Leibniz algebra. In section 4, we introduce
bimodules over Hom-dendriform algebras and prove that to any bimodule over a
Hom-dendriform algebra D corresponds a module over the left-Hom-symmetric al-
gebra associated to D. In section 5, we introduce Hom-Poisson dialgebras ; we give
some examples and some construction theorems of Hom-Poisson dialgebras.

Throughout this paper, all vector spaces are assumed to be over a field K of
characteristic different from 2.

2. Preliminaries

In this section, we recall some basic definitions.

Definition 2.1. [1] By a Hom-algebra we mean a triple (A, [·, ·], α) in which A is a
vector space, [·, ·] : A⊗A→ A is a bilinear map (the multiplication) and α : A→ A
is a linear map (the twisting map).

If in addition, α ◦ [·, ·] = [·, ·] ◦ (α⊗ α), then the Hom-algebra (A, [·, ·], α) is said
to be multiplicative.

A morphism f : (A, [·, ·], α)→ (A′, [·, ·]′, α′) of Hom-algebras is a linear map f of
the underlying vector spaces such that f ◦ α = α′ ◦ f and [·, ·]′ ◦ (f ⊗ f) = f ◦ [·, ·].

Remark 2.1. If (A, [·, ·]) is a non-necessarily associative algebra in the usual sense,
we also regard it as the Hom-algebra (A, [·, ·], IdA) with identity twisting map.

Definition 2.2. [1] Let (A, [·, ·], α) be a Hom-algebra.

(1) The Hom-associator of A is the trilinear map asα : A⊗3 → A defined as

asα = [·, ·] ◦ ([·, ·]⊗ α− α⊗ [·, ·]).
(2) The Hom-Jacobian of A is the trilinear map Jα : A⊗3 → A defined as

Jα = [·, ·] ◦ ([·, ·]⊗ α) ◦ (IdA + σ + σ2),

where σ : A⊗3 → A⊗3 is the cyclic permutation σ(x⊗ y ⊗ z) = y ⊗ z ⊗ x.
(3) The Hom-Leibnizator of A is a trilinear map Leibα : A⊗3 → A defined as

Leibα = [·, ·](α⊗ [·, ·]) + [·, ·]([·, ·]⊗ α)− [·, ·]([·, ·]⊗ α)(IdA ⊗ τ),

where τ is the twist isomorphism i.e. τ(x⊗ y) = y ⊗ x, for any x, y ∈ A.

Definition 2.3. [1] A Hom-associative algebra is a triple (A, ·, α) consisting of a
linear space A, a K-bilinear map · : A × A −→ A and a linear map α : A −→ A
satisfying

asα(x, y, z) = 0 (Hom-associativity),(2.1)

for all x, y, z ∈ A.
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Definition 2.4. [6] A Hom-Lie algebra is a triple (V, [·, ·], α) consisting of a linear
space V , a bilinear map [·, ·] : V ×V −→ V and a linear map α : V −→ V satisfying

[x, y] = −[y, x] (skew-symmetry),(2.2)

Jα(x, y, z) = 0 (Hom-Jacobi identity),(2.3)

for all x, y, z ∈ V .

Remark 2.2. When α = IdV , we obtain the definition of Lie algebras.

Definition 2.5. [1] A Hom-algebra (L, [·, ·], α) is said to be a Hom-Leibniz algebra
if it satisfies the Hom-Leibniz identity i.e.

Leibα(x, y, z) = 0,(2.4)

for all x, y, z ∈ L.

Remark 2.3. (1) When α = IdL, we recover the concept of Leibniz algebra.
(2) If the bracket is skew-symmetric, then L is a Hom-Lie algebra. Therefore

Hom-Lie algebras are particular cases of Hom-Leibniz algebras.

3. Left-Hom-symmetric dialgebras

We introduce modules over Hom-dialgebras and left-Hom-symmetric dialgebras.

3.1. Left-Hom-symmetric algebras.

Definition 3.1. [1] A left-Hom-symmetric algebra is a vector space S together
with a bilinear map ◦ : S ⊗ S → S and a linear map α : S → S such that the
following left-Hom-symmetry identity

α(x) ◦ (y ◦ z)− (x ◦ y) ◦ α(z) = α(y) ◦ (x ◦ z)− (y ◦ x) ◦ α(z),(3.1)

holds.

Remark 3.1. (1) When α = IdS , we recover the notion of left-symmetric alge-
bras.

(2) In terms of Hom-associators, the left-Hom-symmetry identity is

asα(x, y, z) = asα(y, x, z).

Example 3.1. Let (S, ◦, αS) be a left-Hom-symmetric algebra and (A, ·, αA) a com-
mutative Hom-associative algebra. Then (S ⊗A, •, αS⊗A) is a left-Hom-symmetric
algebra, with

αS⊗A = αS ⊗ αA,
(x⊗ a) • (y ⊗ b) = (x ◦ y)⊗ (a · b),

for all x, y ∈ S, a, b ∈ A.

The following theorem allows to obtain left-Hom-symmetric algebras from left-
symmetric algebras.

Theorem 3.1. Let (S, •) be a left-symmetric algebra and α : S → S be an endo-
morphism. Then, Sα = (S, •α, α), where x•α y = α(x•y), is a left-Hom-symmetric
algebra.

Moreover, suppose that (S′, •′) is another left-symmetric algebra and α′ : S′ → S′

is an algebra endomorphism. If f : S → S′ is a left-symmetric algebra morphism
that satisfies f ◦ • = •′ ◦ f then f : Sα → S′α′ is a morphism of left-Hom-symmetric
algebras.
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Proof. For any x, y, z ∈ S, we have

α(x) •α (y •α z)− (x •α y) •α α(z) = α(x) •α (α(y) • α(z))− (α(x) • α(y)) •α α(z)

= α2(x) • (α2(y) • α2(z))− (α2(x) • α2(y)) • α2(z)

= (α2)⊗3((x • y) • z)− (x • y) • z)
= (α2)⊗3(y • (x • z)− (y • x) • z)
= α(y) •α (x •α z)− (y •α x) •α α(z).

For the second part, we have

f ◦ •α = f ◦ α ◦ • = α′ ◦ f ◦ • = α′ ◦ •′ ◦ (f ⊗ f) = •′α′ ◦ (f ⊗ f).

This completes the proof. �

Example 3.2. : Left-Hom-symmetric algebra of vector fields
First we need some definitions. Let M be a differential manifold, and let 5 be
the covariant operator associated to a connection on the tangent bundle TM . The
covariant derivation is a bilinear operator on vector fields (i.e. two sections of the
tangent bundle) (X,Y ) 7→ 5XY such that the following axioms are fulfilled :

5fXY = f 5X Y,

5X(fY ) = f 5X Y + (X · f)Y (Leibniz rule).

The torsion of the connection τ is defined by :

τ(X,Y ) = 5XY −5YX − [X,Y ],(3.2)

and the curvature tensor is defined by :

R(X,Y ) = [5X ,5Y ]−5[X,Y ].(3.3)

The connection is flat if the curvature R vanishes identically, and torsion-free if
τ = 0.

Now, let M be a smooth manifold endowed with a flat torsion-free connection
5, χ(M) the space of vector fields and ϕ : M → M a smooth map such that
dϕ(5XY ) = 5dϕ(X)dϕ(Y ). Then (χ(M), ◦, dϕ) is a left-Hom-symmetric algebra,
with the left-Hom-symmetric product given by :

X ◦ Y = 5XY.

3.2. Modules over Hom-dialgebras.

Definition 3.2. A Hom-dialgebra is a vector space D equipped with a linear map
α : D → D and two Hom-associative products

a: D ×D → D

`: D ×D → D.

satisfying the identities :

α(x) a (y a z) = α(x) a (y ` z),(3.4)

(x ` y) a α(z) = α(x) ` (y a z),(3.5)

(x ` y) ` α(z) = (x a y) ` α(z).(3.6)

If in addition, α is an endomorphism with respect to a and `, then D is said to be
a multiplicative Hom-dialgebra.
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Remark 3.2. For any x, y, z in a Hom-dialgebra, one has

α(x) ? (y ? z) = α(x) ? (z ? y) (right commutativity)

where x ? y = x a y + y ` x.

Here are some examples of Hom-dialgebras.

Example 3.3. Any dialgebra is a Hom-dialgebra with α = Id.

Example 3.4. If (A,µ, α) is a Hom-associative algebra, then (D,a,`, α) is a Hom-
dialgebra in which a= µ =`.

Example 3.5. Let (D,a,`, α) be a Hom-dialgebra. Then (D,a′,`′, α) is also a
Hom-dialgebra, with

x a′ y := y ` x and x `′ y := y a x.

Example 3.6. Let (D,aD,`D, αD) and (D′,aD′ ,`D′ , αD′) be two Hom-dialgebras.
The tensor product D ⊗D′ is also a Hom-dialgebra with

αD⊗D′(x⊗ y) := αD(x)⊗ αD′(x′),

(x⊗ x′) a (y ⊗ y′) := (x aD y)⊗ (x′ aD′ y′),

(x⊗ x′) ` (y ⊗ y′) := (x `D y)⊗ (x′ `D′ y′).

Example 3.7. Let (A, ·, α) be a Hom-associative algebra. Then, for any positive
integer n, An = A×A× · · · ×A (n times) is a Hom-dialgebra, with

αAn := (α, α, . . . , α),

(x aAn y)i := xi · (
∑

yj),

(x `An y)i := (
∑

xj) · yi,

for any 1 ≤ i, j ≤ n.

Example 3.8. The Hom-dialgebra arising from a bimodule over Hom-associative
algebra and morphism of Hom-bimodules is exposed in [4].

Now, we have the following definitions.

Definition 3.3. [5] A Hom-module is a pair (M,β) in which M is a vector space
and β : M −→M is a linear map.

Definition 3.4. Let (A, ·, α) be a Hom-associative algebra and let (M,β) be a
Hom-module. A bimodule structure on M consists of :

(1) a left A-action, ≺: A⊗M →M (x⊗m 7→ x ≺ m), and
(2) a right A-action, �: M ⊗A→M (m⊗ x 7→ m � x)

such that the following conditions hold for x, y ∈ A and m ∈M :

β(x ≺ m) = α(x) ≺ β(m),(3.7)

β(m � x) = β(m) � α(x),(3.8)

α(x) ≺ (y ≺ m) = (x · y) ≺ β(m),(3.9)

(m � x) � α(y) = β(m) � (x · y),(3.10)

α(x) ≺ (m � y) = (x ≺ m) � α(y).(3.11)
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Definition 3.5. Let (D,a,`, α) be a Hom-dialgebra and (M,β) be a Hom-module.
Assume that M is endowed with two operations ≺: D⊗M →M and �: M ⊗D →
M . We say that (M,≺,�, β) is a bimodule over the Hom-dialgebra (D,a,`, α) if,
for any x, y ∈ D,m ∈M , the following identities are satisfied :

β(x ≺ m) = α(x) ≺ β(m),(3.12)

β(m � x) = β(m) � α(x)(3.13)

(x ≺ m) � α(y) = α(x) ≺ (m � y),(3.14)

β(m) � (x a y) = (m � x) � α(y) = β(m) � (x ` y)(3.15)

(x a y) ≺ β(m) = α(x) ≺ (y ≺ m) = (x ` y) ≺ β(m)(3.16)

Remark 3.3. (1) (a) Axioms (3.12) and (3.13) can be interpreted as the mul-
tiplicativity in the Hom-modules theory.

(b) Axiom (3.15) (resp. (3.16)) is the left-module (resp. right-module)
condition.

(c) Axiom (3.14) is the compatibility condition of left and right modules.
(2) Taking M = D (as vector space), ≺=a and �=`, we see that any Hom-

dialgebra is a bimodule over itself.

We have the following result.

Proposition 3.1. Let (D,a,`, α) be a Hom-dialgebra. Then (M,≺,�, β) is a
bimodule over (D,a,`, α) if and only if it is a bimodule over (D,µ, α), where a=
µ =`.

Proof. The proof follows from Definition 3.4 and Definition 3.5. �

The following theorem asserts that bimodules over Hom-dialgebras are closed
under twisting.

Theorem 3.2. Let (D,a,`, α) be a Hom-dialgebra and (M,≺,�, β) be a bimodule
over D. Define the maps

≺α:=≺ ◦(α2 ⊗ IdM ) : D ⊗M →M, x⊗m 7→ α2(x) ≺ m(3.17)

�α:=� ◦(IdM ⊗ α2) : M ⊗D →M, m⊗ x 7→ m � α2(x).(3.18)

Then (M,≺α,�α, β) is a bimodule over D.

Proof. We shall only prove (3.12) and (3.14). For any x, y ∈ D,m ∈M ,

β(x ≺α m)
(3.17)

= β(α2(x) ≺ m)
(3.12)

= α3(x) ≺ β(m)
(3.17)

= α(x) ≺α β(m),

and,

(x ≺α m) �α α(y)− α(x) ≺α (m �α y)
(3.17)

= (α2(x) ≺ m) � α3(y)

−α3(x) ≺ (m � α2(y))
(3.14)

= 0.

All the rest of equalities are proved analogously. �

Proposition 3.2. Let (M,≺,�, β) be a bimodule over the Hom-dialgebra (D,a,`
, α). Then, we have the following identities :

[x, y] ≺ β(m) = α(x) ≺ (y ≺ m)− α(y) ≺ (x ≺ m),(3.19)

β(m) � [x, y] = (x ≺ m) � α(y) + α(x) ≺ (m � y),(3.20)

where, [x, y] = x a y − y ` x.
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Proof. The first equality is proved by using (3.16). For the second equality, we
have, for any x, y ∈ D,m ∈M ,

β(m) � [x, y]− (x ≺ m) � α(y)− α(x) ≺ (m � y) =

= β(m) � (x a y − y ` x)− (x ≺ m) � α(y)− α(x) ≺ (m � y) =

= β(m) � (x a y)− β(m) � (y ` x)− (x ≺ m) � α(y)− α(x) ≺ (m � y).

The last line vanishes by (3.14) and (3.15). �

3.3. Left-Hom-symmetric dialgebras.

Definition 3.6. A Left-Hom-symmetric dialgebra is a vector space S equipped
with two bilinear products

a: S × S → S,

`: S × S → S,

satisfying the identities

α(x) a (y a z) = α(x) a (y ` z),(3.21)

(x ` y) ` α(z) = (x a y) ` α(z),(3.22)

α(x) a (y a z)− (x a y) a α(z) = α(y) ` (x a z)− (y ` x) a α(z),(3.23)

α(x) ` (y ` z)− (x ` y) ` α(z) = α(y) ` (x ` z)− (y ` x) ` α(z).(3.24)

Remark 3.4. The identities (3.23) and (3.24) can be written as

Laα(x)L
a
y − L`α(y)L

a
x = La[x,y]α,

L`α(x)L
`
y − L`α(y)L

`
x = L`[x,y]α,

where, Lax and L`x are defined respectively by Laxy = x a y and L`xy = x ` y, and
[x, y] = x a y − y ` x.

Now we give some examples of left-Hom-symmetric dialgebras.

Example 3.9. Any Hom-dialgebra is a left-Hom-symmetric dialgebra.

Example 3.10. Any left-Hom-symmetric algebra is a left-Hom-symmetric dialge-
bra in which `=a.

Example 3.11. Let (S,a,`, αS) be a left-Hom-symmetric dialgebra and (A, ·, αA)
be a left-Hom-symmetric algebra, then S × A is a left-Hom-symmetric dialgebra
with

αS×A := (αS , αA),

(x, a) aS×A (y, b) := (x a y, a · b),
(x, a) `S×A (y, b) := (x ` y, a · b).

We have the following result whose ordinary case is Proposition 4 in [10].

Proposition 3.3. A left-Hom-symmetric dialgebra S is a Hom-dialgebra if and
only if both products of S are Hom-associative.

Proof. If a left-Hom-symmetric dialgebra S is a Hom-dialgebra, then both products
a and ` defined over S are Hom-associative according to Definition 3.2. Conversely,
if each product of a left-Hom-symmetric dialgebra is Hom-associative, then from
(3.23), we get (3.5). �
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The next statement is one of the main results of this paper ; it states that
the commutator bracket of any left-Hom-symmetric dialgebra gives rise to a Hom-
Leibniz algebra.

Theorem 3.3. Let (S,a,`, α) be a left-Hom-symmetric dialgebra. Then the Loday
commutator defined by

[x, y] := x a y − y ` x,(3.25)

defines a structure of Hom-Leibniz algebra on S.

Proof. The proof follows by a straighforward computation in which the identities
(3.21) and (3.22) are used once. In fact, for any x, y, z ∈ S, we have

Leibα(x, y, z) = [α(x), [y, z]]− [[x, y], α(z)] + [[x, z], α(y)]

= α(x) a (y a z)− α(x) a (z ` y)− (y a z) ` α(x) + (z ` y) ` α(x)

−(x a y) a α(z) + (y ` x) a α(z) + α(z) ` (x a y)− α(z) ` (y ` x)

+(x a z) a α(y)− (z ` x) a α(y)− α(y) ` (x a z) + α(y) ` (z ` x)

= 0.

Now, by (3.23) and (3.24) it follows that Leibα(x, y, z) = 0. This completes the
proof. �

We need the below definition in the next theorem.

Definition 3.7. Let (S,a,`, α) and (S′,a′,`′, α′) be two left-Hom-symmetric di-
algebras. A map f : S → S′ is said to be a morphism of left-Hom-symmetric
dialgebras if

α′ ◦ f = f ◦ α, f(x a y) = f(x) a′ f(y) and f(x ` y) = f(x) `′ f(y),

for any x, y ∈ S.

Twisting a left-symmetric dialgebra by a left-symmetric dialgebras endomor-
phism, we get a left-Hom-symmetric dialgebra ; this is stated in the following
theorem.

Theorem 3.4. Let (S,a,`) be a left-symmetric dialgebra and α : S → S be a
morphism of left-symmetric dialgebras. Then (S,aα,`α, α) is a multiplicative left-
Hom-symmetric dialgebra with

x `α y = α(x ` y),

x aα y = α(x a y).

Proof. The proof is similar to that of Proposition 3.1. �

In the rest of this section, we introduce affine Hom-Leibniz structures on Hom-
Leibniz algebras.

Definition 3.8. Let (L, [−,−], α) be a Hom-Leibniz algebra. A pair (51,52) of
bilinear maps

51 : L× L→ L

and

52 : L× L→ L.
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is called an affine Hom-Leibniz structure if

52(x, y)−51(y, x) = [x, y],(3.26)

51(51(x, y), α(z)) = 51(52(x, y), α(z)),(3.27)

52(α(x),52(y, z))) = 52(α(x),51(y, z))),(3.28)

52(α(x),51(y, z))−51(α(y),52(x, z)) = 52([x, y], α(z)),(3.29)

and

51(α(x),51(y, z))−51(α(y),51(x, z)) = 51([x, y], α(z)),(3.30)

for all x, y, z ∈ L.

The next result is the Hom-type of ([10], Theorem 11).

Theorem 3.5. Let (L, [−,−], α) be a Hom-Leibniz algebra and let (51,52) be an
affine Hom-Leibniz structure. Then L is a left-Hom-symmetric dialgebra with `
and a defined as

x ` y = 51(x, y), x a y = 52(x, y).(3.31)

Proof. Relations (3.27) and (3.28) imply (3.21) and (3.22) respectively. Next, (3.23)
follows from (3.26) and (3.29). Finally, (3.24) is established by applying (3.21),
(3.26) and (3.30). �

Corollary 3.1. Let (5,5) be an affine structure on the Hom-Leibniz algebra
(L, [−,−], α). Then (L,5, α) is a left-Hom-symmetric algebra.

4. Hom-dendriform algebras

This section in devoted to modules over Hom-dendriform algebras.

Definition 4.1. [2] A Hom-dendriform algebra is a vector space D together with
bilinear maps a: D ⊗D → D, `: D ⊗D → D and linear map α : S → S such that

α(x) ` (y a z) = (x ` y) a α(z),(4.1)

(x a y) a α(z) = α(x) a (y a z) + α(x) a (y ` z),(4.2)

α(x) ` (y ` z) = (x a y) ` α(z) + (x ` y) ` α(z).(4.3)

Lemma 4.1. [2] Let (D,a,`, α) be a Hom-dendriform algebra. Defining x ◦ y =
x ` y − y a x, one obtains a left-Hom-symmetric algebra structure on D.

The following result is the Hom-analogue of Proposition 5.3 in [7].

Proposition 4.1. Let (D,a,`, αD) and (D,≺,�, αD) be a Hom-dialgebra and a
Hom-dendriform algebra respectively. Then, on the tensor product D ⊗ D, the
bracket

[x⊗ a, y ⊗ b] := (x a y)⊗ (a ≺ b)− (y ` x)⊗ (b � a)

−(y a x)⊗ (b ≺ a) + (x ` y)⊗ (a � b),

where x, y ∈ D, a, b ∈ D, defines a structure of Hom-Lie algebra on D ⊗ D, with
αD⊗D = αD ⊗ αD.
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Proof. The bracket is skew-symmetric by definition. Hence, it suffices to show that
the Hom-Jacobi identity is fulfilled.

The Hom-Jacobi identity for x⊗ a, y ⊗ b, z ⊗ c gives a total of 48 terms, in fact
8× 3! terms. There are 8 terms for which x, y, z (and also a, b, c) stay in the same
order. The other set of 8 terms are permutations of this set which reads :

α(x) a (y a z)⊗ α(a) ≺ (b ≺ c)− (x a y) a α(z)⊗ (a ≺ b) ≺ α(c),

α(x) ` (y a z)⊗ α(a) � (b ≺ c)− (x ` y) a α(z)⊗ (a � b) ≺ α(c),

α(x) a (y ` z)⊗ α(a) ≺ (b � c)− (x a y) ` α(z)⊗ (a ≺ b) � α(c),

α(x) ` (y ` z)⊗ α(a) � (b � c)− (x ` y) ` α(z)⊗ (a � b) � α(c).

The terms 1 and 3 in column 1 together with the term 1 in column 2 cancel due to
Definition 3.2 and (4.2). Similarly, the terms 41, 32 and 42 cancel due to Definition
3.2 and (4.3). Finally the terms 21 and 22 cancel due to Definition 3.2 and (4.1). �

Corollary 4.1. If D and D are multiplicative, then D⊗D is also a multiplicative
Hom-Lie algebra.

Definition 4.2. Let (S, ◦, α) be a left-Hom-symmetric algebra. An S-bimodule
is a vector space M endowed with a linear map β : M → M , two bilinear maps
S ⊗M →M,x⊗m 7→ x ≺ m and M ⊗ S →M,m⊗ x 7→ m � x, such that

α(x) ≺ (y ≺ m)− (x ◦ y) ≺ β(m)− α(y) ≺ (x ≺ m) + (y ◦ x) ≺ β(m) = 0,

and,

α(x) ≺ (m � y)− (x ≺ m) � α(y)− β(m) � (x ◦ y) + (m � x) � α(y) = 0.

Example 4.1. Any left-Hom-symmetric algebra is a bimodule over itself.

The following theorem gives a kind of connection between left-Hom-symmetric
algebras and left-Hom-symmetric dialgebras.

Proposition 4.2. Let (S, ·, α) be a left-Hom-symmetric algebra and I be a bimodule
over S. Assume that, for all i, j ∈ I and a, b, c, d ∈ S,

α(i) · (a · b)− (i · a) · α(b) = α(a) · (i · b)− (a · i) · α(b),

α(c) · (d · j)− (c · d) · α(j) = α(d) · (c · j)− (d · c) · α(j).

Then (S ⊕ I,a,`, αS⊕I) is a left-Hom-symmetric dialgebra with

αS⊕I = αS ⊕ αI ,
(i1 + a1) a (i2 + a2) = i1a2 + a1a2,

(i1 + a1) ` (i2 + a2) = a1i2 + a1a2.

Proof. It is straighforward by calculation. �

Corollary 4.2. Let (S, ·, α) be a left-Hom-symmetric algebra and I be an ideal of
S. Then (S ⊕ I,a,`, αS⊕I) is a left-Hom-symmetric dialgebra.

Now, we define bimodules over Hom-dendriform algebras which are Hom-analogue
of ([9], Definition 5.5).

Definition 4.3. Let (D,a,`, α) be a Hom-dendriform algebra. A D-bimodule is
a Hom-module (M,β) together with four bilinear maps

D ⊗M →M,x⊗m 7→ x � m; D ⊗M →M,x⊗m 7→ x ≺ m;

M ⊗D →M,m⊗ x 7→ m � x; M ⊗D →M,m⊗ x 7→ m ≺ x
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such that

α(x) � (y ≺ m) = (x ` y) ≺ β(m),(4.4)

(x a y) ≺ β(m) = α(x) ≺ (y ≺ m) + α(x) ≺ (y � m),(4.5)

α(x) � (y � m) = (x a y) � β(m) + (x ` y) � β(m),(4.6)

α(x) � (m ≺ y) = (x � m) ≺ α(y),(4.7)

(x ≺ m) ≺ α(y) = α(x) ≺ (m ≺ y) + α(x) ≺ (m � y),(4.8)

α(x) � (m � y) = (x ≺ m) � α(y) + (x � m) � α(y),(4.9)

β(m) � (x a y) = (m � x) ≺ α(y),(4.10)

(m ≺ x) ≺ α(y) = β(m) ≺ (x a y) + β(m) ≺ (x ` y),(4.11)

β(m) � (x ` y) = (m ≺ x) � α(y) + (m � x) � α(y).(4.12)

Theorem 4.1. Let (D,a,`, α) be a Hom-dendriform algebra and (M,≺,�, β) be
a dendriform bimodule over D. Then (M,/, ., β) is a left-symmetric bimodule over
the left-Hom-symmetric algebra associated to (D,a,`, α) (i.e. (D, ◦, α), where x ◦
y = x ` y − y a x) by means of

x / m = x � m−m ≺ x and m . x = m � x− x ≺ m.

Proof. The first condition in Definition 4.2 is proved by expanded

α(x) / (y / m)− (x ◦ y) / β(m)− α(y) / (x / m) + (y ◦ x) / β(m)

by means of a, `, ≺ and �, and using (4.6), (4.7) and (4.11). The second condition
is proved similarly by using the rest of relations. �

5. Hom-Poisson dialgebras

In this section, we introduce Hom-Poisson dialgebras and we give some examples
and some construction theorems.

Definition 5.1. A Hom-Poisson dialgebra is a quintuple (P,a,`, [−,−], α) in which
P is a vector space, a,`, [−,−] : P ⊗P → P are three bilinear maps and α : P → P
is a linear map such that

[x a y, α(z)] = α(x) a [y, z] + [x, z] a α(y),(5.1)

[x ` y, α(z)] = α(x) ` [y, z] + [x, z] ` α(y),(5.2)

[α(x), y a z] = α(y) ` [x, z] + [x, y] a α(z) = [α(x), y ` z].(5.3)

for all x, y, z ∈ P .

Example 5.1. Any Poisson dialgebra is a Hom-Poisson dialgebra with α = Id.

Example 5.2. If (A, ·, α) is a symmetric Hom-Leibniz algebra [11] i.e. both left
and right Hom-Leibniz algebra, then (A,a,`, [−,−], α) is a Hom-Poisson dialgebra,
with [−,−] = · =a=`.

Example 5.3. Let (P,a,`, [−,−], α) and (P ′,a′,`′, [−,−]′, α′) be two Hom-Poisson
dialgebras. Then the direct product P × P ′ is also a Hom-Poisson dialgebra
with componentwise operation. In particular, for any non-negative integer n,
Pn = P × P × · · · × P (n times) is a Hom-Poisson dialgebra.

The below theorem generalizes Proposition 2.6 in [3].
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Theorem 5.1. Let (D,a,`, α) be a Hom-dialgebra. Then (D,a,`, [−,−], α) is a
Hom-Poisson dialgebra, where

[x, y] = x a y − y ` x,
for any x, y ∈ D.

Proof. It follows from axioms in Definition 3.2. �

Observe that by setting a= µ and `= µop, we recover ([3], Proposition 2.6).

Definition 5.2. Let (P,a,`, [−,−], α) and (P ′,a′,`′, [−,−]′, α′) be two Hom-
Poisson dialgebras. A linear map f : P → P ′ is said to be a morphism of Hom-
Poisson dialgebras, if α′ ◦ f = f ◦ α and for any x, y ∈ P ,

f(x a y) = f(x) a′ f(y), f(x ` y) = f(x) `′ f(y), f([x, y]) = [f(x), f(y)]′.

The following theorem allows to obtain a Hom-Poisson dialgebra from Poisson
dialgebra and an endomorphism.

Theorem 5.2. Let (P,a,`, [−,−]) be a Poisson dialgebra and α : P → P an
endomorphism of Poisson dialgebras. Then (P,aα,`α, [−,−]α, α) is a Hom-Poisson
dialgebra, with

x aα y = α(x a y), x `α y = α(x ` y), [x, y]α = α([x, y]),

for all x, y ∈ P .

Proof. The proof is analogue to the one of Theorem 3.1. �
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Math., 39 (1993), 269-293.

[9] M. Aguiar, Infinitesimal bialgebras, pre-Lie and dendriform algebras, arXiv:math/0211074v3
[Math.QA] 16 Nov 2002.

[10] R. Felipe, A brief fondation of the left symmetric dialgebras, Comminicación del CIMAT No

I-11-02/18-03-2011 (MB/CIMAT).
[11] S. Benayadi and S. Hidri Quadratic Leibniz Algebras, Journal of Lie Theory, 24 (2014) 737-

759.
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