Konuralp Journal of Mathematics
Volume 3 No. 2 pp. 77-88 (2015) ©KJM

ON SOME ČEBYŠEV TYPE INEQUALITIES FOR FUNCTIONS WHOSE SECOND DERIVATIVES ARE $\left(h_{1}, h_{2}\right)$-CONVEX ON THE CO-ORDINATES

B. MEFTAH AND K. BOUKERRIOUA*

Abstract

The aim of this paper is to establish some new Čebyšev type inequalities involving functions whose mixed partial derivatives are $\left(h_{1}, h_{2}\right)$ convex on the co-ordinates.

1. Introduction

In 1882, Čebyšev [4] gave the following inequality :

$$
\begin{equation*}
|T(f, g)| \leq \frac{1}{12}(b-a)^{2}\left\|f^{\prime}\right\|_{\infty}\left\|g^{\prime}\right\|_{\infty} \tag{1.1}
\end{equation*}
$$

where $f, g:[a, b] \rightarrow \mathbb{R}$ are absolutely continuous functions, whose first derivatives f^{\prime} and g^{\prime} are bounded,

$$
\begin{equation*}
T(f, g)=\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\left(\frac{1}{b-a} \int_{a}^{b} f(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} g(x) d x\right) \tag{1.2}
\end{equation*}
$$

and $\|\cdot\|_{\infty}$ denotes the norm in $L_{\infty}[a, b]$ defined as $\|f\|_{\infty}=\underset{t \in[a, b]}{\operatorname{ess} \sup }|f(t)|$.
During the past few years many researchers have given considerable attention to the inequality (1.1), various generalizations, extensions and variants of this inequality have appeared in the literature, see $[1,3,6,8,9,10]$. Recently, Guezane-Lakoud and Aissaoui [6] established new Čebyšev type inequalities similar to (1.1) for functions f, g defined on bidimensional intervals $\Delta=[a, b] \times[c, d] \subset[0, \infty)^{2}$ whose mixed partial derivatives $f_{s t}$ and $g_{s t}$ are integrable and bounded. The authors of the paper [12] further extend these results in special cases when the mixed partial derivatives belong to certain classes of functions that generalize convex function on the co-ordinates.

2000 Mathematics Subject Classification. 26D15, 26D20, 39A12.
Key words and phrases. Čebyšev type inequalities, co-ordinates (h_{1}, h_{2})-convex, integral inequality.

This work has been supported by CNEPRU-MESRS-B01120120103 project grants.

The main purpose of this work is to obtain new Čebyšev type inequalities involving functions whose mixed partial derivatives are $\left(h_{1}, h_{2}\right)$-convex on the coordinates.

2. Preliminaries

Throughout this paper we denote by Δ the bidimensional interval in $[0, \infty)^{2}$, $\Delta=:[a, b] \times[c, d]$ with $a<b$ and $c<d, k=(b-a)(d-c)$ and $f_{\lambda \alpha}$ for $\frac{\partial^{2} f}{\partial \lambda \partial \alpha}$.
Definition $2.1([5])$. A function $f: \Delta \rightarrow \mathbb{R}$ is said to be convex on the co-ordinates on Δ, if the following inequality

$$
\begin{align*}
f(\lambda x+(1-\lambda) t, \alpha y+(1-\alpha) v) \leq & \lambda \alpha f(x, y)+\lambda(1-\alpha) f(x, v) \\
& +(1-\lambda) \alpha f(t, y)+(1-\lambda)(1-\alpha) f(t, v) \tag{2.1}
\end{align*}
$$

holds for all $\lambda, \alpha \in[0,1]$ and $(x, y),(x, v),(t, y),(t, v) \in \Delta$.
Clearly, every convex mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on the co-ordinates. Furthermore, there exists co-ordinated convex function which is not convex.

Definition 2.2 ([2]). A function $f: \Delta \rightarrow \mathbb{R}$ is said to be s-convex in the second sense on the co-ordinates on Δ, if the following inequality

$$
\begin{align*}
f(\lambda x+(1-\lambda) t, \alpha y+(1-\alpha) v) \leq & \lambda^{s} \alpha^{s} f(x, y)+\lambda^{s}(1-\alpha)^{s} f(x, v) \\
& +(1-\lambda)^{s} \alpha^{s} f(t, y)+(1-\lambda)^{s}(1-\alpha)^{s} f(t, v) \tag{2.2}
\end{align*}
$$

holds for all $\lambda, \alpha \in[0,1]$ and $(x, y),(x, v),(t, y),(t, v) \in \Delta$,
for some fixed $s \in(0,1]$.
s-convexity on the co-ordinates does not imply the s-convexity, that is there exist functions which are s-convex on the co-ordinates but are not s-convex.

Definition 2.3 ([7]). Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a positive function. A mapping $f: \Delta$ $\rightarrow \mathbb{R}$ is said to be h-convex on Δ, if the following inequality

$$
\begin{equation*}
f(\alpha x+(1-\alpha) t, \alpha y+(1-\alpha) v) \leq h(\alpha) f(x, y)+h(1-\alpha) f(t, v) \tag{2.3}
\end{equation*}
$$

holds, for all $(x, y),(t, v) \in \Delta$ and $\alpha \in(0,1)$.
Definition 2.4 ([7]). A function $f: \Delta \rightarrow \mathbb{R}$ is said to be $\left(h_{1}, h_{2}\right)$-convex on the coordinates on Δ, if the following inequality

$$
\begin{aligned}
f(\lambda x+(1-\lambda) t, \alpha y+(1-\alpha) v) \leq & h_{1}(\lambda) h_{2}(\alpha) f(x, y)+h_{1}(\lambda) h_{2}(1-\alpha) f(x, v) \\
& +h_{1}(1-\lambda) h_{2}(\alpha) f(t, y) \\
& +h_{1}(1-\lambda) h_{2}(1-\alpha) f(t, v)
\end{aligned}
$$

holds for all $\lambda, \alpha \in] 0,1[$ and $(x, y),(x, v),(t, y),(t, v) \in \Delta$.
h-convexity on the co-ordinates does not imply the h-convexity, that is there exist functions which are h-convex on the co-ordinates but are not h-convex.

Lemma 2.1 (Lemma 1. [11]). Let $f: \Delta \rightarrow \mathbb{R}$ be a partial differentiable mapping on Δ in \mathbb{R}^{2}. If $f_{\lambda \alpha} \in L_{1}(\Delta)$, then for any
$(x, y) \in \Delta$, we have the equality:

$$
\begin{aligned}
f(x, y)= & \frac{1}{b-a} \int_{a}^{b} f(t, y) d t+\frac{1}{d-c} \int_{c}^{d} f(x, v) d v-\frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(t, v) d v d t \\
& +\frac{1}{k} \int_{a}^{b} \int_{c}^{d}(x-t)(y-v) \\
& \times\left(\int_{0}^{1} \int_{0}^{1} f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t
\end{aligned}
$$

3. Main Result

Theorem 3.1. Let $h_{i}: J_{i} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be positive functions, for $i=1,2$. f,g: $\Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates, then we have

$$
\begin{equation*}
|T(f, g)| \leq \frac{49}{3600} k^{2}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)^{2}\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right)^{2} M N \tag{3.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& T(f, g)=\frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x-\frac{(d-c)}{k^{2}} \int_{a}^{b} \int_{c}^{d} g(x, y)\left(\int_{a}^{b} f(t, y) d t\right) d y d x \\
& -\frac{(b-a)}{k^{2}} \int_{a}^{b} \int_{c}^{d} g(x, y)\left(\int_{c}^{d} f(x, v) d v\right) d y d x \\
& +\frac{1}{k^{2}}\left(\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x\right)\left(\int_{a}^{b} \int_{c}^{d} g(t, v) d v d t\right) \\
& M=\operatorname{ess} \sup _{x, t \in[a, b], y, v \in[c, d]}\left[\left|f_{\lambda \alpha}(x, y)\right|+\left|f_{\lambda \alpha}(x, v)\right|+\left|f_{\lambda \alpha}(t, y)\right|+\left|f_{\lambda \alpha}(t, v)\right|\right] \text {, } \\
& N=\underset{x, t \in[a, b], y, v \in[c, d]}{e s s} \sup _{\lambda \alpha}(\mid x, y)\left|+\left|g_{\lambda \alpha}(x, v)\right|+\left|g_{\lambda \alpha}(t, y)\right|+\left|g_{\lambda \alpha}(t, v)\right|\right] \\
& \text { and } k=(b-a)(d-c) \text {. }
\end{aligned}
$$

Proof. Let F, G, \widetilde{F} and \widetilde{G} be defined as follows

$$
\begin{gathered}
F=f(x, y)-\frac{1}{b-a} \int_{a}^{b} f(t, y) d t-\frac{1}{d-c} \int_{c}^{d} f(x, v) d v+\frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(t, v) d v d t \\
G=g(x, y)-\frac{1}{b-a} \int_{a}^{b} g(t, y) d t-\frac{1}{d-c} \int_{c}^{d} g(x, v) d v+\frac{1}{k} \int_{a}^{b} \int_{c}^{d} g(t, v) d v d t \\
\widetilde{F}=\frac{1}{k} \int_{a}^{b} \int_{c}^{d}(x-t)(y-v) \times\left(\int_{0}^{1} \int_{0}^{1} f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t
\end{gathered}
$$

$\widetilde{G}=\frac{1}{k} \int_{a}^{b} \int_{c}^{d}(x-t)(y-v) \times\left(\int_{0}^{1} \int_{0}^{1} g_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t$.
By Lemma 2.1, we have

$$
F=\widetilde{F} \text { and } G=\widetilde{G}
$$

then

$$
\begin{equation*}
F G=\widetilde{F} \widetilde{G} \tag{3.3}
\end{equation*}
$$

Integrating (3.3) over Δ, with respect to x, y, multiplying the resultant equality by $\frac{1}{k}$, using Fubini's Theoerm and modulus, we get

$$
\begin{align*}
|T(f, g)|= & \left.\frac{1}{k^{3}} \right\rvert\, \int_{a}^{b} \int_{c}^{d}\left[\int_{a}^{b} \int_{c}^{d}(x-t)(y-v)\right. \\
& \left.\times\left(\int_{0}^{1} \int_{0}^{1} f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t\right] \\
& \times\left[\int_{a}^{b} \int_{c}^{d}(x-t)(y-v)\right. \\
& \left.\times\left(\int_{0}^{1} \int_{0}^{1} g_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t\right] d y d x \mid \\
\leq & \frac{1}{k^{3}} \int_{a}^{b} \int_{c}^{d}\left[\int_{a}^{b} \int_{c}^{d}|x-t||y-v|\right. \\
& \left.\times\left(\int_{0}^{1} \int_{0}^{1}\left|f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v)\right| d \alpha d \lambda\right) d v d t\right] \\
& \times\left[\int_{a}^{b} \int_{c}^{d}|x-t||y-v|\right. \\
& \left.\times\left(\int_{0}^{1} \int_{0}^{1}\left|g_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v)\right| d \alpha d \lambda\right) d v d t\right] d y d x . \tag{3.4}
\end{align*}
$$

Using the $\left(h_{1}, h_{2}\right)$-convexity and taking into account that

$$
\begin{aligned}
& \int_{a}^{b}\left(\int_{a}^{b}|x-t| d t\right)^{2} d x=\frac{7}{60}(b-a)^{5} \\
& \int_{c}^{d}\left(\int_{c}^{d}|y-v| d v\right)^{2} d y=\frac{7}{60}(d-c)^{5}
\end{aligned}
$$

$$
\int_{0}^{1} h_{1}(1-\lambda) d \lambda=\int_{0}^{1} h_{1}(\lambda) d \lambda \text { and } \int_{0}^{1} h_{2}(1-\alpha) d \alpha=\int_{0}^{1} h_{2}(\alpha) d \alpha
$$

we obtain

$$
\begin{aligned}
& |T(f, g)| \leq \frac{1}{k^{3}}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)^{2}\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right)^{2} \\
& \times \int_{a}^{b} \int_{c}^{d}\left[\int_{a}^{b} \int_{c}^{d}|x-t||y-v| \times\left[\left|f_{\lambda \alpha}(x, y)\right|+\left|f_{\lambda \alpha}(x, v)\right|\right.\right. \\
& \left.+\left|f_{\lambda \alpha}(t, y)\right|+\left|f_{\lambda \alpha}(t, v)\right|\right] d v d t \\
& \times\left[\int_{a}^{b} \int_{c}^{d}|x-t||y-v| \times\left[\left|g_{\lambda \alpha}(x, y)\right|+\left|g_{\lambda \alpha}(x, v)\right|\right.\right. \\
& \left.\left.+\left|g_{\lambda \alpha}(t, y)\right|+\left|g_{\lambda \alpha}(t, v)\right|\right] d v d t\right] d y d x \\
& \leq \frac{M N}{k^{3}}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)^{2}\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right)^{2} \\
& \times \int_{a}^{b} \int_{c}^{d}\left(\int_{a}^{b} \int_{c}^{d}|x-t||y-v| d v d t\right)^{2} d y d x \\
& =\frac{M N}{k^{3}}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)^{2}\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right)^{2} \\
& \times\left[\int_{a}^{b}\left(\int_{a}^{b}|x-t| d t\right)^{2} d x\right]\left[\int_{c}^{d}\left(\int_{c}^{d}|y-v| d v\right)^{2} d y\right] \\
& =\frac{49}{3600} k^{2}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)^{2}\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right)^{2} M N .
\end{aligned}
$$

This completes the proof of Theorem 3.1.
Corollary 3.1. Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be positive function, $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are h-convex on the co-ordinates, then we have

$$
\begin{equation*}
|T(f, g)| \leq \frac{49}{3600} k^{2}\left(\int_{0}^{1} h(\lambda) d \lambda\right)^{4} M N \tag{3.5}
\end{equation*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1.
Proof. Applying Theorem 3.1, for $h_{1}(v)=h_{2}(v)=h(v)$, we obtain the desired inequality.

Corollary 3.2. Let $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are convex on the co-ordinates, then we have

$$
\begin{equation*}
|T(f, g)| \leq \frac{49}{57600} k^{2} M N \tag{3.6}
\end{equation*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1.
Proof. In Theorem 3.1, if we replace h_{1} and h_{2} by the identity, we obtain

$$
\begin{aligned}
|T(f, g)| & \leq \frac{49}{3600} k^{2}\left(\int_{0}^{1} \lambda d \lambda\right)^{2}\left(\int_{0}^{1} \alpha d \alpha\right)^{2} M N \\
& =\frac{49}{3600} k^{2}\left(\left.\frac{\lambda^{2}}{2}\right|_{\lambda=0} ^{\lambda=1}\right)^{2}\left(\left.\frac{\alpha^{2}}{2}\right|_{\alpha=0} ^{\alpha=1}\right)^{2} M N \\
& =\frac{49}{3600} k^{2} \times \frac{1}{4} \times \frac{1}{4} M N \\
& =\frac{49}{57600} k^{2} M N
\end{aligned}
$$

This is the desired inequality in (3.6). The proof is completed.
Remark 3.1. The result of Corollary 3.2 is similar to the inequality (6) of Theorem 2.1 in [12].

Corollary 3.3. Let $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are $\left(s_{1}, s_{2}\right)$-convex in the second sense on the co-ordinates, then

$$
\begin{equation*}
|T(f, g)| \leq \frac{49}{3600} k^{2} \frac{1}{\left(1+s_{1}\right)^{2}} \frac{1}{\left(1+s_{2}\right)^{2}} M N \tag{3.7}
\end{equation*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1 and $s_{1}, s_{2} \in(0,1]$.
Proof. Taking in Theorem 3.1, $h_{1}(\lambda)=\lambda^{s_{1}}$ and $h_{2}(\alpha)=\alpha^{s_{2}}$, we obtain

$$
\begin{aligned}
|T(f, g)| & \leq \frac{49}{3600} k^{2}\left(\int_{0}^{1} \lambda^{s_{1}} d \lambda\right)^{2}\left(\int_{0}^{1} \alpha^{s_{2}} d \alpha\right)^{2} M N \\
& =\frac{49}{3600} k^{2} \frac{1}{\left(1+s_{1}\right)^{2}} \frac{1}{\left(1+s_{2}\right)^{2}} M N
\end{aligned}
$$

This is the desired inequality in (3.7). The proof is completed.
Corollary 3.4. Let $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are s-convex in the second sense on the co-ordinates, then

$$
\begin{equation*}
|T(f, g)| \leq \frac{49}{3600} k^{2} \frac{1}{(1+s)^{4}} \quad M N \tag{3.8}
\end{equation*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1 and $s \in(0,1]$.

Proof. Putting in Theorem 3.1, $h_{1}(\lambda)=\lambda^{s}$ and $h_{2}(\alpha)=\alpha^{s}$, we get

$$
\begin{align*}
|T(f, g)| & \leq \frac{49}{3600} k^{2}\left(\int_{0}^{1} \lambda^{s} d \lambda\right)^{2}\left(\int_{0}^{1} \alpha^{s} d \alpha\right)^{2} M N \\
& =\frac{49}{3600} k^{2} \frac{1}{(1+s)^{4}} M N \tag{3.9}
\end{align*}
$$

This is the required inequality in (3.8). The proof is completed.

Theorem 3.2. Let $h_{i}: J_{i} \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be positive functions, for $i=1,2, f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are $\left(h_{1}, h_{2}\right)$-convex on the co-ordinates, then we have

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{8 k^{2}}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right) \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x \tag{3.10}
\end{align*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1.

Proof. By Lemma 2.1, we have

$$
\begin{align*}
f(x, y)= & \frac{1}{b-a} \int_{a}^{b} f(t, y) d t+\frac{1}{d-c} \int_{c}^{d} f(x, s) d v-\frac{1}{k} \int_{a}^{b} \int_{c}^{d} f(t, v) d v d t \\
& +\frac{1}{k} \int_{a}^{b} \int_{c}^{d}(x-t)(y-v) \\
& \times\left(\int_{0}^{1} \int_{0}^{1} f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t \tag{3.11}
\end{align*}
$$

and

$$
\begin{align*}
g(x, y)= & \frac{1}{b-a} \int_{a}^{b} g(t, y) d t+\frac{1}{d-c} \int_{c}^{d} g(x, v) d s-\frac{1}{k} \int_{a}^{b} \int_{c}^{d} g(t, v) d v d t \\
& +\frac{1}{k} \int_{a}^{b} \int_{c}^{d}(x-t)(y-v) \\
& \times\left(\int_{0}^{1} \int_{0}^{1} g_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t . \tag{3.12}
\end{align*}
$$

Multiplying (3.11) by $\frac{1}{2 k} g(x, y)$ and (3.12) by $\frac{1}{2 k} f(x, y)$, summing the resultant equalities, then integrating on Δ, we get

$$
\begin{align*}
T(f, g)= & \frac{1}{2 k^{2}}\left[\int _ { a } ^ { b } \int _ { c } ^ { d } g (x , y) \left[\int_{a}^{b} \int_{c}^{d}(x-t)(y-v)\right.\right. \\
& \left.\times\left(\int_{0}^{1} \int_{0}^{1} f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t\right] d y d x \\
& +\int_{a}^{b} \int_{c}^{d} f(x, y)\left[\int_{a}^{b} \int_{c}^{d}(x-t)(y-v)\right. \\
& \left.\left.\times\left(\int_{0}^{1} \int_{0}^{1} g_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v) d \alpha d \lambda\right) d v d t\right] d y d x\right] \tag{3.13}
\end{align*}
$$

using the properties of modulus, (3.13) becomes

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{2 k^{2}}\left[\int _ { a } ^ { b } \int _ { c } ^ { d } | g (x , y) | \left[\int_{a}^{b} \int_{c}^{d}|x-t||y-v|\right.\right. \\
& \left.\times\left(\int_{0}^{1} \int_{0}^{1}\left|f_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v)\right| d \alpha d \lambda\right) d v d t\right] d y d x \\
& +\int_{a}^{b} \int_{c}^{d}|f(x, y)|\left[\int_{a}^{b} \int_{c}^{d}|x-t||y-v|\right. \\
& \left.\left.\times\left(\int_{0}^{1} \int_{0}^{1}\left|g_{\lambda \alpha}(\lambda x+(1-\lambda) t, \alpha y-(1-\alpha) v)\right| d \alpha d \lambda\right) d v d t\right] d y d x\right] \tag{3.14}
\end{align*}
$$

Using the $\left(h_{1}, h_{2}\right)$-convexity, (3.14) gives

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{2 k^{2}}\left[\int_{a}^{b} \int_{c}^{d}|g(x, y)|\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right)\right. \\
& \times\left[\int _ { a } ^ { b } \int _ { c } ^ { d } | x - t | | y - v | \left[\left|f_{\lambda \alpha}(x, y)\right|+\left|f_{\lambda \alpha}(x, v)\right|\right.\right. \\
& \left.\left.+\left|f_{\lambda \alpha}(t, y)\right|+\left|f_{\lambda \alpha}(t, v)\right|\right] d v d t\right] d y d x \\
& +\int_{a}^{b} \int_{c}^{d}|f(x, y)|\left(\int_{0}^{d} h_{1}(\lambda) d \lambda\right)\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right) \\
& \times\left[\int _ { a } ^ { b } \int _ { c } ^ { d } | x - t | | y - v | \left[\left|g_{\lambda \alpha}(x, y)\right|+\left|g_{\lambda \alpha}(x, v)\right|\right.\right. \\
& \left.\left.\left.+\left|g_{\lambda \alpha}(t, y)\right|+\left|g_{\lambda \alpha}(t, v)\right|\right] d v d t\right] d y d x\right], \tag{3.15}
\end{align*}
$$

By a simple calculation we get

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{2 k^{2}}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right) \\
& \times \int_{a}^{b} \int_{c}^{d}\left[M|g(x, y)|\left(\int_{a}^{b} \int_{c}^{d}|x-t||y-v| d v d t\right)\right. \\
& \left.+N|f(x, y)|\left(\int_{a}^{b} \int_{c}^{d}|x-t||y-v| d v d t\right)\right] d y d x \\
= & \frac{1}{8 k^{2}}\left(\int_{0}^{1} h_{1}(\lambda) d \lambda\right)\left(\int_{0}^{1} h_{2}(\alpha) d \alpha\right) \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x . \tag{3.16}
\end{align*}
$$

This completes the proof of Theorem 3.2.

Corollary 3.5. Let $h: J \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be positive function, $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable
on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are h-convex on the co-ordinates, then we have

$$
\begin{aligned}
|T(f, g)| \leq & \frac{1}{8 k^{2}}\left(\int_{0}^{1} h(\lambda) d \lambda\right)^{2} \int_{a}^{b} \int_{c}^{d}[(M|g(x, y)|+N|f(x, y)|) \\
& \left.\times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right)\right] d y d x
\end{aligned}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1.
Proof. Applying Theorem 3.2, for $h_{1}(\lambda)=h_{2}(\lambda)$, we obtain the desired inequality.

Corollary 3.6. Let $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are convex on the co-ordinates, then we have

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{32 k^{2}} \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x \tag{3.17}
\end{align*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1.
Proof. In Theorem 3.2, if we replace h_{1} and h_{2} by the identity, we obtain

$$
\begin{aligned}
|T(f, g)| \leq & \frac{1}{8 k^{2}}\left(\int_{0}^{1} \lambda d \lambda\right)\left(\int_{0}^{1} \alpha d \alpha\right) \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x . \\
= & \frac{1}{32 k^{2}} \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x .
\end{aligned}
$$

This is the desired inequality in (3.17). The proof is completed.

Remark 3.2. The result of Corollary 3.6, is similar to the inequality (7) of Theorem 2.1 in [12].

Corollary 3.7. Let $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are
$\left(s_{1}, s_{2}\right)$-convex in the second sense on the co-ordinates, then we have

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{8 k^{2}\left(1+s_{1}\right)\left(1+s_{2}\right)} \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x \tag{3.18}
\end{align*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1 and $s_{1}, s_{2} \in(0,1]$.
Proof. Putting in Theorem 3.2, $h_{1}(\lambda)=\lambda^{s_{1}}$ and $h_{2}(\alpha)=\alpha^{s_{2}}$, we get

$$
\begin{aligned}
|T(f, g)| \leq & \frac{1}{8 k^{2}}\left(\int_{0}^{1} \lambda^{s_{1}} d \lambda\right)\left(\int_{0}^{1} \alpha^{s_{2}} d \alpha\right) \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x . \\
= & \frac{1}{8\left(1+s_{1}\right)\left(1+s_{2}\right) k^{2}} \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x .
\end{aligned}
$$

This is the required inequality in (3.18). The proof is completed.

Corollary 3.8. Let $f, g: \Delta \rightarrow \mathbb{R}$ be partially differentiable functions, such that their second derivatives $f_{\lambda \alpha}$ and $g_{\lambda \alpha}$ are integrable on Δ. If $\left|f_{\lambda \alpha}\right|$ and $\left|g_{\lambda \alpha}\right|$ are s-convex in the second sense on the co-ordinates, then we have

$$
\begin{align*}
|T(f, g)| \leq & \frac{1}{8 k^{2}(1+s)^{2}} \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x \tag{3.19}
\end{align*}
$$

where $T(f, g), M, N, k$ are defined as in Theorem 3.1 and $s \in(0,1]$.

Proof. Taking in Theorem 3.2, $h_{1}(\lambda)=\lambda^{s}$ and $h_{2}(\alpha)=\alpha^{s}$, we get

$$
\begin{aligned}
|T(f, g)| \leq & \frac{1}{8 k^{2}}\left(\int_{0}^{1} \lambda^{s} d \lambda\right)\left(\int_{0}^{1} \alpha^{s} d \alpha\right) \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x . \\
= & \frac{1}{8 k^{2}(1+s)^{2}} \\
& \times \int_{a}^{b} \int_{c}^{d}[M|g(x, y)|+N|f(x, y)|] \\
& \times\left((x-a)^{2}+(b-x)^{2}\right)\left((y-c)^{2}+(d-y)^{2}\right) d y d x .
\end{aligned}
$$

This is the desired inequality in (3.19). The proof is completed.

4. Acknowledgements

The author would like to thank the anonymous referee for his/her valuable suggestions.

References

[1] Ahmad, F., Barnett, N. S., \& Dragomir, S. S. (2009). New weighted Ostrowski and Čebyšev type inequalities. Nonlinear Analysis: Theory, Methods \& Applications, 71(12), e1408-e1412.
[2] Alomari, M., \& Darus, M. (2008). The Hadamard's inequality for s-convex function of 2variables on the co-ordinates. International Journal of Math. Analysis, 2(13), 629-638.
[3] Boukerrioua, K., Guezane-Lakoud, A.(2007). On generalization of Čebyšev type inequalities. J. Inequal. Pure Appl. Math. 8,2, Art 55.
[4] Chebyshev, P. L. (1882). Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. InProc.Math.Soc.Charkov(Vol.2,pp.93-98).
[5] Dragomir, S. S. (2001). On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J Math. 4, 775-788.
[6] Guazene-Lakoud, A. and Aissaoui, F.2011. New Čebyšev type inequalities for double integrals, J. Math. Inequal, 5(4), 453-462.
[7] Latif, M. A., \& Alomari, M. (2009). On Hadamard-type inequalities for h-convex functions on the co-ordinates. International Journal of Math. Analysis, 3(33), 1645-1656.
[8] Pachpatte, B. G., \& Talkies, N. A. (2006). On Čebyšev type inequalities involving functions whose derivatives belong to Lp spaces. J. Inequal. Pure and Appl. Math, 7(2), Art 58.
[9] Pachaptte, B. G. (2003). On some inequalities for convex functions,RGMIA Res.Rep.Coll, 6.
[10] Pachpatte, B. G. (2006). On Čebyšev-Grüss type inequalities via Pečarić's extension of the Montgomery identity. JIPAM. Journal of Inequalities in Pure \& Applied Mathematics [electronic only], 7(1), Art 11.
[11] Sarikaya, M.Z., Budak, H., Yaldiz, H. (2014). Some New Ostrowski Type Inequalities for Co-Ordinated Convex Functions." Turkish Journal of Analysis and Number Theory, vol. 2, no. 5 (2014).
[12] Sarikaya, M.Z., Budak, H., Yaldiz, H. Čebysev type inequalities for co-ordinated convex functions. Pure and Applied Mathematics Letters 2(2014)44-48.

University of Guelma. Guelma, Algeria.
E-mail address: khaledv2004@yahoo.fr

