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ON RIGHT INVERSE Γ-SEMIGROUP

SUMANTA CHATTOPADHYAY

Abstract. Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty

sets. S is called a Γ-semigroup if aαb ∈ S, for all α ∈ Γ and a, b ∈ S and

(aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ. An element e ∈ S
is said to be α-idempotent for some α ∈ Γ if eαe = e. A Γ- semigroup S is

called regular Γ-semigroup if each element of S is regular i.e, for each a ∈ S

there exists an element x ∈ S and there exist α, β ∈ Γ such that a = aαxβa.
A regular Γ-semigroup S is called a right inverse Γ-semigroup if for any α-

idempotent e and β-idempotent f of S, eαfβe = fβe. In this paper we

introduce ip - congruence on regular Γ-semigroup and ip - congruence pair on
right inverse Γ-semigroup and investigate some results relating this pair.

1. Introduction

Let S = {a, b, c, . . . } and Γ = {α, β, γ, . . . } be two nonempty sets. S is called a
Γ-semigroup if
(i)aαb ∈ S, for all α ∈ Γ and a, b ∈ S and
(ii)(aαb)βc = aα(bβc), for all a, b, c ∈ S and for all α, β ∈ Γ.

A semigroup can be considered to be a Γ-semigroup in the following sense. Let
S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S.
Let us extend the binary operation defined on S to S ∪ {1} by defining 11 = 1 and
1a = a1 for all a ∈ S. It can be shown that S ∪ {1} is a semigroup with identity
element 1. Let Γ = {1}. If we take ab = a1b, it can be shown that the semigroup
S is a Γ−semigroup where Γ = {1}.

In [8] we introduced right inverse Γ-semigroup. In [2] Gomes introduced the
notion of congruence pair on inverse semigroup and studied some of its properties.
In this paper we introduce the notion of ip - congruence on regular Γ-semigroup, ip
- congruence pair on right inverse Γ-semigroup and studied some of its properties.
We now recall some definition and results.
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Definition 1.1. Let S be a Γ-semigroup. An element a ∈ S is said to be regular
if a ∈ aΓSΓa where aΓSΓa = {aαbβa : b ∈ S, α, β ∈ Γ}. S is said to be regular if
every element of S is regular.
Example 1.1. [8] Let M be the set of all 3×2 matrices and Γ be the set of all 2×3
matrices over a field. Then M is a regular Γ semigroup.

Example 1.2. Let S be a set of all negative rational numbers. Obviously S is not
a semigroup under usual product of rational numbers. Let Γ = {− 1

p : p is prime

}. Let a, b, c ∈ S and α ∈ Γ. Now if aαb is equal to the usual product of rational
numbers a, α, b, then aαb ∈ S and (aαb)βc = aα(bβc). Hence S is a Γ-semigroup.
Let a = m

n ∈ S where m > 0 and n < 0. Suppose m = p
1
p

2
..........p

k
where p

i
’s are

prime. Now
p
1
p
2
..........p

k

n (− 1
p
1

) n
p
2
..........p

k−1
(− 1

p
k

) mn =
p
1
p
2
..........p

k

n . Thus taking

b = n
p2 ..........pk−1

, α = (− 1
p1

) and β = (− 1
p
k

) we can say that a is regular. Hence S

is a regular Γ-semigroup.

Definition 1.2. Let S be a Γ-semigroup and α ∈ Γ. Then e ∈ S is said to be an
α-idempotent if eαe = e. The set of all α-idempotents is denoted by Eα and we

denote
⋃
α∈Γ

Eα by E(S). The elements of E(S) are called idempotent element of S.

Definition 1.3. Let S be a Γ-semigroup and a, b ∈ S, α, β ∈ Γ. b is said to be an
(α, β)-inverse of a if a = aαbβa and b = bβaαb. This is denoted by b ∈ V βα (a) .

Theorem 1.1. Let S be a regular Γ-semigroup and a ∈ S. Then V βα (a) is non-
empty for some α, β ∈ Γ.

Proof: Since S is regular there exist b ∈ S and α, β ∈ Γ such that a = aαbβa.
Now we consider the element bβaαb. aα(bβaαb)βa = (aαbβa)αbβa = aαbβa = a
and (bβaαb)βaα(bβaαb) = bβ(aαb)βa)αbβaαb = bβaαbβaαb = bβaαb. Hence
bβaαb ∈ V βα (a).

Definition 1.4. Let S be a Γ-semigroup. An equivalence relation ρ on S is said to
be a right (left) congruence on S if (a, b) ∈ ρ implies (aαc, bαc) ∈ ρ, ((cαa, cαb) ∈ ρ)
for all a, b, c ∈ S and for all α ∈ Γ. An equivalence relation which is both left and
right congruence on S is called congruence on S.

Definition 1.5. A regular Γ-semigroup S is called a right orthodox Γ-semigroup if
for any α-idempotent e and β-idempotent f of S, eαf is a β-idempotent.

Definition 1.6. A regular Γ-semigroup M is a right orthodox Γ-semigroup if and

only if for a, b ∈ S, α
1
, α

2
, β

1
, β

2
∈ Γ, a′ ∈ V

α2

α
1

(a) and b′ ∈ V
β2

β1
(b), we have

b′β
2
a′ ∈ V

α
2

β1
(aα

1
b).

Definition 1.7. A regular Γ-semigroup S is called a right inverse Γ-semigroup if
for any α-idempotent e and β-idempotent f of S, eαfβe = fβe.

Theorem 1.2. Every right inverse Γ-semigroup is a right orthodox Γ-semigroup.

Theorem 1.3. Let S be a regular Γ-semigroup and Eα be the set of all α-
idempotents in S. Let e ∈ Eα and f ∈ Eβ . Then

RS(e, f) =
{
g ∈ V αβ (eαf) ∩ Eα : gαe = fβg = g

}
is non-empty.
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Proof: Since S is regular, there exist b ∈ S and γ, δ ∈ Γ such that eαfγbδeαf =
eαf and bδeαfγb = b. Now (eαf)β(fγbδe)α(eαf) = eαfγbδeαf = eαf and
(fγbδe)α(eαf)β(fγbδe) = fγbδeαfγbδe = fγbδe. Hence fγbδe ∈ V αβ (eαf). Thus

V αβ (eαf) 6= φ. Now let x ∈ V αβ (eαf) and setting g = fβxαe we have gαg =

(fβxαe)α(fβxαe) = fβ(xαe)αfβx)αe = fβxαe = g. Thus g ∈ Eα.
Again gαeαfβg = fβxαeαeαfβfβxαe = fβxαeαfβxαe = fβxαe = g and

eαfβgαeαf = eαfβfβxαeαeαf = eαfβxαeαf = eαf implies that g ∈ V αβ (eαf)
. Hence gαe = fβxαeαe = fβxαe = g and fβg = fβfβxαe = fβxαe = g .
Therefore RS(e, f) 6= ∅ .

Definition 1.8. Let S be a regular Γ- semigroup and e and f be α and β- idempo-
tents respectively. Then the set RS(e, f) described in the above Theorem is called
the right sandwich set of e and f .

Theorem 1.4. Let S be a regular Γ-semigroup and e and f be α and β-idempotents
respectively. Then the set RS(e, f) = {g ∈ V αβ (eαf) : gαe = g = fβg and eαgαf

= eαf}.

Proof: Let P = {g ∈ V αβ (eαf) : gαe = g = fβg and eαgαf = eαf} and let

g ∈ RS(e, f). Then g ∈ Eα, gαe = g = fβg and g ∈ V αβ (eαf). Now eαgαf =

eαgαeαfβgαf = eαfβgαeαfβgαeαf = eαfβgαeαf = eαf . Hence RS(e, f) ⊆ P .
Next let g ∈ P . Now gαg = gαeαfβg = g. Hence g ∈ Eα, which shows that
P ⊆ RS(e, f) and hence the proof.

Theorem 1.5. Let S be a regular Γ- semigroup and a, b ∈ S.If a′ ∈ V βα (a), b′ ∈
V δγ (b) and g ∈ RS(a′βa, bγb′) then b′δgαa′ ∈ V βγ (aαb).

Proof: Let e = a′βa and f = bγb′. Then e is an α-idempotent and f is
a δ-idempotent and also g is an α-idempotent. Now (aαb)γ(b′δgαa′)β(aαb) =
aαfδgαeαb = aαgαb = aαa′βaαgαbγb′δb = aαeαgαeαb = aαeαfδb = aαa′βaαb
γb′δb = aαb. Again (b′δgαa′)β(aαb)γ(b′δgαa′) = b′δgαeαfδgαa′ = b′δgαgαa′ =
b′δgαa′. Hence b′δgαa′ ∈ V βγ (aαb).

Corollary 1.1. For a, b ∈ S, if V βα (a) and V δγ (b) are nonempty then V βγ (aαb) is
nonempty.

Proof: Let a′ ∈ V βα (a) and b′ ∈ V δγ (b) then we know that RS(a′βa, bγb′) 6= φ.

For g ∈ RS(a′βa, bγb′) and hence we get b′δgαa′ ∈ V βγ (aαb). Hence the proof.

2. ip- congruence pair on right inverse Γ-semigroup

In this section we characterize some congruences on a right inverse Γ - semigroup
S.

Definition 2.1. Let S be a Γ-semigroup. A nonempty subset K of S is said to be
partial Γ-subsemigroup if for a, b ∈ K, aαb ∈ K, whenever V βα (a) 6= φ. for α, β ∈ Γ.

Definition 2.2. A partial Γ-subsemigroup K of S is said to be regular if V βα (k) ⊆ K
for all k ∈ K and α, β ∈ Γ.

Definition 2.3. A partial Γ-subsemigroup K is said to be full if E(S) ⊆ K where
E(S) is the set of all idempotent elements of S.

Definition 2.4. A partial Γ-subsemigroup K of S is said to be self conjugate if for
all a ∈ S, k ∈ K and a′ ∈ V βα (a), a′βkγa ∈ K whenever V δγ (k) 6= φ for some δ ∈ Γ.
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Definition 2.5. A partial Γ-subsemigroup K of S is said to be normal if it is
regular, full and self conjugate.

Definition 2.6. An equivalence relation ρ on S is said to be left partial congruence

if (a, b) ∈ ρ implies (cα
3
a, cα

3
b) ∈ ρ whenever V

β
3

α
3

(c) is nonempty. Note that every
left congruence is a left partial congruence.

Here we consider these left partial congruence which satisfy the following condi-
tion:
(a, b) ∈ ρ implies (aα1c, bα2c) ∈ ρ whenever each of the sets V

β1
α1

(a), V
β2
α2

(b) is
nonempty for αi, βi ∈ Γ, i = 1, 2. We call this left partial congruence as inverse
related partial congruence (ip - congruence).

Example 2.1. Let A = {1, 2, 3} and B = {4, 5}. S denotes the set of all mappings
from A to B. Here members of S will be described by the images of the elements
1, 2, 3. For example the map 1 → 4, 2 → 5, 3 → 4 will be written as (4, 5, 4)
and (5, 5, 4) denotes the map 1 → 5, 2 → 5, 3 → 4. A map from B to A will be
described in the same fashion. For example (1, 2) denotes 4 → 1, 5 → 2. Now

S =
{

(4, 4, 4), (4, 4, 5), (4, 5, 4), (4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)
}

and let

Γ = {(1, 1), (1, 2), (2, 3), (3, 1)}. Let f, g ∈ S and α ∈ Γ. We define fαg by

(fαg)(a) = fα
(
g(a)

)
for all a ∈ A. So fαg is a mapping from A to B and hence

fαg ∈ S and we can show that (fαg)βh = fα(gβh) for all f, g, h ∈ S and α, β ∈ Γ.
Hence S is a Γ - semigroup.

We can also show that it is right inverse. We now give a partition S =
⋃

1≤i≤5

Si

and let ρ be the equivalence relation yielded by the partition where each Si is given
by:
S1 = {(4, 4, 4)},
S2 = {(5, 5, 5)},
S3 = {(4, 5, 4), (5, 4, 5)},
S4 = {(4, 5, 5), (5, 4, 4)},
S5 = {(4, 4, 5), (5, 5, 4)}.
Here we see that (4, 5, 4)ρ(5, 4, 5) but (4, 5, 4)(3, 1)(4, 4, 4) = (4, 4, 4) and (5, 4, 5)
(3, 1)(4, 4, 4) = (5, 5, 5) i.e ρ is not a congruence.

Now for f ∈ S we observe the following cases:
(a) (4, 4, 4)αf = (4, 4, 4) for all α ∈ Γ,
(b) (5, 5, 5)αf = (5, 5, 5) for all α ∈ Γ,
(c) (4, 5, 4)(1, 2)f = f and (4, 5, 4)(2, 3)f = f ′,

(5, 4, 5)(2, 3)f = f and (5, 4, 5)(1, 2)f = f ′,
(d) (4, 4, 5)(2, 3)f = f and (4, 4, 5)(3, 1)f = f ′,

(5, 5, 4)(3, 1)f = f and (5, 5, 4)(2, 3)f = f ′,
(e) (4, 5, 5)(1, 2)f = f and (4, 5, 5)(3, 1)f = f ′,

(5, 4, 4)(3, 1)f = f and (5, 4, 4)(1, 2)f = f ′,
From the above cases we can easily verify that ρ is a ip - congruence on S.

Definition 2.7. An ip - congruence ξ on E(S) of S is said to be normal if for
any α-idempotent e and β-idempotent f, a ∈ S and a′ ∈ V δγ (a), (e, f) ∈ ξ implies
(a′δeαa, a′δfβa) ∈ ξ whenever a′δeαa, a′δfβa ∈ E(S).
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Let ρ be an ip - congruence on a regular Γ - semigroup S then we can define
a binary operation on S/ρ as (aρ)(bρ) = (aαb)ρ whenever V βα (a) exists for some
β ∈ Γ. This is well defined because if aρ = a′ρ and bρ = b′ρ then

(aρ)(bρ) = (aαb)ρ (Since V βα (a) 6= φ for some α, β ∈ Γ)
= (aαb′)ρ

= (a′α
1
b′)ρ(Since V

β
1

α
1

(a′) 6= φ for some α
1
, β

1
∈ Γ)

= (a′ρ)(b′ρ).

The operation is easily seen to be associative, and so S/ρ is a semigroup.

Definition 2.8. Let ρ be an ip - congruence on a regular Γ-semigroup S. Let
α ∈ Γ, then the subset {a ∈ S : aρ ∈ E(S/ρ)} of S is called kernel of ρ and it is
denoted by K.

Definition 2.9. Let ρ be an ip - congruence on a regular Γ-semigroup S. Then the
restriction of ρ to the subset E(S) is called the trace of ρ and it is denoted by trρ.

We now treat S as a right inverse Γ-semigroup throughout the paper.

Definition 2.10. A pair (ξ,K) consisting of a normal ip - congruence ξ on E(S)
and a normal partial Γ- subsemigroup K of S is said to be ip - congruence pair for
S if for all a, b ∈ S, a′ ∈ V βα (a) and e ∈ Eγ
(i) eγa ∈ K, (e, aαa′) ∈ ξ ⇒ a ∈ K
(ii) a ∈ K ⇒ (aαeγa′, eγaαa′) ∈ ξ

Given a pair (ξ,K) we define a relation ρ
(ξ,K)

on S by (a, b) ∈ ρ
(ξ,K)

if and only

if there exist a′ ∈ V βα (a) and b′ ∈ V δγ (b) such that aαb′ ∈ K, (a′βa, b′δb) ∈ ξ.

Theorem 2.1. Let S be a right inverse Γ-semigroup. Then for an ip - congruence
pair (ξ,K) and a µ-idempotent e, aαb ∈ K implies aαeµb ∈ K for all a, b ∈ S and
V βα (a) 6= φ for some β ∈ Γ.

Proof: Let aαb ∈ K. Since S is regular there exist γ, δ ∈ Γ such that V δγ (b) 6=
φ. Then by Corollary 1.1 , V βγ (aαb) 6= φ. Let b′ ∈ V δγ (b). Then bγb′ is a δ-
idempotent and since S is a right inverse Γ-semigroup (bγb′)δeµ(bγb′) = eµ(bγb′).
Now aαeµb = aαeµbγb′δb = aα(bγb′)δeµ(bγb′)δb = (aαb)γ(b′δeµb). Since S is right
inverse Γ-semigroup b′δeµb ∈ Eγ ⊆ K . Since K is a partial Γ-subsemigroup and
aαb ∈ K, (aαb)γ(b′δeµb) ∈ K. So aαeµb ∈ K.

Theorem 2.2. Let (ξ,K) be an ip - congruence pair for S and a, b ∈ S are such
that (a, b) ∈ ρ

(ξ,K)
, then there exist a′ ∈ V βα (a) and b′ ∈ V δγ (b) such that

(i) aαb′ ∈ K and (a′βa, b′δb) ∈ ξ
(ii) bγa′ ∈ K and so (b, a) ∈ ρ

(ξ,K)

(iii) (bγb′, aαa′βbγb′) ∈ ξ and (aαa′, bγb′δaαa′) ∈ ξ

Proof: (i) Let a, b ∈ S and (a, b) ∈ ρ
(ξ,K)

. Then (i) follows from definition of

ρ
(ξ,K)

. Now from (i) we have aαb′ ∈ K and (a′βa, b′δb) ∈ ξ. Let g ∈ RS(b′δb, a′βa),

then g is a γ-idempotent. So by Theorem 1.5 we have aαgγb′ ∈ V δβ (bγa′). Also

by Theorem 2.1 aαgγb′ ∈ K since aαb′ ∈ K and g ∈ Eγ . On the other hand

bγa′ ∈ V βδ (aαgγb′) and so bγa′ ∈ K, since K is a normal subsemigroup of S.
Therefore (b, a) ∈ ρ

(ξ,K)
since ξ is symmetric. Hence (ii) follows.

Again for g ∈ RS(b′δb, a′βa), g = gγb′δb = a′βaαg and (b′δb)γgγ(a′βa) = (b′δb)γ
(a′βa) by Theorem 1.4. Hence bγgγb′ ∈ Eδ. Now b′δb = (b′δb)γ(b′δb) ξ (b′δb)γ



6 SUMANTA CHATTOPADHYAY

(a′βa) = (b′δb)γgγ(a′βa) ξ (b′δb)γgγ(b′δb) and so by normality of ξ we have
bγ(b′δb)γb′ ξ bγ(b′δbγgγb′δb)γb′ i.e bγb′ ξ bγgγb′. Now aαgγb′ ∈ V δβ (bγa′) and
so we have
bγb′ ξ bγgγb′

= bγ(a′βaαg)γb′ (Since g ∈ RS(b′δb, a′βa))
= (bγa′)β(aαa′βa)αgγb′

= (bγa′)β(aαa′)β(aαgγb′) (Since aαa′ ∈ Eβ and bγa′ ∈ K)
ξ (aαa′)β(bγa′)β(aαgγb′) (by Definition 2.6 and aαgγb′ ∈ V δβ (bγa′))

= aαa′βbγgγb′

ξ (aαa′)β(bγb′).

Similarly interchanging the role of a and b we can get the second relation.

Theorem 2.3. Let (ξ,K) be an ip - congruence pair for S and a, b ∈ S are such that
a, b ∈ ρ

(ξ,K)
, then for all a∗ ∈ V βα (a) and b∗ ∈ V δγ (b), aαb∗ ∈ K and (a∗βa, b∗δb) ∈ ξ

Proof: Since (a, b) ∈ ρ
(ξ,K), there exist a′ ∈ V β1

α
1

(a) and b′ ∈ V δ1γ
1

(b) such that
all the three conditions of Theorem 2.2 are satisfied. Now
a′β1a = a′β1aαa

∗βa
= a′β

1
aαa∗βaα

1
a′β

1
a

ξ a′β
1
aα

1
a∗βaαa′β

1
a (Since ξ is an ip - congruence and V βα (a) and

V
β1
α1

(a) are nonempty.)
= (a′β

1
a)α

1
(a∗βa)α(a′β

1
a)

= (a∗βa)α(a′βa)

ξ a∗βaα
1
a′βa (Since ξ is an ip - congruence and V βα (a) and V

β1
α

1
(a)

are nonempty.)
= a∗βa.

Similarly we can show that (b′δ
1
b, b∗δb) ∈ ξ. Hence we have a∗βa ξ a′β

1
a ξ b′δ

1
b

ξ b∗δb. Hence (a∗βa, b∗δb) ∈ ξ. We now prove that aαb∗ ∈ K. To prove this we
proceed by five steps.
Step1: bγ1a

′ ∈ K.
Step2: b′δ1a ∈ K.
Step3: b∗δa ∈ K.
Step4: (bγb∗, aαa∗βbγb∗) ∈ ξ.
Step5: aαb∗ ∈ K.

Let g ∈ RS(b′δ1b, a
′β1a), then g is a γ1-idempotent and we have aα1gγ1b

′ ∈
V
δ
1

β
1

(bγ1a
′). Also since aα1b

′ ∈ K and g ∈ Eγ
1
, by Theorem 2.1 aα1gγ1b

′ ∈ K. On

the other hand bγ
1
a′ ∈ V β1

δ
1

(aα
1
gγ

1
b′). Since K is regular we have bγ

1
a′ ∈ K.

Let h ∈ RS(bγ1b
′, aα1a

′). Then a′β1hδ1b ∈ V
γ
1

α1
(b′δ1a) i.e, b′δ1a ∈ V

α
1

γ1
(a′β1h

δ
1
b). Now since bγ

1
a′ ∈ K and K is full self conjugate partial Γ-subsemigroup of

S, we have
(b′δ1b)γ1(a′β1a)α1(a′β1hδ1b) = b′δ1((bγ1a

′)β1h)δ1b ∈ K.
Now

hδ
1
(aα

1
a′) = (aα

1
a′)β

1
hδ

1
(aα

1
a′)

ξ (bγ
1
b′)δ

1
(aα

1
a′)β

1
hδ

1
(aα

1
a′)(By Theorem 2.2)

= (bγb′)δ
1
hδ

1
(aαa′) (Since S is right inverse)

= (bγb′)δ1(aαa′) (Since h ∈ RS(bγ1b
′, aα1a

′).
ξ aα1a

′ (By Theorem 2.2).

Again
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(a′β
1
hδ

1
b)γ

1
(b′δ

1
a) = a′β

1
hδ

1
a

ξ aα1a
′

ξ (b′δ1b)γ1(a′β1a) (By Theorem 2.2).

Now since S is a right inverse Γ-semigroup, it is right orthodox and hence (b′δ
1
b)γ

1

(a′β
1
a) is an α

1
-idempotent. Thus by Definition 2.10 a′β

1
hδ

1
b ∈ K and since K is

regular, b′δ
1
a ∈ K.

Now we have b′δ
1
a ∈ K. Hence we get b′δ

1
(bγb∗)δa ∈ K by Theorem 2.1.

Again b∗δa = b∗δbγb∗δa = b∗δ(bγ1b
′δ1b)γb

∗δa = (b∗δb)γ1(b′δbγb∗δa) ∈ K since

b∗δb ∈ Eγ ⊆ K, V
δ
1

γ1
(b) is nonempty and K is a partial Γ-subsemigroup.

We now prove step 4.

bγb∗ = (bγ
1
b′)δ

1
(bγb∗)

ξ (aα1a
′)β1(bγ1b

′)δ1(bγb∗)
= (aαa∗)β(aα1a

′)β1(bγ1b
′)δ1(bγb∗)

ξ (aαa∗)β(bγ
1
b′)δ

1
(bγb∗)

= (aαa∗)β(bγb∗).

Finally we show the last step. Now we have b∗δa ∈ K. Since a∗ ∈ V βα (a) and
b∗ ∈ V δγ (b), we have (a∗βb) ∈ V γα (b∗δa) and hence a∗βb ∈ K, since K is regular. Let

x ∈ RS(a∗βa, b∗δb). Then bγxαa∗ ∈ V βδ (aαb∗). Now ((aαa∗)β(bγb∗))δ(bγxαa∗) =
aαa∗βbγxαa∗ = aα((a∗βb)γx)αa∗ ∈ K, since a∗βb ∈ K,x ∈ E

α
⊆ K and hence

(a∗βb)γx ∈ K and also K is self conjugate. Again

xα(b∗δb) = (b∗δb)γxα(b∗δb) (Since S is right inverse)
ξ ((b∗δbγ(a∗βa))αxα(b∗δb) (Since (a∗βa, b∗δb) ∈ ξ
= (b∗δb)γ(a∗βa)α(b∗δb) (Since x ∈ RS(a∗βa, b∗δb).)
ξ ((b∗δb)γ(b∗δb)γ(b∗δb)(Since ξ is an ip - congruence and

(a∗βa, b∗δb) ∈ ξ)
= b∗δb.

Thus
bγxαb∗ = bγ(xα(b∗δb))γb∗

ξ bγ(b∗b)γb∗

= bγb∗.

Now
(bγxαa∗)β(aαb∗) = bγ(xα(a∗βa))αb∗

= bγxαb∗

ξ bγb∗

ξ (aαa∗)β(bγb∗).

Again since S is a right inverse Γ-semigroup, (aαa∗)β(bγb∗) is a δ-idempotent and
by Definition 2.10(i) bγxαa∗ ∈ K and hence aαb∗ ∈ K since K is regular. Hence
the Theorem.

Remark 2.1. From the previous Theorem, we can say that in the definition 3.11 of
ρ

(ξ,K)
and in the Theorem 2.2 ”there exist” can be substituted by ”for all”.

Theorem 2.4. Let (ξ,K) be an ip - congruence pair for S and a, b, c ∈ S and let
a′ ∈ V β1

α
1

(a), b′ ∈ V β2
α

2
(b), c′ ∈ V β3

α
3

(c), g ∈ RS(c′β
3
c, aα

1
a′), h ∈ RS(c′β

3
c, bα

2
b′).

Then (a′β1a, b
′β2b) ∈ ξ, aα1b

′ ∈ K implies (a′β1gα3a, b
′β2hα3b) ∈ ξ.

Proof: Let (ξ,K) be an ip - congruence pair for S and a, b ∈ S are such that
for some a′ ∈ V β1

α
1

(a), b′ ∈ V β2
α

2
(b), (a′β1a, b

′β2b) ∈ ξ and aα1b
′ ∈ K. Given c ∈ S
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and c′ ∈ V β3
α

3
(c), let g ∈ RS(c′β

3
c, aα

1
a′) and h ∈ RS(c′β

3
c, bα

2
b′). Then g and

h are α3 -idempotents. Choose an arbitrary element x ∈ RS(a′β1a, b
′β2b). Then

bα
2
xα

1
a′ ∈ V β1

β2
(aα

1
b′). So aα

1
b′β

2
bα

2
xα

1
a′ ∈ Eβ1

. Also let t ∈ RS(g, aα
1
b′β

2
bα

2

xα1a
′) then t ∈ Eα

3
and t = tα3g and hence bα2xα1a

′β1tα3g ∈ V
α

3

β
2

(gα3aα1b
′) and

bα2xα1a
′β1tα3aα1b

′ = (bα2xα1a
′)β1(tα3g)α3aα1b

′ = (bα2xα1a
′β1tα3g)α3(gα3aα1

b′) ∈ Eβ
2
. On the other hand bα2xα1a

′ ∈ K, since it is an (β2 , β1)-inverse of

aα1b
′ which belongs to K. Now since (ξ,K) is an ip - congruence pair for S, by

definition we have ((bα
2
xα

1
a′)β

1
tα

3
(aα

1
b′) , tα

3
bα

2
xα

1
a′β

1
aα

1
b′) ∈ ξ. Again since

xα
1
(a′β

1
a) = x we get

(2.1) (bα
2
xα

1
a′β

1
tα

3
aα

1
b′, tα

3
bα

2
xα

1
b′) ∈ ξ

for all x ∈ RS(a′β1a, b
′β2b)

Now since ξ is an ip - congruence and (a′β
1
a, b′β

2
b) ∈ ξ, we have b′β

2
bα

2
xα

1
b′β

2
b

ξ a′β
1
aα

1
xα

1
b′β

2
b = a′β

1
aα

1
b′β

2
b ξ b′β

2
bα

2
b′β

2
b = b′β

2
b. Again and hence

(bα
2
xα

1
b′)β

2
(bα

2
xα

1
b′) = bα

2
xα

1
(b′β

2
bα

2
x)α

1
b′ = bα

2
xα

1
b′ and hence bα

2
xα

1
b′ ∈

Eβ
2
. Hence ξ is normal, we have (bα2(b′β2bα2xα1b

′β2b)α2b
′, bα2(b′β2b)α2b

′) ∈ ξ
which implies
(2.2) (bα

2
xα

1
b′, bα

2
b′) ∈ ξ

Similarly we can show that
(2.3) (aα1xα1a

′, aα1a
′) ∈ ξ

Using (2.1)and(2.2) we get
(2.4) (bα2xα1a

′β1tα3aα1b
′, tα3bα1b

′) ∈ ξ

Since aα
1
a′β

1
t = aα

1
a′β

1
((aα

1
b′β

2
bα

2
xα

1
a′)β

1
t) = aα

1
b′β

2
bα

2
xα

1
a′β

1
t = t, we

have a′β
1
tα

3
a ∈ Eα1

. Since (b′β
2
b, a′β

1
a) ∈ ξ, we have

b′β2bα2xα1a
′β1tα3aα1b

′β2b ξ a′β1aα1xα1a
′β1tα3aα1a

′β1a
= a′β1aα1xα1a

′β1tα3a
= a′β

1
aα

1
(xα

1
a′β

1
a)α

1
a′β

1
tα

3
a

ξ a′β
1
aα

1
xα

1
(b′β

2
b)α

2
a′β

1
tα

3
a (Since ξ is an

= ip - congruence)
= a′β1aα1b

′β2bα2a
′β1tα3a (Since x ∈

RS(a′β
!
a, b′β2b))

ξ a′β
1
aα

1
a′β

1
aα

1
a′β

1
tα

3
a

= a′β
1
tα

3
a.

Hence

(2.5) (b′β
2
bα

2
xα

1
a′β

1
tα

3
aα

1
b′β

2
b, a′β

1
tα

3
a) ∈ ξ

Next since g ∈ RS(c′β
3
c, aα

1
a′), aα

1
a′β

1
g = g and hence we have a′β

1
gα

3
a ∈ Eα

1
.

Now since x ∈ RS(a′β
1
a, b′β

2
b), aα

1
b′β

2
bα

2
xα

1
a′ = aα

1
xα

1
a′ ∈ Eβ

1
and hence t ∈

RS(g, aα
1
xα

1
a′). Thus we have gα

3
tα

3
aα

1
xα

1
a′ = gα

3
aα

1
xα

1
a′. Now by (2.3) we

have ((gα
3
t)α

3
aα

1
xα

1
a′, (gα

3
t)α

3
aα

1
a′) ∈ ξ i.e, (gα

3
aα

1
xα

1
a′, gα

3
tα

3
aα

1
a′) ∈ ξ

since t ∈ RS(gaα
1
xα

1
a′) and again using (2.3)we have gα

3
aα

1
a′ ξ gα

3
aα

1
xα

1
a′ ξ
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gα
3
tα

3
aα

1
a′ i.e, we get (gα

3
aα

1
a′, gα

3
tα

3
aα

1
a′) ∈ ξ. Now since S is a right inverse

Γ-semigroup tα3gα3t = gα3t and hence we have gα3tα3aα1a
′ = tα3gα3tα3aα1a

′ =
tα3aα1a

′ since tα3g = t. Thus (gα3aα1a
′, tα3aα1a

′) ∈ ξ by transitivity of ξ. Now
since ξ is normal, we have (a′β

1
(gα

3
aα

1
a′)β

1
a , a′β

1
(tα

3
aα

1
a′)β

1
a) ∈ ξ. i.e,

(2.6) (a′β1gα3a, a
′β1tα3a) ∈ ξ

Again since S is a right inverse Γ-semigroup and the fact that t ∈ RS(g, aα1xα1a
′)

and g ∈ RS(c′β
3
c, aα

1
a′) we see that

tα3bα2b
′ = bα2b

′β2tα3bα2b
′ (Since S is right inverse Γ-semigroup)

= bα
2
b′β

2
(tα

3
g)α

3
(bα

2
b′)

= bα
2
b′β

2
(tα

3
gα

3
c′β

3
c)α

3
bα

2
b′.

Now since (a′β
1
a, b′β

2
b) ∈ ξ and aα

1
b′ ∈ K, proceeding the same way of Theorem

2.2 we have (bα
2
b′, aα

1
a′β

1
bα

2
b′) ∈ ξ. Now

tα
3
bα

2
b′ = bα

2
b′β

2
tα

3
gα

3
c′β

3
cα

3
bα

2
b′

ξ bα
2
b′β

2
tα

3
gα

3
c′β

3
cα

3
(aα

1
a′β

1
bα

2
b′) (Since

(bα
2
b′, aα

1
a′β

1
bα

2
b′) ∈ ξ)

= bα2b
′β2(gα3tα3g)α3c

′β3cα3aα1a
′β1bα2b

′ (since S is right inverse)
= bα2b

′β2gα3tα3(aα1a
′β1g)α3c

′β3cα3aα1a
′β1bα2b

′ (Since g ∈
RS(c′β

3
c, aα

1
a′))

ξ bα
2
b′β

2
gα

3
tα

3
(aα

1
xα

1
a′)β

1
gα

3
c′β

3
cα

3
aα

1
a′β

1
bα

2
b′ (by (2.3))

= bα
2
b′β

2
(gα

3
(aα

1
xα

1
a′)β

1
g)α

3
c′β

3
cα

3
aα

1
a′β

1
bα

2
b′ (since t ∈

RS(g, aα
1
xα

1
a′))

ξ bα2b
′β2(gα3(aα1a

′)β1g)α3c
′β3cα3aα1a

′β1bα2b
′ ( By (2.3) )

= bα2b
′β2gα3c

′β3cα3aα1a
′β1bα2b

′ (Since (aα1a
′)β1g = g)

= bα
2
b′β

2
(c′β

3
cα

3
gα

3
c′β

3
c)α

3
aα

1
a′β

1
bα

2
b′ (since S is right

inverse)
= bα

2
b′β

2
c′β

3
cα

3
gα

3
(aα

1
a′β

1
c′β

3
cα

3
aα

1
a′)β

1
bα

2
b′ (Since S is right

inverse)
= bα2b

′β2(c′β3cα3aα1a
′)β1c

′β3cα3aα1a
′β1bα2b

′(since g ∈
RS(c′β

3
c, aα

1
a′))

= bα2b
′β2aα1a

′β1c
′β3cα3aα1a

′β1bα2b
′(since S is right inverse)

= bα
2
b′β

2
c′β

3
cα

3
aα

1
a′β

1
bα

2
b

= bα
2
b′β

2
(c′β

3
cα

3
aα

1
a′)β

1
bα

2
b′

= c′β
3
cα

3
aα

1
a′β

1
bα

2
b′ (Since S is right inverse and hence right orthodox)

ξ c′β3cα3bα2b
′

= c′β3α3hα3bα2b
′(since h ∈ RS(c′β3c, bα2b

′)
= hα

3
c′β

3
cα

3
hα

3
bα

2
b′ (since S is right inverse)

= hα
3
bα

2
b′ (Since h ∈ RS(c′β

3
c, bα

2
b′))

Hence we have

(2.7) (tα
3
bα

2
b′, hα

3
bα

2
b′) ∈ ξ

Finally from (2.4) and (2.7) we have (bα
2
xα

1
a′β

1
tα

3
aα

1
b′, hα

3
bα

2
b′) ∈ ξ and by

normality of ξ we have (b′β
2
bα

2
xα

1
a′β

1
tα

3
aα

1
b′β

2
b, b′β

2
hα

3
bα

2
b′β

2
b) ∈ ξ i.e,

(b′β
2
bα

2
xα

1
a′β

1
tα

3
aα

1
b′β

2
b, b′β

2
hα

3
b) ∈ ξ. It is to be noted that both the elements

belong to Eα
2
. Also by normality of ξ together with (2.5) and (2.6) we have

(a′β1gα3a, b
′β2hα3b) ∈ ξ. Hence the proof.
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Theorem 2.5. If (ξ,K) is an ip - congruence pair for S,then ρ
(ξ,K)

is an ip -
congruence with trace ξ and kernel K. Conversely if ρ is an ip - congruence on S
then (trρ,Kerρ)is an ip - congruence pair and ρ = ρ

(trρ,Kerρ)
.

Proof. Let (ξ,K) be an ip - congruence pair for S and ρ
(ξ,K)

and let ρ = ρ
(ξ,K)

.

Since E(S) ⊆ K and ξ is reflexive, ρ is also reflexive. Again from Theorem 2.2 and
Remark 2.1, we see that ρ is symmetric. We now show that ρ is transitive. For this
let us suppose that (a, b) ∈ ρ and (b, c) ∈ ρ and let a′ ∈ V β1

α1
(a), b′ ∈ V β2

α2
(b), c′ ∈

V β3
α3

(c). Then we have (a′β1a, b
′β2b) ∈ ξ, (b′β2b, c

′β3c) ∈ ξ, aα1b
′ ∈ K, bα2c

′ ∈ K.

Since ξ is transitive we have (a′β
1
a, c′β

3
c) ∈ ξ. We now show that aα

1
c′ ∈ K. Now

by Theorem 2.2, bα2a
′ ∈ K and cα3b

′ ∈ K. Hence cα3b
′β2bα2a

′ ∈ K, Since K is a
Γ-subsemigroup. Let g ∈ RS(c′β3c, b

′β2b) and h ∈ RS(c′β3c, a
′β1a). By Theorem

2.1 and since g = gα
3
c′β

3
c ∈ Eα

3
, we have,

(2.8) (cα
3
b′β

2
b)α

2
(gα

3
c′β

3
c)α

3
a′ ∈ K

Again since bα
2
gα

3
c′ ∈ V β3

β
2

(cα
3
b′), cα

3
b′β

2
bα

2
gα

3
c′ ∈ Eβ

3
. Now c′β

3
c = c′β

3
cα

3

c′β
3
c ξ c′β

3
cα

3
b′β

2
b = c′β

3
cα

3
gα

3
b′β

2
b ξ c′β

3
cα

3
gα

3
c′β

3
c = c′β

3
cα

3
g, since (b′β

2
b,

c′β
3
c) ∈ ξ and g ∈ RS(c′β

3
c, b′β

2
b). Also since cα

3
gα

3
c′ ∈ Eβ3

and ξ is normal, it

follows that (cα
3
(c′β

3
c)α

3
c, cα

3
(c′β

3
cα

3
g)α

3
c′) ∈ ξ i.e,(cα

3
c′, cα

3
gα

3
c′) ∈ ξ. Simi-

larly since (c′β
3
c, a′β

1
a) ∈ ξ and cα

3
hα

3
c′ ∈ Eβ3

we have (cα
3
c, cα

3
hα

3
c′) ∈ ξ. By

transitivity of ξ , (cα
3
gα

3
c′, cα

3
hα

3
c′) ∈ ξ. Again cα

3
(b′β

2
bα

2
g)α

3
c′ = cα

3
gα

3
c′ ξ

cα3hα3c
′ = cα3(a′β1aα1h)α3c

′. i.e,

(cα3b
′β2bα2gα3c

′, cα3a
′β1aα1hα3c

′) ∈ ξ. Again since bα2gα3c
′ ∈ V β3

β
2

(cα3b
′), cα3b

′

β
2
bα

2
gα

3
c′ ∈ Eβ

3
and since aα

1
hα

3
c′ ∈ V β3

β
1

(cα
3
a′), from (2.8) and Definition 2.10

we can say that cα
3
a′ ∈ K and by Theorem 2.2 we have aα

1
c′ ∈ K. Hence ρ is

transitive. Hence ρ is an equivalence relation.
We now prove that ρ is an ip - congruence. Let us suppose that (a, b) ∈ ρ. Then

for all a′ ∈ V β1
α

1
(a), b′ ∈ V β2

α
2

(b), (a′β
1
a, b′β

2
b) ∈ ξ and aα

1
b′ ∈ K. Let c ∈ S and

c′ ∈ V β3
α

3
(c). We now prove that (cα

3
a, cα

3
b) ∈ ρ. Let g ∈ RS(c′β

3
c, aα

1
a′) and h ∈

RS(c′β
3
c, bα

2
b′). Then a′β

1
gα

3
c′ ∈ V β3

α
1

(cα
3
a) and b′β

2
hα

3
c′ ∈ V β3

α
2

(cα
3
b) and by

Theorem 2.4 we have a′β
1
gα

3
c′β

3
cα

3
a = a′β

1
gα

3
a ξ b′β

2
hα

3
b = b′β

2
hα

3
c′β

3
cα

3
b.

Also (cα
3
a)α

1
(b′β

2
hα

3
c′) = cα

3
(aα

1
b′)β

2
hα

3
c′ ∈ K since aα

1
b′ ∈ K and h ∈ Eα3

and K is self conjugate. Hence by definition of ρ we have (cα
3
a, cα

3
b) ∈ ρ.

Next we prove that (aα1c, bβ1c) ∈ ρ. For this let g ∈ RS(a′β1a, cα3c
′) and

h ∈ RS(b′β2b, cα3c
′). Then c′β3gα1a

′ ∈ V
β
1

α3
(aα1c) and c′β3hα2b

′ ∈ V
β
2

α3
(bα2c).

Now
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gα
1
cα

3
c′ = gα

1
a′β

1
aα

1
cα

3
c′ (Since g ∈ RS(a′β

1
a, cα

3
c′))

ξ gα1b
′β2bα2cα3c

′

= gα1b
′β2bα2hα2cα3c

′ (Since h ∈ RS(b′β2b, cα3c
′))

ξ gα
1
(a′β

1
a)α

1
hα

2
cα

3
c′ (Since ξ is an ip - congruence and

(a′β
1
a, b′β

2
b) ∈ ξ)

= (a′β
1
aα

1
gα

1
a′β

1
a)α

1
hα

2
cα

3
c′ (Since S is right inverse)

= a′β
1
aα

1
gα

1
a′β

1
aα

1
(cα

3
c′β

3
h)α

2
cα

3
c′(Since h ∈
RS(b′β2b, cα3c

′))
= a′β1aα1gα1(a′β1aα1cα3c

′)β3hα2cα3c
′

= a′β
1
aα

1
gα

1
(cα

3
c′β

3
a′β

1
aα

1
cα

3
c′)β

3
hα

2
cα

3
c′(Since S is

right inverse)
= a′β

1
aα

1
gα

1
cα

3
c′β

3
a′β

1
aα

1
hα

2
cα

3
c′(Since h ∈ RS(b′β

2
b, cα

3
c′))

= (a′β1aα1cα3c
′β3a

′β1a)α1hα2cα3c
′(Since g ∈ RS(a′β1a, cα3c

′))
= cα

3
c′β

3
(a′β

1
aα

1
h)α

2
cα

3
c′(Since S is right inverse)

= a′β
1
aα

1
hα

2
cα

3
c′(Since S is right inverse and

hence right orthodox)
ξ b′β2bα2hα2cα3c

′

= b′β2bα2hα2b
′β2bα2cα3c

′(Since h ∈ RS(b′β2b, cα3c
′))

ξ hα
2
b′β

2
bα

2
cα

3
c′(Since S is right inverse)

= hα
2
cα

3
c′.

Hence

(2.9) (gα
1
cα

3
c′, hα

2
cα

3
c′) ∈ ξ

Now since g ∈ RS(a′β
1
a, cα

3
c′) and h ∈ RS(b′β

2
b, cα

3
c′), c′β

3
hα

2
c ∈ Eα3

and

c′β
3
gα

1
c ∈ Eα3

. Again by normality of ξ and by (2.9) we have (c′β
3
(gα

1
cα

3
c′)β

3
c,

c′β
3
(hα

2
cα

3
c′)β

3
c) ∈ ξ. i.e, (c′β

3
gα

1
c, c′β

3
hα

3
c) ∈ ξ. Thus (c′β

3
gα

1
a′)β

1
(aα

1
c) ξ

(c′β3hα2b
′)β2(bα2c). Finally (aα1c)α3(c′β3hα2b

′) = aα1(cα3c
′β3h)α2b

′ ∈ K since
aα1b

′ ∈ K. Hence (aα1c, bα2c) ∈ ρ by definition of ρ.
Let us now show that trρ = ξ. Let us suppose that e be an α-idempotent and f be
a β-idempotent are such that (e, f) ∈ ρ. Then by definition of ρ we have (e, f) ∈ ξ,
since e ∈ V αα (e) and f ∈ V ββ (f). Hence trρ ⊆ ξ. Conversely let e ∈ Eα and f ∈ Eβ
and (e, f) ∈ ξ. We now show that (e, f) ∈ ρ. Since S is right inverse Γ-semigroup,

eαf ∈ Eβ ⊆ K. Again considering e ∈ V αα (e) and f ∈ V ββ (f) we can say that

(e, f) ∈ ρ. Hence ξ = trρ.
Let us now show that K = kerρ. For that let a ∈ Kerρ. Then there exists an
α-idempotent e ∈ S such that (a, e) ∈ ρ and hence (a′δa, e) ∈ ξ for all a′ ∈ V δγ (a)
and aγe ∈ K. Then by Theorem 2.2 and Remark 2.1 eαa′ ∈ K and so by definition
of (ξ,K) we have a′ ∈ K and hence from regularity of K, a ∈ K.
Conversely suppose that a ∈ K. Let a′ ∈ V βα (a) then (a′βa, a′βaαa′βa) ∈ ξ and
aαa′βa ∈ K i.e, (a, a′βa) ∈ ρ by definition of ρ. Thus a ∈ Kerρ. Hence K = Kerρ.

We now prove the converse part of the Theorem. Let us suppose that ρ is a
ip - congruence on S. We show that (trρ,Kerρ) is an ip - congruence pair and
ρ = ρ

(trρ,Kerρ)
. Let a, b ∈ kerρ and let V βα (a) 6= φ. Hence aρ = eρ and bρ = fρ for

some γ-idempotent e and δ-idempotent f . Now aρe implies aαb ρ eγb ρ eγf . Since
S is a right inverse Γ-semigroup eγf ∈ Eδ and hence aαb ∈ Kerρ. Thus Kerρ is
a partial Γ-subsemigroup of S. Clearly Kerρ contains E(S). Let a ∈ Kerρ and
a′ ∈ V βα (a). We show that a′ ∈ Kerρ. Since a ∈ Kerρ, aρ = eρ for some e ∈ Eγ .
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Now a′ = a′βaαa′ ρ a′βeγa′ = a′βeγeγa′ ρ a′βaαeγa′ ρ a′βaαaαa′. Since (a′βa)α
(aαa′) ∈ Eβ , a

′ ∈ Kerρ. Thus Kerρ is regular. Next let a ∈ S and a′ ∈
V βα (a) and k ∈ Kerρ where V δγ (k) 6= φ. Since k ∈ Kerρ, kρ = eρ for some µ-
idempotent e. Now since S is a right inverse Γ-semigroup, (a′βeµa)α(a′βeµa) =
a′β(eµaαa′βe)µa = a′β(aαa′βe)µa = a′βeµa i.e,a′βeµa ∈ Eα.
Now a′βkγa ρ a′βeµa and hence a′βkγa ∈ Kerρ i.e, Kerρ is self conjugate. Thus
Kerρ is a normal partial Γ-subsemigroup of S. We now prove that (trρ,Kerρ) is
an ip - congruence pair for S. Since ρ is a ip - congruence and for a′ ∈ V βα (a)
and e ∈ Eγ , a

′βeγa ∈ Eα, trρ is a normal ip - congruence. Now let a ∈ S and
a′ ∈ V βα (a) and e ∈ Eγ be such that eγa ∈ kerρ and (e, aαa′) ∈ trρ. Now a ρ
(aαa′)βa ρ eγa ρ f for some f ∈ E(S) since eγa ∈ Kerρ. Hence condition (i)
of Definition 2.10 is satisfied. Next let a ∈ Kerρ and e ∈ Eγ and let a′ ∈ V βα (a)
. Now since a ∈ Kerρ, aρ = fρ for some δ-idempotent f and a′ρ = gρ for some
µ-idempotent g.
Now aαeγa′ = aαeγa′βaαa′ ρ fδeγgµfδg ρ fδeγfδg ρ eγfδg ρ eγaαa′. Now
since aαeγa′, eγaαa′ ∈ Eβ ,we have (aαeγa′, eγaαa′) ∈ trρ. Thus condition (ii) of
definition 2.10 is also satisfied. Finally we show that ρ = ρ

(trρ,Kerρ)
i.e, we prove

(a, b) ∈ ρ if and only if for all a′ ∈ V β1
α

1
(a) and for all b′ ∈ V β2

α
2

(b), aα
1
b′ ∈ Kerρ

and (a′β
1
a, b′β

2
b) ∈ trρ . Suppose (a, b) ∈ ρ and a′ ∈ V β1

α
1

(a), b′ ∈ V β2
α

2
(b). Now

aα
1
b′ ρ bα

2
b′ since ρ is an ip - congruence. Again since bα

2
b′ is a β

2
-idempotent

we can say that aα
1
b′ ∈ Kerρ. Now a′β

1
a ρ a′β

1
b = a′β

1
bα

2
b′β

2
b ρ a′β

1
aα

1
b′β

2
b ρ

(a′β
1
a)α

1
(b′β

2
a) = (a′β

1
a)α

1
b′β

2
aα

1
a′β

1
a ρ (a′β

1
a)α

1
(b′β

2
b)α

2
(a′β

1
a) = (b′β

2
b)α

2

(a′β1a) = b′β2bα2(a′β1a) ρ b′β2(aα1a
′β1a) = b′β2a ρ b

′β2b. Now since a′β1a and
b′β2b are α1-idempotent and α2-idempotent respectively, we have (a′β1a, b

′β2b) ∈
trρ. Hence ρ ⊆ ρ

(trρ,Kerρ)
.

Conversely let (a, b) ∈ S such that for all a′ ∈ V β1
α

1
(a), b′ ∈ V β2

α
2

(b), (a′β
1
a, b′β

2
b) ∈

trρ and aα1b
′ ∈ Kerρ.

Now
(aα1b

′)β2(bα2a
′)β1(aα1b

′) = aα1(b′β2b)α2(a′β1a)α1(b′β2b)α2b
′

= aα1(a′β1a)α1(b′β2b)α2b
′

= aα
1
b′

and
(bα

2
a′)β

1
(aα

1
b′)β

2
(bα

2
a′) = bα

2
(a′β

1
a)α

1
(b′β

2
b)α

2
(a′β

1
a)α

1
a′

= bα
2
(b′β

2
b)α

2
(a′β

1
a)α

1
a′

= bα
2
a′

Hence aα
1
b′ ∈ V

β
2

β1
(bα

2
a′). Again since aα

1
b′ ∈ Kerρ, bα

2
a′ ∈ Kerρ and let

(aα
1
b′) ρ e and (bα

2
a′) ρ f for γ-idempotent e and δ-idempotent f . Now a =

aα
1
(a′β

1
a)α

1
(a′β

1
a) ρ aα

1
(b′β

2
b)α

2
(a′β

1
a) ρ (aα

1
b′)β

2
(bα

2
a′)β

1
a ρ eγfδa = fδeγf

δa ρ (bα2a
′)β1(aα1b

′)β2(bα2a
′)β1a = bα2(a′β1a)α1(b′β2b)α2(a′β1a) = bα2(b′β2b)α2

(a′β1a) ρ bα2(b′β2b)α2(b′β2b = b. i.e, (a, b) ∈ ρ. Hence the proof.
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