ON RIGHT INVERSE Γ-SEMIGROUP

SUMANTA CHATTOPADHYAY

Abstract

Let $S=\{a, b, c, \ldots\}$ and $\Gamma=\{\alpha, \beta, \gamma, \ldots\}$ be two nonempty sets. S is called a Γ-semigroup if $a \alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and $(a \alpha b) \beta c=a \alpha(b \beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$. An element $e \in S$ is said to be α-idempotent for some $\alpha \in \Gamma$ if e $\alpha e=e$. A Γ - semigroup S is called regular Γ-semigroup if each element of S is regular i.e, for each $a \in S$ there exists an element $x \in S$ and there exist $\alpha, \beta \in \Gamma$ such that $a=a \alpha x \beta a$. A regular Γ-semigroup S is called a right inverse Γ-semigroup if for any α idempotent e and β-idempotent f of $S, e \alpha f \beta e=f \beta e$. In this paper we introduce ip - congruence on regular Γ-semigroup and ip - congruence pair on right inverse Γ-semigroup and investigate some results relating this pair.

1. Introduction

Let $S=\{a, b, c, \ldots\}$ and $\Gamma=\{\alpha, \beta, \gamma, \ldots\}$ be two nonempty sets. S is called a Γ-semigroup if
(i) $a \alpha b \in S$, for all $\alpha \in \Gamma$ and $a, b \in S$ and
(ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$, for all $a, b, c \in S$ and for all $\alpha, \beta \in \Gamma$.

A semigroup can be considered to be a Γ-semigroup in the following sense. Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of S. Let us extend the binary operation defined on S to $S \cup\{1\}$ by defining $11=1$ and $1 a=a 1$ for all $a \in S$. It can be shown that $S \cup\{1\}$ is a semigroup with identity element 1. Let $\Gamma=\{1\}$. If we take $a b=a 1 b$, it can be shown that the semigroup S is a Γ-semigroup where $\Gamma=\{1\}$.

In [8] we introduced right inverse Γ-semigroup. In [2] Gomes introduced the notion of congruence pair on inverse semigroup and studied some of its properties. In this paper we introduce the notion of ip - congruence on regular Γ-semigroup, ip - congruence pair on right inverse Γ-semigroup and studied some of its properties. We now recall some definition and results.

[^0]Definition 1.1. Let S be a Γ-semigroup. An element $a \in S$ is said to be regular if $a \in a \Gamma S \Gamma a$ where $a \Gamma S \Gamma a=\{a \alpha b \beta a: b \in S, \alpha, \beta \in \Gamma\} . S$ is said to be regular if every element of S is regular.
Example 1.1. [8] Let M be the set of all 3×2 matrices and Γ be the set of all 2×3 matrices over a field. Then M is a regular Γ semigroup.
Example 1.2. Let S be a set of all negative rational numbers. Obviously S is not a semigroup under usual product of rational numbers. Let $\Gamma=\left\{-\frac{1}{p}: p\right.$ is prime \}. Let $a, b, c \in S$ and $\alpha \in \Gamma$. Now if $a \alpha b$ is equal to the usual product of rational numbers a, α, b, then $a \alpha b \in S$ and $(a \alpha b) \beta c=a \alpha(b \beta c)$. Hence S is a Γ-semigroup. Let $a=\frac{m}{n} \in S$ where $m>0$ and $n<0$. Suppose $m=p_{1} p_{2} \ldots \ldots \ldots . p_{k}$ where p_{i} 's are prime. Now $\frac{p_{1} p_{2} \ldots \ldots \ldots p_{k}}{n}\left(-\frac{1}{p_{1}}\right) \frac{n}{p_{2} \ldots \ldots \ldots p_{k-1}}\left(-\frac{1}{p_{k}}\right) \frac{m}{n}=\frac{p_{1} p_{2} \ldots \ldots \ldots . p_{k}}{n}$. Thus taking $b=\frac{n}{p_{2} \ldots \ldots \ldots p_{k-1}}, \alpha=\left(-\frac{1}{p_{1}}\right)$ and $\beta=\left(-\frac{1}{p_{k}}\right)$ we can say that a is regular. Hence S is a regular Γ-semigroup.

Definition 1.2. Let S be a Γ-semigroup and $\alpha \in \Gamma$. Then $e \in S$ is said to be an α-idempotent if eae $=e$. The set of all α-idempotents is denoted by E_{α} and we denote $\bigcup_{\alpha \in \Gamma} E_{\alpha}$ by $E(S)$. The elements of $E(S)$ are called idempotent element of S.
Definition 1.3. Let S be a Γ-semigroup and $a, b \in S, \alpha, \beta \in \Gamma$. b is said to be an (α, β)-inverse of a if $a=a \alpha b \beta a$ and $b=b \beta a \alpha b$. This is denoted by $b \in V_{\alpha}^{\beta}(a)$.
Theorem 1.1. Let S be a regular Γ-semigroup and $a \in S$. Then $V_{\alpha}^{\beta}(a)$ is nonempty for some $\alpha, \beta \in \Gamma$.

Proof: Since S is regular there exist $b \in S$ and $\alpha, \beta \in \Gamma$ such that $a=a \alpha b \beta a$. Now we consider the element $b \beta a \alpha b . a \alpha(b \beta a \alpha b) \beta a=(a \alpha b \beta a) \alpha b \beta a=a \alpha b \beta a=a$ and $(b \beta a \alpha b) \beta a \alpha(b \beta a \alpha b)=b \beta(a \alpha b) \beta a) \alpha b \beta a \alpha b=b \beta a \alpha b \beta a \alpha b=b \beta a \alpha b$. Hence $b \beta a \alpha b \in V_{\alpha}^{\beta}(a)$.

Definition 1.4. Let S be a Γ-semigroup. An equivalence relation ρ on S is said to be a right (left) congruence on S if $(a, b) \in \rho$ implies $(a \alpha c, b \alpha c) \in \rho,((c \alpha a, c \alpha b) \in \rho)$ for all $a, b, c \in S$ and for all $\alpha \in \Gamma$. An equivalence relation which is both left and right congruence on S is called congruence on S.

Definition 1.5. A regular Γ-semigroup S is called a right orthodox Γ-semigroup if for any α-idempotent e and β-idempotent f of S, e αf is a β-idempotent.

Definition 1.6. A regular Γ-semigroup M is a right orthodox Γ-semigroup if and only if for $a, b \in S, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \Gamma, a^{\prime} \in V_{\alpha_{1}}^{\alpha_{2}}(a)$ and $b^{\prime} \in V_{\beta_{1}}^{\beta_{2}}(b)$, we have $b^{\prime} \beta_{2} a^{\prime} \in V_{\beta_{1}}^{\alpha_{2}}\left(a \alpha_{1} b\right)$.

Definition 1.7. A regular Γ-semigroup S is called a right inverse Γ-semigroup if for any α-idempotent e and β-idempotent f of S, e $\alpha f \beta e=f \beta e$.

Theorem 1.2. Every right inverse Γ-semigroup is a right orthodox Γ-semigroup.
Theorem 1.3. Let S be a regular Γ-semigroup and E_{α} be the set of all α idempotents in S. Let $e \in E_{\alpha}$ and $f \in E_{\beta}$. Then

$$
R S(e, f)=\left\{g \in V_{\beta}^{\alpha}(e \alpha f) \cap E_{\alpha}: g \alpha e=f \beta g=g\right\}
$$

is non-empty.

Proof: Since S is regular, there exist $b \in S$ and $\gamma, \delta \in \Gamma$ such that $e \alpha f \gamma b \delta e \alpha f=$ $e \alpha f$ and $b \delta e \alpha f \gamma b=b$. Now $(e \alpha f) \beta(f \gamma b \delta e) \alpha(e \alpha f)=e \alpha f \gamma b \delta e \alpha f=e \alpha f$ and $(f \gamma b \delta e) \alpha(e \alpha f) \beta(f \gamma b \delta e)=f \gamma b \delta e \alpha f \gamma b \delta e=f \gamma b \delta e$. Hence $f \gamma b \delta e \in V_{\beta}^{\alpha}(e \alpha f)$. Thus $V_{\beta}^{\alpha}(e \alpha f) \neq \phi$. Now let $x \in V_{\beta}^{\alpha}(e \alpha f)$ and setting $g=f \beta x \alpha e$ we have $g \alpha g=$ $(f \beta x \alpha e) \alpha(f \beta x \alpha e)=f \beta(x \alpha e) \alpha f \beta x) \alpha e=f \beta x \alpha e=g$. Thus $g \in E_{\alpha}$.

Again gגe $\alpha f \beta=f \beta x \alpha e \alpha e \alpha f \beta f \beta x \alpha e=f \beta x \alpha e \alpha f \beta x \alpha e=f \beta x \alpha e=g$ and $e \alpha f \beta g \alpha e \alpha f=e \alpha f \beta f \beta x \alpha e \alpha e \alpha f=e \alpha f \beta x \alpha e \alpha f=e \alpha f$ implies that $g \in V_{\beta}^{\alpha}(e \alpha f)$. Hence $g \alpha e=f \beta x \alpha e \alpha e=f \beta x \alpha e=g$ and $f \beta g=f \beta f \beta x \alpha e=f \beta x \alpha e=g$. Therefore $R S(e, f) \neq \emptyset$.

Definition 1.8. Let S be a regular Γ - semigroup and e and f be α and β - idempotents respectively. Then the set $R S(e, f)$ described in the above Theorem is called the right sandwich set of e and f.

Theorem 1.4. Let S be a regular Γ-semigroup and e and f be α and β-idempotents respectively. Then the set $R S(e, f)=\left\{g \in V_{\beta}^{\alpha}(e \alpha f): g \alpha e=g=f \beta g\right.$ and e $\alpha g \alpha f$ $=e \alpha f\}$.

Proof: Let $P=\left\{g \in V_{\beta}^{\alpha}(e \alpha f): g \alpha e=g=f \beta g\right.$ and $\left.e \alpha g \alpha f=e \alpha f\right\}$ and let $g \in R S(e, f)$. Then $g \in E_{\alpha}, g \alpha e=g=f \beta g$ and $g \in V_{\beta}^{\alpha}(e \alpha f)$. Now e $\alpha g \alpha f=$ $e \alpha g \alpha e \alpha f \beta g \alpha f=e \alpha f \beta g \alpha e \alpha f \beta g \alpha e \alpha f=e \alpha f \beta g \alpha e \alpha f=e \alpha f$. Hence $R S(e, f) \subseteq P$. Next let $g \in P$. Now $g \alpha g=g \alpha e \alpha f \beta g=g$. Hence $g \in E_{\alpha}$, which shows that $P \subseteq R S(e, f)$ and hence the proof.
Theorem 1.5. Let S be a regular Γ - semigroup and $a, b \in S$.If $a^{\prime} \in V_{\alpha}^{\beta}(a), b^{\prime} \in$ $V_{\gamma}^{\delta}(b)$ and $g \in R S\left(a^{\prime} \beta a, b \gamma b^{\prime}\right)$ then $b^{\prime} \delta g \alpha a^{\prime} \in V_{\gamma}^{\beta}(a \alpha b)$.

Proof: Let $e=a^{\prime} \beta a$ and $f=b \gamma b^{\prime}$. Then e is an α-idempotent and f is a δ-idempotent and also g is an α-idempotent. Now $(a \alpha b) \gamma\left(b^{\prime} \delta g \alpha a^{\prime}\right) \beta(a \alpha b)=$ $a \alpha f \delta g \alpha e \alpha b=a \alpha g \alpha b=a \alpha a^{\prime} \beta a \alpha g \alpha b \gamma b^{\prime} \delta b=a \alpha e \alpha g \alpha e \alpha b=a \alpha e \alpha f \delta b=a \alpha a^{\prime} \beta a \alpha b$ $\gamma b^{\prime} \delta b=a \alpha b$. Again $\left(b^{\prime} \delta g \alpha a^{\prime}\right) \beta(a \alpha b) \gamma\left(b^{\prime} \delta g \alpha a^{\prime}\right)=b^{\prime} \delta g \alpha e \alpha f \delta g \alpha a^{\prime}=b^{\prime} \delta g \alpha g \alpha a^{\prime}=$ $b^{\prime} \delta g \alpha a^{\prime}$. Hence $b^{\prime} \delta g \alpha a^{\prime} \in V_{\gamma}^{\beta}(a \alpha b)$.
Corollary 1.1. For $a, b \in S$, if $V_{\alpha}^{\beta}(a)$ and $V_{\gamma}^{\delta}(b)$ are nonempty then $V_{\gamma}^{\beta}(a \alpha b)$ is nonempty.

Proof: Let $a^{\prime} \in V_{\alpha}^{\beta}(a)$ and $b^{\prime} \in V_{\gamma}^{\delta}(b)$ then we know that $R S\left(a^{\prime} \beta a, b \gamma b^{\prime}\right) \neq \phi$. For $g \in R S\left(a^{\prime} \beta a, b \gamma b^{\prime}\right)$ and hence we get $b^{\prime} \delta g \alpha a^{\prime} \in V_{\gamma}^{\beta}(a \alpha b)$. Hence the proof.
2. IP- CONGRUENCE PAIR ON RIGHT INVERSE Γ-SEMIGROUP

In this section we characterize some congruences on a right inverse Γ - semigroup S.
Definition 2.1. Let S be a Γ-semigroup. A nonempty subset K of S is said to be partial Γ-subsemigroup if for $a, b \in K, a \alpha b \in K$, whenever $V_{\alpha}^{\beta}(a) \neq \phi$. for $\alpha, \beta \in \Gamma$.

Definition 2.2. A partial Γ-subsemigroup K of S is said to be regular if $V_{\alpha}^{\beta}(k) \subseteq K$ for all $k \in K$ and $\alpha, \beta \in \Gamma$.

Definition 2.3. A partial Γ-subsemigroup K is said to be full if $E(S) \subseteq K$ where $E(S)$ is the set of all idempotent elements of S.
Definition 2.4. A partial Γ-subsemigroup K of S is said to be self conjugate if for all $a \in S, k \in K$ and $a^{\prime} \in V_{\alpha}^{\beta}(a), a^{\prime} \beta k \gamma a \in K$ whenever $V_{\gamma}^{\delta}(k) \neq \phi$ for some $\delta \in \Gamma$.

Definition 2.5. A partial Γ-subsemigroup K of S is said to be normal if it is regular, full and self conjugate.

Definition 2.6. An equivalence relation ρ on S is said to be left partial congruence if $(a, b) \in \rho$ implies $\left(c \alpha_{3} a, c \alpha_{3} b\right) \in \rho$ whenever $V_{\alpha_{3}}^{\beta_{3}}(c)$ is nonempty. Note that every left congruence is a left partial congruence.

Here we consider these left partial congruence which satisfy the following condition:
$(a, b) \in \rho$ implies $\left(a \alpha_{1} c, b \alpha_{2} c\right) \in \rho$ whenever each of the sets $V_{\alpha_{1}}^{\beta_{1}}(a), V_{\alpha_{2}}^{\beta_{2}}(b)$ is nonempty for $\alpha_{i}, \beta_{i} \in \Gamma, i=1,2$. We call this left partial congruence as inverse related partial congruence (ip - congruence).

Example 2.1. Let $A=\{1,2,3\}$ and $B=\{4,5\}$. S denotes the set of all mappings from A to B. Here members of S will be described by the images of the elements 1, 2, 3. For example the map $1 \rightarrow 4,2 \rightarrow 5,3 \rightarrow 4$ will be written as $(4,5,4)$ and $(5,5,4)$ denotes the map $1 \rightarrow 5,2 \rightarrow 5,3 \rightarrow 4$. A map from B to A will be described in the same fashion. For example $(1,2)$ denotes $4 \rightarrow 1,5 \rightarrow 2$. Now $S=\{(4,4,4),(4,4,5),(4,5,4),(4,5,5),(5,5,5),(5,4,5),(5,4,4),(5,5,4)\}$ and let $\Gamma=\{(1,1),(1,2),(2,3),(3,1)\}$. Let $f, g \in S$ and $\alpha \in \Gamma$. We define fag by $(f \alpha g)(a)=f \alpha(g(a))$ for all $a \in A$. So fog is a mapping from A to B and hence $f \alpha g \in S$ and we can show that $(f \alpha g) \beta h=f \alpha(g \beta h)$ for all $f, g, h \in S$ and $\alpha, \beta \in \Gamma$. Hence S is a Γ - semigroup.

We can also show that it is right inverse. We now give a partition $S=\bigcup_{1 \leq i \leq 5} S_{i}$ and let ρ be the equivalence relation yielded by the partition where each S_{i} is given by:
$S_{1}=\{(4,4,4)\}$,
$S_{2}=\{(5,5,5)\}$,
$S_{3}=\{(4,5,4),(5,4,5)\}$,
$S_{4}=\{(4,5,5),(5,4,4)\}$,
$S_{5}=\{(4,4,5),(5,5,4)\}$.
Here we see that $(4,5,4) \rho(5,4,5)$ but $(4,5,4)(3,1)(4,4,4)=(4,4,4)$ and $(5,4,5)$
$(3,1)(4,4,4)=(5,5,5)$ i.e ρ is not a congruence.
Now for $f \in S$ we observe the following cases:
(a) $(4,4,4) \alpha f=(4,4,4)$ for all $\alpha \in \Gamma$,
(b) $(5,5,5) \alpha f=(5,5,5)$ for all $\alpha \in \Gamma$,
(c) $(4,5,4)(1,2) f=f$ and $(4,5,4)(2,3) f=f^{\prime}$,
$(5,4,5)(2,3) f=f$ and $(5,4,5)(1,2) f=f^{\prime}$,
(d) $(4,4,5)(2,3) f=f$ and $(4,4,5)(3,1) f=f^{\prime}$,
$(5,5,4)(3,1) f=f$ and $(5,5,4)(2,3) f=f^{\prime}$,
(e) $(4,5,5)(1,2) f=f$ and $(4,5,5)(3,1) f=f^{\prime}$,
$(5,4,4)(3,1) f=f$ and $(5,4,4)(1,2) f=f^{\prime}$,
From the above cases we can easily verify that ρ is a ip-congruence on S.

Definition 2.7. An ip - congruence ξ on $E(S)$ of S is said to be normal if for any α-idempotent e and β-idempotent $f, a \in S$ and $a^{\prime} \in V_{\gamma}^{\delta}(a),(e, f) \in \xi$ implies $\left(a^{\prime} \delta e \alpha a, a^{\prime} \delta f \beta a\right) \in \xi$ whenever $a^{\prime} \delta e \alpha a, a^{\prime} \delta f \beta a \in E(S)$.

Let ρ be an ip - congruence on a regular Γ - semigroup S then we can define a binary operation on S / ρ as $(a \rho)(b \rho)=(a \alpha b) \rho$ whenever $V_{\alpha}^{\beta}(a)$ exists for some $\beta \in \Gamma$. This is well defined because if $a \rho=a^{\prime} \rho$ and $b \rho=b^{\prime} \rho$ then

$$
\begin{aligned}
(a \rho)(b \rho) & =(a \alpha b) \rho\left(\text { Since } V_{\alpha}^{\beta}(a) \neq \phi \text { for some } \alpha, \beta \in \Gamma\right) \\
& =\left(a \alpha b^{\prime}\right) \rho \\
& =\left(a^{\prime} \alpha_{1} b^{\prime}\right) \rho\left(\text { Since } V_{\alpha_{1}}^{\beta_{1}}\left(a^{\prime}\right) \neq \phi \text { for some } \alpha_{1}, \beta_{1} \in \Gamma\right) \\
& =\left(a^{\prime} \rho\right)\left(b^{\prime} \rho\right)
\end{aligned}
$$

The operation is easily seen to be associative, and so S / ρ is a semigroup.
Definition 2.8. Let ρ be an ip - congruence on a regular Γ-semigroup S. Let $\alpha \in \Gamma$, then the subset $\{a \in S: a \rho \in E(S / \rho)\}$ of S is called kernel of ρ and it is denoted by K.

Definition 2.9. Let ρ be an ip-congruence on a regular Γ-semigroup S. Then the restriction of ρ to the subset $E(S)$ is called the trace of ρ and it is denoted by tr ρ.

We now treat S as a right inverse Γ-semigroup throughout the paper.
Definition 2.10. A pair (ξ, K) consisting of a normal ip - congruence ξ on $E(S)$ and a normal partial Γ-subsemigroup K of S is said to be ip-congruence pair for S if for all $a, b \in S, a^{\prime} \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}$
(i) $e \gamma a \in K,\left(e, a \alpha a^{\prime}\right) \in \xi \Rightarrow a \in K$
(ii) $a \in K \Rightarrow\left(a \alpha e \gamma a^{\prime}, e \gamma a \alpha a^{\prime}\right) \in \xi$

Given a pair (ξ, K) we define a relation $\rho_{(\xi, K)}$ on S by $(a, b) \in \rho_{(\xi, K)}$ if and only if there exist $a^{\prime} \in V_{\alpha}^{\beta}(a)$ and $b^{\prime} \in V_{\gamma}^{\delta}(b)$ such that $a \alpha b^{\prime} \in K,\left(a^{\prime} \beta a, b^{\prime} \delta b\right) \in \xi$.

Theorem 2.1. Let S be a right inverse Γ-semigroup. Then for an ip - congruence pair (ξ, K) and a μ-idempotent $e, a \alpha b \in K$ implies $a \alpha e \mu b \in K$ for all $a, b \in S$ and $V_{\alpha}^{\beta}(a) \neq \phi$ for some $\beta \in \Gamma$.

Proof: Let $a \alpha b \in K$. Since S is regular there exist $\gamma, \delta \in \Gamma$ such that $V_{\gamma}^{\delta}(b) \neq$ ϕ. Then by Corollary $1.1, V_{\gamma}^{\beta}(a \alpha b) \neq \phi$. Let $b^{\prime} \in V_{\gamma}^{\delta}(b)$. Then $b \gamma b^{\prime}$ is a δ idempotent and since S is a right inverse Γ-semigroup $\left(b \gamma b^{\prime}\right) \delta e \mu\left(b \gamma b^{\prime}\right)=e \mu\left(b \gamma b^{\prime}\right)$. Now $a \alpha e \mu b=a \alpha e \mu b \gamma b^{\prime} \delta b=a \alpha\left(b \gamma b^{\prime}\right) \delta e \mu\left(b \gamma b^{\prime}\right) \delta b=(a \alpha b) \gamma\left(b^{\prime} \delta e \mu b\right)$. Since S is right inverse Γ-semigroup $b^{\prime} \delta e \mu b \in E_{\gamma} \subseteq K$. Since K is a partial Γ-subsemigroup and $a \alpha b \in K,(a \alpha b) \gamma\left(b^{\prime} \delta e \mu b\right) \in K$. So $a \alpha e \mu b \in K$.

Theorem 2.2. Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ are such that $(a, b) \in \rho_{(\xi, K)}$, then there exist $a^{\prime} \in V_{\alpha}^{\beta}(a)$ and $b^{\prime} \in V_{\gamma}^{\delta}(b)$ such that
(i) $a \alpha b^{\prime} \in K$ and $\left(a^{\prime} \beta a, b^{\prime} \delta b\right) \in \xi$
(ii) $b \gamma a^{\prime} \in K$ and so $(b, a) \in \rho_{(\xi, K)}$
(iii) $\left(b \gamma b^{\prime}, a \alpha a^{\prime} \beta b \gamma b^{\prime}\right) \in \xi$ and $\left(a \alpha a^{\prime}, b \gamma b^{\prime} \delta a \alpha a^{\prime}\right) \in \xi$

Proof: (i) Let $a, b \in S$ and $(a, b) \in \rho_{(\xi, K)}$. Then (i) follows from definition of $\rho_{(\xi, K)}$. Now from (i) we have $a \alpha b^{\prime} \in K$ and $\left(a^{\prime} \beta a, b^{\prime} \delta b\right) \in \xi$. Let $g \in R S\left(b^{\prime} \delta b, a^{\prime} \beta a\right)$, then g is a γ-idempotent. So by Theorem 1.5 we have $a \alpha g \gamma b^{\prime} \in V_{\beta}^{\delta}\left(b \gamma a^{\prime}\right)$. Also by Theorem $2.1 a \alpha g \gamma b^{\prime} \in K$ since $a \alpha b^{\prime} \in K$ and $g \in E_{\gamma}$. On the other hand $b \gamma a^{\prime} \in V_{\delta}^{\beta}\left(a \alpha g \gamma b^{\prime}\right)$ and so $b \gamma a^{\prime} \in K$, since K is a normal subsemigroup of S. Therefore $(b, a) \in \rho_{(\xi, K)}$ since ξ is symmetric. Hence (ii) follows.
Again for $g \in R S\left(b^{\prime} \delta b, a^{\prime} \beta a\right), g=g \gamma b^{\prime} \delta b=a^{\prime} \beta a \alpha g$ and $\left(b^{\prime} \delta b\right) \gamma g \gamma\left(a^{\prime} \beta a\right)=\left(b^{\prime} \delta b\right) \gamma$ $\left(a^{\prime} \beta a\right)$ by Theorem 1.4. Hence $b \gamma g \gamma b^{\prime} \in E_{\delta}$. Now $b^{\prime} \delta b=\left(b^{\prime} \delta b\right) \gamma\left(b^{\prime} \delta b\right) \xi\left(b^{\prime} \delta b\right) \gamma$
$\left(a^{\prime} \beta a\right)=\left(b^{\prime} \delta b\right) \gamma g \gamma\left(a^{\prime} \beta a\right) \xi\left(b^{\prime} \delta b\right) \gamma g \gamma\left(b^{\prime} \delta b\right)$ and so by normality of ξ we have $b \gamma\left(b^{\prime} \delta b\right) \gamma b^{\prime} \xi b \gamma\left(b^{\prime} \delta b \gamma g \gamma b^{\prime} \delta b\right) \gamma b^{\prime}$ i.e $b \gamma b^{\prime} \xi b \gamma g \gamma b^{\prime}$. Now $a \alpha g \gamma b^{\prime} \in V_{\beta}^{\delta}\left(b \gamma a^{\prime}\right)$ and so we have
$b \gamma b^{\prime} \quad \xi \quad b \gamma g \gamma b^{\prime}$
$=b \gamma\left(a^{\prime} \beta a \alpha g\right) \gamma b^{\prime}\left(\right.$ Since $\left.g \in R S\left(b^{\prime} \delta b, a^{\prime} \beta a\right)\right)$
$=\left(b \gamma a^{\prime}\right) \beta\left(a \alpha a^{\prime} \beta a\right) \alpha g \gamma b^{\prime}$
$=\left(b \gamma a^{\prime}\right) \beta\left(a \alpha a^{\prime}\right) \beta\left(a \alpha g \gamma b^{\prime}\right)\left(\right.$ Since $a \alpha a^{\prime} \in E_{\beta}$ and $\left.b \gamma a^{\prime} \in K\right)$
$\xi \quad\left(a \alpha a^{\prime}\right) \beta\left(b \gamma a^{\prime}\right) \beta\left(a \alpha g \gamma b^{\prime}\right)\left(\right.$ by Definition 2.6 and $\left.a \alpha g \gamma b^{\prime} \in V_{\beta}^{\delta}\left(b \gamma a^{\prime}\right)\right)$
$=a \alpha a^{\prime} \beta b \gamma g \gamma b^{\prime}$
$\xi \quad\left(a \alpha a^{\prime}\right) \beta\left(b \gamma b^{\prime}\right)$.
Similarly interchanging the role of a and b we can get the second relation.
Theorem 2.3. Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ are such that $a, b \in \rho_{(\xi, K)}$, then for all $a^{*} \in V_{\alpha}^{\beta}(a)$ and $b^{*} \in V_{\gamma}^{\delta}(b), a \alpha b^{*} \in K$ and $\left(a^{*} \beta a, b^{*} \delta b\right) \in \xi$

Proof: Since $(a, b) \in \rho_{(\xi, K)}$, there exist $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a)$ and $b^{\prime} \in V_{\gamma_{1}}^{\delta_{1}}(b)$ such that all the three conditions of Theorem 2.2 are satisfied. Now

$$
\begin{aligned}
a^{\prime} \beta_{1} a & =a^{\prime} \beta_{1} a \alpha a^{*} \beta a \\
& =a^{\prime} \beta_{1} a \alpha a^{*} \beta a \alpha_{1} a^{\prime} \beta_{1} a \\
& \xi a^{\prime} \beta_{1} a \alpha_{1} a^{*} \beta a \alpha a^{\prime} \beta_{1} a \text { (Since } \xi \text { is an ip - congruence and } V_{\alpha}^{\beta}(a) \text { and } \\
& =\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(a^{*} \beta a\right) \alpha\left(a^{\prime} \beta_{1} a\right) \\
& =\left(a^{*} \beta a\right) \alpha(a) \text { are nonempty.) } \\
& \xi a^{*} \beta a \alpha_{1} a^{\prime} \beta a \text { (Since } \xi \text { is an ip - congruence and } V_{\alpha}^{\beta}(a) \text { and } V_{\alpha_{1}}^{\beta_{1}}(a) \\
& =a^{*} \beta a . \quad \text { are nonempty.) }
\end{aligned}
$$

Similarly we can show that $\left(b^{\prime} \delta_{1} b, b^{*} \delta b\right) \in \xi$. Hence we have $a^{*} \beta a \xi a^{\prime} \beta_{1} a \xi b^{\prime} \delta_{1} b$ $\xi b^{*} \delta b$. Hence $\left(a^{*} \beta a, b^{*} \delta b\right) \in \xi$. We now prove that $a \alpha b^{*} \in K$. To prove this we proceed by five steps.
Step1: $b \gamma_{1} a^{\prime} \in K$.
Step2: $b^{\prime} \delta_{1} a \in K$.
Step3: $b^{*} \delta a \in K$.
Step4: $\left(b \gamma b^{*}, a \alpha a^{*} \beta b \gamma b^{*}\right) \in \xi$.
Step5: $a \alpha b^{*} \in K$.
Let $g \in R S\left(b^{\prime} \delta_{1} b, a^{\prime} \beta_{1} a\right)$, then g is a γ_{1}-idempotent and we have $a \alpha_{1} g \gamma_{1} b^{\prime} \in$ $V_{\beta_{1}}^{\delta_{1}}\left(b \gamma_{1} a^{\prime}\right)$. Also since $a \alpha_{1} b^{\prime} \in K$ and $g \in E_{\gamma_{1}}$, by Theorem $2.1 a \alpha_{1} g \gamma_{1} b^{\prime} \in K$. On the other hand $b \gamma_{1} a^{\prime} \in V_{\delta_{1}}^{\beta_{1}}\left(a \alpha_{1} g \gamma_{1} b^{\prime}\right)$. Since K is regular we have $b \gamma_{1} a^{\prime} \in K$.

Let $h \in R S\left(b \gamma_{1} b^{\prime}, a \alpha_{1} a^{\prime}\right)$. Then $a^{\prime} \beta_{1} h \delta_{1} b \in V_{\alpha_{1}}^{\gamma_{1}}\left(b^{\prime} \delta_{1} a\right)$ i.e, $b^{\prime} \delta_{1} a \in V_{\gamma_{1}}^{\alpha_{1}}\left(a^{\prime} \beta_{1} h\right.$ $\delta_{1} b$). Now since $b \gamma_{1} a^{\prime} \in K$ and K is full self conjugate partial Γ-subsemigroup of S, we have
$\left(b^{\prime} \delta_{1} b\right) \gamma_{1}\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(a^{\prime} \beta_{1} h \delta_{1} b\right)=b^{\prime} \delta_{1}\left(\left(b \gamma_{1} a^{\prime}\right) \beta_{1} h\right) \delta_{1} b \in K$.
Now

$$
\begin{aligned}
h \delta_{1}\left(a \alpha_{1} a^{\prime}\right) & =\left(a \alpha_{1} a^{\prime}\right) \beta_{1} h \delta_{1}\left(a \alpha_{1} a^{\prime}\right) \\
& \xi\left(b \gamma_{1} b^{\prime}\right) \delta_{1}\left(a \alpha_{1} a^{\prime}\right) \beta_{1} h \delta_{1}\left(a \alpha_{1} a^{\prime}\right)(\text { By Theorem 2.2) } \\
= & \left(b \gamma b^{\prime}\right) \delta_{1} h \delta_{1}\left(a \alpha a^{\prime}\right) \text { (Since } S \text { is right inverse) } \\
& =\left(b \gamma b^{\prime}\right) \delta_{1}\left(a \alpha a^{\prime}\right) \text { (Since } h \in R S\left(b \gamma_{1} b^{\prime}, a \alpha_{1} a^{\prime}\right) . \\
& \xi a \alpha_{1} a^{\prime}(\text { By Theorem 2.2). }
\end{aligned}
$$

Again

$$
\begin{aligned}
\left(a^{\prime} \beta_{1} h \delta_{1} b\right) \gamma_{1}\left(b^{\prime} \delta_{1} a\right) & =a^{\prime} \beta_{1} h \delta_{1} a \\
& \xi \\
& a \alpha_{1} a^{\prime} \\
& \xi \\
& \left(b^{\prime} \delta_{1} b\right) \gamma_{1}\left(a^{\prime} \beta_{1} a\right)(\text { By Theorem 2.2). }
\end{aligned}
$$

Now since S is a right inverse Γ-semigroup, it is right orthodox and hence $\left(b^{\prime} \delta_{1} b\right) \gamma_{1}$ $\left(a^{\prime} \beta_{1} a\right)$ is an α_{1}-idempotent. Thus by Definition $2.10 a^{\prime} \beta_{1} h \delta_{1} b \in K$ and since K is regular, $b^{\prime} \delta_{1} a \in K$.

Now we have $b^{\prime} \delta_{1} a \in K$. Hence we get $b^{\prime} \delta_{1}\left(b \gamma b^{*}\right) \delta a \in K$ by Theorem 2.1. Again $b^{*} \delta a=b^{*} \delta b \gamma b^{*} \delta a=b^{*} \delta\left(b \gamma_{1} b^{\prime} \delta_{1} b\right) \gamma b^{*} \delta a=\left(b^{*} \delta b\right) \gamma_{1}\left(b^{\prime} \delta b \gamma b^{*} \delta a\right) \in K$ since $b^{*} \delta b \in E_{\gamma} \subseteq K, V_{\gamma_{1}}^{\delta_{1}}(b)$ is nonempty and K is a partial Γ-subsemigroup.

We now prove step 4.

$$
\begin{aligned}
& b \gamma b^{*}=\left(b \gamma_{1} b^{\prime}\right) \delta_{1}\left(b \gamma b^{*}\right) \\
& \xi \\
&=\left(a \alpha_{1} a^{\prime}\right) \beta_{1}\left(b \gamma_{1} b^{\prime}\right) \delta_{1}\left(b \gamma b^{*}\right) \\
&=\left(a \alpha a^{*}\right) \beta\left(a \alpha_{1} a^{\prime}\right) \beta_{1}\left(b \gamma_{1} b^{\prime}\right) \delta_{1}\left(b \gamma b^{*}\right) \\
& \xi\left(a \alpha a^{*}\right) \beta\left(b \gamma_{1} b^{\prime}\right) \delta_{1}\left(b \gamma b^{*}\right) \\
&=\left(a \alpha a^{*}\right) \beta\left(b \gamma b^{*}\right) .
\end{aligned}
$$

Finally we show the last step. Now we have $b^{*} \delta a \in K$. Since $a^{*} \in V_{\alpha}^{\beta}(a)$ and $b^{*} \in V_{\gamma}^{\delta}(b)$, we have $\left(a^{*} \beta b\right) \in V_{\alpha}^{\gamma}\left(b^{*} \delta a\right)$ and hence $a^{*} \beta b \in K$, since K is regular. Let $x \in R S\left(a^{*} \beta a, b^{*} \delta b\right)$. Then $b \gamma x \alpha a^{*} \in V_{\delta}^{\beta}\left(a \alpha b^{*}\right)$. Now $\left(\left(a \alpha a^{*}\right) \beta\left(b \gamma b^{*}\right)\right) \delta\left(b \gamma x \alpha a^{*}\right)=$ $a \alpha a^{*} \beta b \gamma x \alpha a^{*}=a \alpha\left(\left(a^{*} \beta b\right) \gamma x\right) \alpha a^{*} \in K$, since $a^{*} \beta b \in K, x \in E_{\alpha} \subseteq K$ and hence $\left(a^{*} \beta b\right) \gamma x \in K$ and also K is self conjugate. Again

$$
\begin{aligned}
x \alpha\left(b^{*} \delta b\right)= & \left(b^{*} \delta b\right) \gamma x \alpha\left(b^{*} \delta b\right) \text { (Since } S \text { is right inverse) } \\
& \xi \\
= & \left(b^{*} \delta b \gamma\left(a^{*} \beta a\right)\right) \alpha x \alpha\left(b^{*} \delta b\right) \text { (Since }\left(a^{*} \beta a, b^{*} \delta b\right) \in \xi \\
& \xi\left(\left(b^{*} \delta b\right) \gamma\left(a^{*} \beta a\right) \alpha\left(b^{*} \delta b\right) \text { (Since } x \in R S\left(b^{*} \delta b\right) \gamma\left(b^{*} \delta b\right) \text { (Since } \xi\right. \text { is an ip - congruence and } \\
& \left.\quad\left(a^{*} \beta a, b^{*} \delta b\right) \in \xi\right) \\
= & b^{*} \delta b .
\end{aligned}
$$

Thus

$$
\begin{aligned}
b \gamma x \alpha b^{*} & =b \gamma\left(x \alpha\left(b^{*} \delta b\right)\right) \gamma b^{*} \\
& \xi b \gamma\left(b^{*} b\right) \gamma b^{*} \\
& =b \gamma b^{*}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(b \gamma x \alpha a^{*}\right) \beta\left(a \alpha b^{*}\right) & =b \gamma\left(x \alpha\left(a^{*} \beta a\right)\right) \alpha b^{*} \\
& =b \gamma x \alpha b^{*} \\
& \xi \quad b \gamma b^{*} \\
& \xi\left(a \alpha a^{*}\right) \beta\left(b \gamma b^{*}\right) .
\end{aligned}
$$

Again since S is a right inverse Γ-semigroup, $\left(a \alpha a^{*}\right) \beta\left(b \gamma b^{*}\right)$ is a δ-idempotent and by Definition 2.10(i) $b \gamma x \alpha a^{*} \in K$ and hence $a \alpha b^{*} \in K$ since K is regular. Hence the Theorem.

Remark 2.1. From the previous Theorem, we can say that in the definition 3.11 of $\rho_{(\xi, K)}$ and in the Theorem 2.2 "there exist" can be substituted by "for all".

Theorem 2.4. Let (ξ, K) be an ip - congruence pair for S and $a, b, c \in S$ and let $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a), b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b), c^{\prime} \in V_{\alpha_{3}}^{\beta_{3}}(c), g \in R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right), h \in R S\left(c^{\prime} \beta_{3} c, b \alpha_{2} b^{\prime}\right)$. Then $\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi, a \alpha_{1} b^{\prime} \in K$ implies $\left(a^{\prime} \beta_{1} g \alpha_{3} a, b^{\prime} \beta_{2} h \alpha_{3} b\right) \in \xi$.

Proof: Let (ξ, K) be an ip - congruence pair for S and $a, b \in S$ are such that for some $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a), b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b),\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi$ and $a \alpha_{1} b^{\prime} \in K$. Given $c \in S$
and $c^{\prime} \in V_{\alpha_{3}}^{\beta_{3}}(c)$, let $g \in R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right)$ and $h \in R S\left(c^{\prime} \beta_{3} c, b \alpha_{2} b^{\prime}\right)$. Then g and h are α_{3}-idempotents. Choose an arbitrary element $x \in R S\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right)$. Then $b \alpha_{2} x \alpha_{1} a^{\prime} \in V_{\beta_{2}}^{\beta_{1}}\left(a \alpha_{1} b^{\prime}\right)$. So $a \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime} \in E_{\beta_{1}}$. Also let $t \in R S\left(g, a \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2}\right.$ $\left.x \alpha_{1} a^{\prime}\right)$ then $t \in E_{\alpha_{3}}$ and $t=t \alpha_{3} g$ and hence $b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} g \in V_{\beta_{2}}^{\alpha_{3}}\left(g \alpha_{3} a \alpha_{1} b^{\prime}\right)$ and $b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime}=\left(b \alpha_{2} x \alpha_{1} a^{\prime}\right) \beta_{1}\left(t \alpha_{3} g\right) \alpha_{3} a \alpha_{1} b^{\prime}=\left(b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} g\right) \alpha_{3}\left(g \alpha_{3} a \alpha_{1}\right.$ $\left.b^{\prime}\right) \in E_{\beta_{2}}$. On the other hand $b \alpha_{2} x \alpha_{1} a^{\prime} \in K$, since it is an $\left(\beta_{2}, \beta_{1}\right)$-inverse of $a \alpha_{1} b^{\prime}$ which belongs to K. Now since (ξ, K) is an ip - congruence pair for S, by definition we have $\left(\left(b \alpha_{2} x \alpha_{1} a^{\prime}\right) \beta_{1} t \alpha_{3}\left(a \alpha_{1} b^{\prime}\right), t \alpha_{3} b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} a \alpha_{1} b^{\prime}\right) \in \xi$. Again since $x \alpha_{1}\left(a^{\prime} \beta_{1} a\right)=x$ we get

$$
\begin{equation*}
\left(b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime}, t \alpha_{3} b \alpha_{2} x \alpha_{1} b^{\prime}\right) \in \xi \tag{2.1}
\end{equation*}
$$

for all $x \in R S\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right)$
Now since ξ is an ip - congruence and $\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi$, we have $b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} b^{\prime} \beta_{2} b$ $\xi a^{\prime} \beta_{1} a \alpha_{1} x \alpha_{1} b^{\prime} \beta_{2} b=a^{\prime} \beta_{1} a \alpha_{1} b^{\prime} \beta_{2} b \xi b^{\prime} \beta_{2} b \alpha_{2} b^{\prime} \beta_{2} b=b^{\prime} \beta_{2} b$. Again and hence $\left(b \alpha_{2} x \alpha_{1} b^{\prime}\right) \beta_{2}\left(b \alpha_{2} x \alpha_{1} b^{\prime}\right)=b \alpha_{2} x \alpha_{1}\left(b^{\prime} \beta_{2} b \alpha_{2} x\right) \alpha_{1} b^{\prime}=b \alpha_{2} x \alpha_{1} b^{\prime}$ and hence $b \alpha_{2} x \alpha_{1} b^{\prime} \in$ $E_{\beta_{2}}$. Hence ξ is normal, we have $\left(b \alpha_{2}\left(b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} b^{\prime} \beta_{2} b\right) \alpha_{2} b^{\prime}, b \alpha_{2}\left(b^{\prime} \beta_{2} b\right) \alpha_{2} b^{\prime}\right) \in \xi$ which implies

$$
\begin{equation*}
\left(b \alpha_{2} x \alpha_{1} b^{\prime}, b \alpha_{2} b^{\prime}\right) \in \xi \tag{2.2}
\end{equation*}
$$

Similarly we can show that

$$
\begin{equation*}
\left(a \alpha_{1} x \alpha_{1} a^{\prime}, a \alpha_{1} a^{\prime}\right) \in \xi \tag{2.3}
\end{equation*}
$$

Using (2.1) and(2.2) we get

$$
\begin{equation*}
\left(b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime}, t \alpha_{3} b \alpha_{1} b^{\prime}\right) \in \xi \tag{2.4}
\end{equation*}
$$

Since $a \alpha_{1} a^{\prime} \beta_{1} t=a \alpha_{1} a^{\prime} \beta_{1}\left(\left(a \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime}\right) \beta_{1} t\right)=a \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t=t$, we have $a^{\prime} \beta_{1}$ t $\alpha_{3} a \in E_{\alpha_{1}}$. Since $\left(b^{\prime} \beta_{2} b, a^{\prime} \beta_{1} a\right) \in \xi$, we have

$$
\left.\begin{array}{rl}
b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime} \beta_{2} b & \xi a^{\prime} \beta_{1} a \alpha_{1} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} a \\
& =a^{\prime} \beta_{1} a \alpha_{1} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a
\end{array}\right]
$$

Hence

$$
\begin{equation*}
\left(b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime} \beta_{2} b, a^{\prime} \beta_{1} t \alpha_{3} a\right) \in \xi \tag{2.5}
\end{equation*}
$$

Next since $g \in R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right), a \alpha_{1} a^{\prime} \beta_{1} g=g$ and hence we have $a^{\prime} \beta_{1} g \alpha_{3} a \in E_{\alpha_{1}}$. Now since $x \in R S\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right), a \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime}=a \alpha_{1} x \alpha_{1} a^{\prime} \in E_{\beta_{1}}$ and hence $t \in$ $R S\left(g, a \alpha_{1} x \alpha_{1} a^{\prime}\right)$. Thus we have $g \alpha_{3} t \alpha_{3} a \alpha_{1} x \alpha_{1} a^{\prime}=g \alpha_{3} a \alpha_{1} x \alpha_{1} a^{\prime}$. Now by (2.3) we have $\left(\left(g \alpha_{3} t\right) \alpha_{3} a \alpha_{1} x \alpha_{1} a^{\prime},\left(g \alpha_{3} t\right) \alpha_{3} a \alpha_{1} a^{\prime}\right) \in \xi$ i.e, $\left(g \alpha_{3} a \alpha_{1} x \alpha_{1} a^{\prime}, g \alpha_{3} t \alpha_{3} a \alpha_{1} a^{\prime}\right) \in \xi$ since $t \in R S\left(g^{2} a \alpha_{1} x \alpha_{1} a^{\prime}\right)$ and again using (2.3)we have $g \alpha_{3} a \alpha_{1} a^{\prime} \xi g \alpha_{3} a \alpha_{1} x \alpha_{1} a^{\prime} \xi$
$g \alpha_{3} t \alpha_{3} a \alpha_{1} a^{\prime}$ i.e, we get $\left(g \alpha_{3} a \alpha_{1} a^{\prime}, g \alpha_{3} t \alpha_{3} a \alpha_{1} a^{\prime}\right) \in \xi$. Now since S is a right inverse Γ-semigroup $t \alpha_{3} g \alpha_{3} t=g \alpha_{3} t$ and hence we have $g \alpha_{3} t \alpha_{3} a \alpha_{1} a^{\prime}=t \alpha_{3} g \alpha_{3} t \alpha_{3} a \alpha_{1} a^{\prime}=$ $t \alpha_{3} a \alpha_{1} a^{\prime}$ since $t \alpha_{3} g=t$. Thus $\left(g \alpha_{3} a \alpha_{1} a^{\prime}, t \alpha_{3} a \alpha_{1} a^{\prime}\right) \in \xi$ by transitivity of ξ. Now since ξ is normal, we have $\left(a^{\prime} \beta_{1}\left(g \alpha_{3} a \alpha_{1} a^{\prime}\right) \beta_{1} a, a^{\prime} \beta_{1}\left(t \alpha_{3} a \alpha_{1} a^{\prime}\right) \beta_{1} a\right) \in \xi$. i.e,

$$
\begin{equation*}
\left(a^{\prime} \beta_{1} g \alpha_{3} a, a^{\prime} \beta_{1} t \alpha_{3} a\right) \in \xi \tag{2.6}
\end{equation*}
$$

Again since S is a right inverse Γ-semigroup and the fact that $t \in R S\left(g, a \alpha_{1} x \alpha_{1} a^{\prime}\right)$ and $g \in R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right)$ we see that

$$
\begin{aligned}
t \alpha_{3} b \alpha_{2} b^{\prime} & =b \alpha_{2} b^{\prime} \beta_{2} t \alpha_{3} b \alpha_{2} b^{\prime} \text { (Since } S \text { is right inverse } \Gamma \text {-semigroup) } \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(t \alpha_{3} g\right) \alpha_{3}\left(b \alpha_{2} b^{\prime}\right) \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(t \alpha_{3} g \alpha_{3} c^{\prime} \beta_{3} c\right) \alpha_{3} b \alpha_{2} b^{\prime} .
\end{aligned}
$$

Now since $\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi$ and $a \alpha_{1} b^{\prime} \in K$, proceeding the same way of Theorem 2.2 we have $\left(b \alpha_{2} b^{\prime}, a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime}\right) \in \xi$. Now

$$
\begin{aligned}
& t \alpha_{3} b \alpha_{2} b^{\prime}=b \alpha_{2} b^{\prime} \beta_{2} t \alpha_{3} g \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} b \alpha_{2} b^{\prime} \\
& \xi \quad b \alpha_{2} b^{\prime} \beta_{2} t \alpha_{3} g \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3}\left(a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime}\right) \text { (Since } \\
& \left.\left(b \alpha_{2} b^{\prime}, a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime}\right) \in \xi\right) \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(g \alpha_{3} t \alpha_{3} g\right) \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (since } S \text { is right inverse) } \\
& =b \alpha_{2} b^{\prime} \beta_{2} g \alpha_{3} t \alpha_{3}\left(a \alpha_{1} a^{\prime} \beta_{1} g\right) \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (Since } g \in \\
& \left.R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right)\right) \\
& \xi \quad b \alpha_{2} b^{\prime} \beta_{2} g \alpha_{3} t \alpha_{3}\left(a \alpha_{1} x \alpha_{1} a^{\prime}\right) \beta_{1} g \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (by (2.3)) } \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(g \alpha_{3}\left(a \alpha_{1} x \alpha_{1} a^{\prime}\right) \beta_{1} g\right) \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \quad(\text { since } t \in \\
& \left.R S\left(g, a \alpha_{1} x \alpha_{1} a^{\prime}\right)\right) \\
& \xi \quad b \alpha_{2} b^{\prime} \beta_{2}\left(g \alpha_{3}\left(a \alpha_{1} a^{\prime}\right) \beta_{1} g\right) \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime}(\text { By (2.3)) } \\
& =b \alpha_{2} b^{\prime} \beta_{2} g \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (Since }\left(a \alpha_{1} a^{\prime}\right) \beta_{1} g=g \text {) } \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(c^{\prime} \beta_{3} c \alpha_{3} g \alpha_{3} c^{\prime} \beta_{3} c\right) \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (since } S \text { is right } \\
& \text { inverse) } \\
& =b \alpha_{2} b^{\prime} \beta_{2} c^{\prime} \beta_{3} c \alpha_{3} g \alpha_{3}\left(a \alpha_{1} a^{\prime} \beta_{1} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime}\right) \beta_{1} b \alpha_{2} b^{\prime} \text { (Since } S \text { is right } \\
& \text { inverse) } \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime}\right) \beta_{1} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (since } g \in \\
& \left.R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right)\right) \\
& =b \alpha_{2} b^{\prime} \beta_{2} a \alpha_{1} a^{\prime} \beta_{1} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (since } S \text { is right inverse) } \\
& =b \alpha_{2} b^{\prime} \beta_{2} c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b \\
& =b \alpha_{2} b^{\prime} \beta_{2}\left(c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime}\right) \beta_{1} b \alpha_{2} b^{\prime} \\
& =c^{\prime} \beta_{3} c \alpha_{3} a \alpha_{1} a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \text { (Since } S \text { is right inverse and hence right orthodox) } \\
& \xi \quad c^{\prime} \beta_{3} c \alpha_{3} b \alpha_{2} b^{\prime} \\
& =c^{\prime} \beta_{3} \alpha_{3} h \alpha_{3} b \alpha_{2} b^{\prime}\left(\text { since } h \in R S\left(c^{\prime} \beta_{3} c, b \alpha_{2} b^{\prime}\right)\right. \\
& =h \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} h \alpha_{3} b \alpha_{2} b^{\prime} \text { (since } S \text { is right inverse) } \\
& =h \alpha_{3} b \alpha_{2} b^{\prime} \text { (Since } h \in R S\left(c^{\prime} \beta_{3} c, b \alpha_{2} b^{\prime}\right) \text {) }
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\left(t \alpha_{3} b \alpha_{2} b^{\prime}, h \alpha_{3} b \alpha_{2} b^{\prime}\right) \in \xi \tag{2.7}
\end{equation*}
$$

Finally from (2.4) and (2.7) we have $\left(b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime}, h \alpha_{3} b \alpha_{2} b^{\prime}\right) \in \xi$ and by normality of ξ we have $\left(b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime} \beta_{2} b, b^{\prime} \beta_{2} h \alpha_{3} b \alpha_{2} b^{\prime} \beta_{2} b\right) \in \xi$ i.e, $\left(b^{\prime} \beta_{2} b \alpha_{2} x \alpha_{1} a^{\prime} \beta_{1} t \alpha_{3} a \alpha_{1} b^{\prime} \beta_{2} b, b^{\prime} \beta_{2} h \alpha_{3} b\right) \in \xi$. It is to be noted that both the elements belong to $E_{\alpha_{2}}$. Also by normality of ξ together with (2.5) and (2.6) we have $\left(a^{\prime} \beta_{1} g \alpha_{3} a, b^{\prime} \beta_{2} h \alpha_{3} b\right) \in \xi$. Hence the proof.

Theorem 2.5. If (ξ, K) is an ip - congruence pair for S, then $\rho_{(\xi, K)}$ is an ip congruence with trace ξ and kernel K. Conversely if ρ is an ip - congruence on S then $(\operatorname{tr} \rho, \operatorname{Ker} \rho)$ is an ip - congruence pair and $\rho=\rho_{(\operatorname{tr\rho } \rho \text { Ker } \rho)}$.

Proof. Let (ξ, K) be an ip - congruence pair for S and $\rho_{(\xi, K)}$ and let $\rho=\rho_{(\xi, K)}$. Since $E(S) \subseteq K$ and ξ is reflexive, ρ is also reflexive. Again from Theorem 2.2 and Remark 2.1, we see that ρ is symmetric. We now show that ρ is transitive. For this let us suppose that $(a, b) \in \rho$ and $(b, c) \in \rho$ and let $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a), b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b), c^{\prime} \in$ $V_{\alpha_{3}}^{\beta_{3}}(c)$. Then we have $\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi,\left(b^{\prime} \beta_{2} b, c^{\prime} \beta_{3} c\right) \in \xi, a \alpha_{1} b^{\prime} \in K, b \alpha_{2} c^{\prime} \in K$. Since ξ is transitive we have $\left(a^{\prime} \beta_{1} a, c^{\prime} \beta_{3} c\right) \in \xi$. We now show that $a \alpha_{1} c^{\prime} \in K$. Now by Theorem 2.2, $b \alpha_{2} a^{\prime} \in K$ and $c \alpha_{3} b^{\prime} \in K$. Hence $c \alpha_{3} b^{\prime} \beta_{2} b \alpha_{2} a^{\prime} \in K$, Since K is a Γ-subsemigroup. Let $g \in R S\left(c^{\prime} \beta_{3} c, b^{\prime} \beta_{2} b\right)$ and $h \in R S\left(c^{\prime} \beta_{3} c, a^{\prime} \beta_{1} a\right)$. By Theorem 2.1 and since $g=g \alpha_{3} c^{\prime} \beta_{3} c \in E_{\alpha_{3}}$, we have,

$$
\begin{equation*}
\left(c \alpha_{3} b^{\prime} \beta_{2} b\right) \alpha_{2}\left(g \alpha_{3} c^{\prime} \beta_{3} c\right) \alpha_{3} a^{\prime} \in K \tag{2.8}
\end{equation*}
$$

Again since $b \alpha_{2} g \alpha_{3} c^{\prime} \in V_{\beta_{2}}^{\beta_{3}}\left(c \alpha_{3} b^{\prime}\right), c \alpha_{3} b^{\prime} \beta_{2} b \alpha_{2} g \alpha_{3} c^{\prime} \in E_{\beta_{3}}$. Now $c^{\prime} \beta_{3} c=c^{\prime} \beta_{3} c \alpha_{3}$ $c^{\prime} \beta_{3} c \xi c^{\prime} \beta_{3} c \alpha_{3} b^{\prime} \beta_{2} b=c^{\prime} \beta_{3} c \alpha_{3} g \alpha_{3} b^{\prime} \beta_{2} b \xi c^{\prime} \beta_{3} c \alpha_{3} g \alpha_{3} c^{\prime} \beta_{3} c=c^{\prime} \beta_{3} c \alpha_{3} g$, since $\left(b^{\prime} \beta_{2} b\right.$, $\left.c^{\prime} \beta_{3} c\right) \in \xi$ and $g \in R S\left(c^{\prime} \beta_{3} c, b^{\prime} \beta_{2} b\right)$. Also since $c \alpha_{3} g \alpha_{3} c^{\prime} \in E_{\beta_{3}}$ and ξ is normal, it follows that $\left(c \alpha_{3}\left(c^{\prime} \beta_{3} c\right) \alpha_{3} c, c \alpha_{3}\left(c^{\prime} \beta_{3} c \alpha_{3} g\right) \alpha_{3} c^{\prime}\right) \in \xi$ i.e, $\left(c \alpha_{3} c^{\prime}, c \alpha_{3} g \alpha_{3} c^{\prime}\right) \in \xi$. Similarly since $\left(c^{\prime} \beta_{3} c, a^{\prime} \beta_{1} a\right) \in \xi$ and $c \alpha_{3} h \alpha_{3} c^{\prime} \in E_{\beta_{3}}$ we have $\left(c \alpha_{3} c, c \alpha_{3} h \alpha_{3} c^{\prime}\right) \in \xi$. By transitivity of $\xi,\left(c \alpha_{3} g \alpha_{3} c^{\prime}, c \alpha_{3} h \alpha_{3} c^{\prime}\right) \in \xi$. Again $c \alpha_{3}\left(b^{\prime} \beta_{2} b \alpha_{2} g\right) \alpha_{3} c^{\prime}=c \alpha_{3} g \alpha_{3} c^{\prime} \xi$ $c \alpha_{3} h \alpha_{3} c^{\prime}=c \alpha_{3}\left(a^{\prime} \beta_{1} a \alpha_{1} h\right) \alpha_{3} c^{\prime}$. i.e,
$\left(c \alpha_{3} b^{\prime} \beta_{2} b \alpha_{2} g \alpha_{3} c^{\prime}, c \alpha_{3} a^{\prime} \beta_{1} a \alpha_{1} h \alpha_{3} c^{\prime}\right) \in \xi$. Again since $b \alpha_{2} g \alpha_{3} c^{\prime} \in V_{\beta_{2}}^{\beta_{3}}\left(c \alpha_{3} b^{\prime}\right), c \alpha_{3} b^{\prime}$ $\beta_{2} b \alpha_{2} g \alpha_{3} c^{\prime} \in E_{\beta_{3}}$ and since $a \alpha_{1} h \alpha_{3} c^{\prime} \in V_{\beta_{1}}^{\beta_{3}}\left(c \alpha_{3} a^{\prime}\right)$, from (2.8) and Definition 2.10 we can say that $c \alpha_{3} a^{\prime} \in K$ and by Theorem 2.2 we have $a \alpha_{1} c^{\prime} \in K$. Hence ρ is transitive. Hence ρ is an equivalence relation.
We now prove that ρ is an ip - congruence. Let us suppose that $(a, b) \in \rho$. Then for all $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a), b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b),\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi$ and $a \alpha_{1} b^{\prime} \in K$. Let $c \in S$ and $c^{\prime} \in V_{\alpha_{3}}^{\beta_{3}}(c)$. We now prove that $\left(c \alpha_{3} a, c \alpha_{3} b\right) \in \rho$. Let $g \in R S\left(c^{\prime} \beta_{3} c, a \alpha_{1} a^{\prime}\right)$ and $h \in$ $R S\left(c^{\prime} \beta_{3} c, b \alpha_{2} b^{\prime}\right)$. Then $a^{\prime} \beta_{1} g \alpha_{3} c^{\prime} \in V_{\alpha_{1}}^{\beta_{3}}\left(c \alpha_{3} a\right)$ and $b^{\prime} \beta_{2} h \alpha_{3} c^{\prime} \in V_{\alpha_{2}}^{\beta_{3}}\left(c \alpha_{3} b\right)$ and by Theorem 2.4 we have $a^{\prime} \beta_{1} g \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} a=a^{\prime} \beta_{1} g \alpha_{3} a \xi b^{\prime} \beta_{2} h \alpha_{3} b=b^{\prime} \beta_{2} h \alpha_{3} c^{\prime} \beta_{3} c \alpha_{3} b$. Also $\left(c \alpha_{3} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} h \alpha_{3} c^{\prime}\right)=c \alpha_{3}\left(a \alpha_{1} b^{\prime}\right) \beta_{2} h \alpha_{3} c^{\prime} \in K$ since $a \alpha_{1} b^{\prime} \in K$ and $h \in E_{\alpha_{3}}$ and K is self conjugate. Hence by definition of ρ we have $\left(c \alpha_{3} a, c \alpha_{3} b\right) \in \rho$. Next we prove that $\left(a \alpha_{1} c, b \beta_{1} c\right) \in \rho$. For this let $g \in R S\left(a^{\prime} \beta_{1} a, c \alpha_{3} c^{\prime}\right)$ and $h \in R S\left(b^{\prime} \beta_{2} b, c \alpha_{3} c^{\prime}\right)$. Then $c^{\prime} \beta_{3} g \alpha_{1} a^{\prime} \in V_{\alpha_{3}}^{\beta_{1}}\left(a \alpha_{1} c\right)$ and $c^{\prime} \beta_{3} h \alpha_{2} b^{\prime} \in V_{\alpha_{3}}^{\beta_{2}}\left(b \alpha_{2} c\right)$. Now

$$
\begin{aligned}
& g \alpha_{1} c \alpha_{3} c^{\prime}=g \alpha_{1} a^{\prime} \beta_{1} a \alpha_{1} c \alpha_{3} c^{\prime} \quad\left(\text { Since } g \in R S\left(a^{\prime} \beta_{1} a, c \alpha_{3} c^{\prime}\right)\right) \\
& \xi \quad g \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2} c \alpha_{3} c^{\prime} \\
& =g \alpha_{1} b^{\prime} \beta_{2} b \alpha_{2} h \alpha_{2} c \alpha_{3} c^{\prime}\left(\text { Since } h \in R S\left(b^{\prime} \beta_{2} b, c \alpha_{3} c^{\prime}\right)\right) \\
& \xi g \alpha_{1}\left(a^{\prime} \beta_{1} a\right) \alpha_{1} h \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } \xi \text { is an ip - congruence and } \\
& \left.\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \xi\right) \\
& =\left(a^{\prime} \beta_{1} a \alpha_{1} g \alpha_{1} a^{\prime} \beta_{1} a\right) \alpha_{1} h \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } S \text { is right inverse) } \\
& =a^{\prime} \beta_{1} a \alpha_{1} g \alpha_{1} a^{\prime} \beta_{1} a \alpha_{1}\left(c \alpha_{3} c^{\prime} \beta_{3} h\right) \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } h \in \\
& \left.R S\left(b^{\prime} \beta_{2} b, c \alpha_{3} c^{\prime}\right)\right) \\
& =a^{\prime} \beta_{1} a \alpha_{1} g \alpha_{1}\left(a^{\prime} \beta_{1} a \alpha_{1} c \alpha_{3} c^{\prime}\right) \beta_{3} h \alpha_{2} c \alpha_{3} c^{\prime} \\
& =a^{\prime} \beta_{1} a \alpha_{1} g \alpha_{1}\left(c \alpha_{3} c^{\prime} \beta_{3} a^{\prime} \beta_{1} a \alpha_{1} c \alpha_{3} c^{\prime}\right) \beta_{3} h \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } S \text { is } \\
& \text { right inverse) } \\
& =a^{\prime} \beta_{1} a \alpha_{1} g \alpha_{1} c \alpha_{3} c^{\prime} \beta_{3} a^{\prime} \beta_{1} a \alpha_{1} h \alpha_{2} c \alpha_{3} c^{\prime}\left(\text { Since } h \in R S\left(b^{\prime} \beta_{2} b, c \alpha_{3} c^{\prime}\right)\right) \\
& =\left(a^{\prime} \beta_{1} a \alpha_{1} c \alpha_{3} c^{\prime} \beta_{3} a^{\prime} \beta_{1} a\right) \alpha_{1} h \alpha_{2} c \alpha_{3} c^{\prime}\left(\text { Since } g \in R S\left(a^{\prime} \beta_{1} a, c \alpha_{3} c^{\prime}\right)\right) \\
& =c \alpha_{3} c^{\prime} \beta_{3}\left(a^{\prime} \beta_{1} a \alpha_{1} h\right) \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } S \text { is right inverse) } \\
& =a^{\prime} \beta_{1} a \alpha_{1} h \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } S \text { is right inverse and } \\
& \text { hence right orthodox) } \\
& \xi \quad b^{\prime} \beta_{2} b \alpha_{2} h \alpha_{2} c \alpha_{3} c^{\prime} \\
& =b^{\prime} \beta_{2} b \alpha_{2} h \alpha_{2} b^{\prime} \beta_{2} b \alpha_{2} c \alpha_{3} c^{\prime}\left(\text { Since } h \in R S\left(b^{\prime} \beta_{2} b, c \alpha_{3} c^{\prime}\right)\right) \\
& \xi \quad h \alpha_{2} b^{\prime} \beta_{2} b \alpha_{2} c \alpha_{3} c^{\prime} \text { (Since } S \text { is right inverse) } \\
& =h \alpha_{2} c \alpha_{3} c^{\prime} \text {. }
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(g \alpha_{1} c \alpha_{3} c^{\prime}, h \alpha_{2} c \alpha_{3} c^{\prime}\right) \in \xi \tag{2.9}
\end{equation*}
$$

Now since $g \in R S\left(a^{\prime} \beta_{1} a, c \alpha_{3} c^{\prime}\right)$ and $h \in R S\left(b^{\prime} \beta_{2} b, c \alpha_{3} c^{\prime}\right), c^{\prime} \beta_{3} h \alpha_{2} c \in E_{\alpha_{3}}$ and $c^{\prime} \beta_{3} g \alpha_{1} c \in E_{\alpha_{3}}$. Again by normality of ξ and by (2.9) we have $\left(c^{\prime} \beta_{3}\left(g \alpha_{1} c \alpha_{3} c^{\prime}\right) \beta_{3} c\right.$, $\left.c^{\prime} \beta_{3}\left(h \alpha_{2} c \alpha_{3} c^{\prime}\right) \beta_{3} c\right) \in \xi$. i.e, $\left(c^{\prime} \beta_{3} g \alpha_{1} c, c^{\prime} \beta_{3} h \alpha_{3} c\right) \in \xi$. Thus $\left(c^{\prime} \beta_{3} g \alpha_{1} a^{\prime}\right) \beta_{1}\left(a \alpha_{1} c\right) \xi$ $\left(c^{\prime} \beta_{3} h \alpha_{2} b^{\prime}\right) \beta_{2}\left(b \alpha_{2} c\right)$. Finally $\left(a \alpha_{1} c\right) \alpha_{3}\left(c^{\prime} \beta_{3} h \alpha_{2} b^{\prime}\right)=a \alpha_{1}\left(c \alpha_{3} c^{\prime} \beta_{3} h\right) \alpha_{2} b^{\prime} \in K$ since $a \alpha_{1} b^{\prime} \in K$. Hence $\left(a \alpha_{1} c, b \alpha_{2} c\right) \in \rho$ by definition of ρ.
Let us now show that $\operatorname{tr} \rho=\xi$. Let us suppose that e be an α-idempotent and f be a β-idempotent are such that $(e, f) \in \rho$. Then by definition of ρ we have $(e, f) \in \xi$, since $e \in V_{\alpha}^{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$. Hence $\operatorname{tr} \rho \subseteq \xi$. Conversely let $e \in E_{\alpha}$ and $f \in E_{\beta}$ and $(e, f) \in \xi$. We now show that $(e, f) \in \rho$. Since S is right inverse Γ-semigroup, $e \alpha f \in E_{\beta} \subseteq K$. Again considering $e \in V_{\alpha}^{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$ we can say that $(e, f) \in \rho$. Hence $\xi=\operatorname{tr} \rho$.
Let us now show that $K=k e r \rho$. For that let $a \in \operatorname{Ker} \rho$. Then there exists an α-idempotent $e \in S$ such that $(a, e) \in \rho$ and hence $\left(a^{\prime} \delta a, e\right) \in \xi$ for all $a^{\prime} \in V_{\gamma}^{\delta}(a)$ and $a \gamma e \in K$. Then by Theorem 2.2 and Remark $2.1 e \alpha a^{\prime} \in K$ and so by definition of (ξ, K) we have $a^{\prime} \in K$ and hence from regularity of $K, a \in K$.
Conversely suppose that $a \in K$. Let $a^{\prime} \in V_{\alpha}^{\beta}(a)$ then $\left(a^{\prime} \beta a, a^{\prime} \beta a \alpha a^{\prime} \beta a\right) \in \xi$ and $a \alpha a^{\prime} \beta a \in K$ i.e, $\left(a, a^{\prime} \beta a\right) \in \rho$ by definition of ρ. Thus $a \in \operatorname{Ker} \rho$. Hence $K=K e r \rho$.

We now prove the converse part of the Theorem. Let us suppose that ρ is a ip - congruence on S. We show that $(\operatorname{tr} \rho, \operatorname{Ker} \rho)$ is an ip - congruence pair and $\rho=\rho_{(\text {tro }, \text { Ker } \rho)}$. Let $a, b \in \operatorname{ker} \rho$ and let $V_{\alpha}^{\beta}(a) \neq \phi$. Hence $a \rho=e \rho$ and $b \rho=f \rho$ for some γ-idempotent e and δ-idempotent f. Now ape implies $a \alpha b \rho$ e γb e γf. Since S is a right inverse Γ-semigroup e $\gamma f \in E_{\delta}$ and hence $a \alpha b \in \operatorname{Ker} \rho$. Thus $\operatorname{Ker} \rho$ is a partial Γ-subsemigroup of S. Clearly $\operatorname{Ker} \rho$ contains $E(S)$. Let $a \in \operatorname{Ker} \rho$ and $a^{\prime} \in V_{\alpha}^{\beta}(a)$. We show that $a^{\prime} \in \operatorname{Ker} \rho$. Since $a \in \operatorname{Ker} \rho, a \rho=e \rho$ for some $e \in E_{\gamma}$.

Now $a^{\prime}=a^{\prime} \beta a \alpha a^{\prime} \rho a^{\prime} \beta e \gamma a^{\prime}=a^{\prime} \beta e \gamma e \gamma a^{\prime} \rho a^{\prime} \beta a \alpha e \gamma a^{\prime} \rho a^{\prime} \beta a \alpha a \alpha a^{\prime}$. Since $\left(a^{\prime} \beta a\right) \alpha$ $\left(a \alpha a^{\prime}\right) \in E_{\beta}, a^{\prime} \in K \operatorname{Ker} \rho$. Thus Ker ρ is regular. Next let $a \in S$ and $a^{\prime} \in$ $V_{\alpha}^{\beta}(a)$ and $k \in \operatorname{Ker} \rho$ where $V_{\gamma}^{\delta}(k) \neq \phi$. Since $k \in \operatorname{Ker} \rho, k \rho=e \rho$ for some μ idempotent e. Now since S is a right inverse Γ-semigroup, $\left(a^{\prime} \beta e \mu a\right) \alpha\left(a^{\prime} \beta e \mu a\right)=$ $a^{\prime} \beta\left(e \mu a \alpha a^{\prime} \beta e\right) \mu a=a^{\prime} \beta\left(a \alpha a^{\prime} \beta e\right) \mu a=a^{\prime} \beta e \mu a$ i.e, $a^{\prime} \beta e \mu a \in E_{\alpha}$.
Now $a^{\prime} \beta k \gamma a \rho a^{\prime} \beta e \mu a$ and hence $a^{\prime} \beta k \gamma a \in \operatorname{Ker} \rho$ i.e, $\operatorname{Ker} \rho$ is self conjugate. Thus $\operatorname{Ker} \rho$ is a normal partial Γ-subsemigroup of S. We now prove that $(\operatorname{tr} \rho, \operatorname{Ker} \rho)$ is an ip - congruence pair for S. Since ρ is a ip - congruence and for $a^{\prime} \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}, a^{\prime} \beta e \gamma a \in E_{\alpha}, \operatorname{tr} \rho$ is a normal ip - congruence. Now let $a \in S$ and $a^{\prime} \in V_{\alpha}^{\beta}(a)$ and $e \in E_{\gamma}$ be such that $e \gamma a \in \operatorname{ker} \rho$ and $\left(e, a \alpha a^{\prime}\right) \in \operatorname{tr} \rho$. Now a ρ (aגa') $\beta a \rho$ e $\gamma a \rho f$ for some $f \in E(S)$ since $e \gamma a \in \operatorname{Ker} \rho$. Hence condition (i) of Definition 2.10 is satisfied. Next let $a \in \operatorname{Ker} \rho$ and $e \in E_{\gamma}$ and let $a^{\prime} \in V_{\alpha}^{\beta}(a)$. Now since $a \in \operatorname{Ker} \rho, a \rho=f \rho$ for some δ-idempotent f and $a^{\prime} \rho=g \rho$ for some μ-idempotent g.
Now $a \alpha e \gamma a^{\prime}=a \alpha e \gamma a^{\prime} \beta a \alpha a^{\prime} \rho f \delta e \gamma g \mu f \delta g \rho f \delta e \gamma f \delta g \rho e \gamma f \delta g \rho e \gamma a \alpha a^{\prime}$. Now since $a \alpha e \gamma a^{\prime}, e \gamma a \alpha a^{\prime} \in E_{\beta}$, we have $\left(a \alpha e \gamma a^{\prime}, e \gamma a \alpha a^{\prime}\right) \in \operatorname{tr} \rho$. Thus condition (ii) of definition 2.10 is also satisfied. Finally we show that $\rho=\rho_{(t r \rho, K e r \rho)}$ i.e, we prove $(a, b) \in \rho$ if and only if for all $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a)$ and for all $b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b), a \alpha_{1} b^{\prime} \in \operatorname{Ker} \rho$ and $\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in \operatorname{tr} \rho$. Suppose $(a, b) \in \rho$ and $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a), b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b)$. Now $a \alpha_{1} b^{\prime} \rho b \alpha_{2} b^{\prime}$ since ρ is an ip - congruence. Again since $b \alpha_{2} b^{\prime}$ is a β_{2}-idempotent we can say that $a \alpha_{1} b^{\prime} \in \operatorname{Ker} \rho$. Now $a^{\prime} \beta_{1} a \rho a^{\prime} \beta_{1} b=a^{\prime} \beta_{1} b \alpha_{2} b^{\prime} \beta_{2} b \rho a^{\prime} \beta_{1} a \alpha_{1} b^{\prime} \beta_{2} b \rho$ $\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} a\right)=\left(a^{\prime} \beta_{1} a\right) \alpha_{1} b^{\prime} \beta_{2} a \alpha_{1} a^{\prime} \beta_{1} a \rho\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(a^{\prime} \beta_{1} a\right)=\left(b^{\prime} \beta_{2} b\right) \alpha_{2}$ $\left(a^{\prime} \beta_{1} a\right)=b^{\prime} \beta_{2} b \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \rho b^{\prime} \beta_{2}\left(a \alpha_{1} a^{\prime} \beta_{1} a\right)=b^{\prime} \beta_{2} a \rho b^{\prime} \beta_{2} b$. Now since $a^{\prime} \beta_{1} a$ and $b^{\prime} \beta_{2} b$ are α_{1}-idempotent and α_{2}-idempotent respectively, we have $\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in$ $\operatorname{tr} \rho$. Hence $\rho \subseteq \rho_{(\text {tr } \rho, K e r \rho)}$.
Conversely let $(a, b) \in S$ such that for all $a^{\prime} \in V_{\alpha_{1}}^{\beta_{1}}(a), b^{\prime} \in V_{\alpha_{2}}^{\beta_{2}}(b),\left(a^{\prime} \beta_{1} a, b^{\prime} \beta_{2} b\right) \in$ $\operatorname{tr} \rho$ and $a \alpha_{1} b^{\prime} \in \operatorname{Ker} \rho$.
Now

$$
\begin{aligned}
\left(a \alpha_{1} b^{\prime}\right) \beta_{2}\left(b \alpha_{2} a^{\prime}\right) \beta_{1}\left(a \alpha_{1} b^{\prime}\right) & =a \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2} b^{\prime} \\
& =a \alpha_{1}\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2} b^{\prime} \\
& =a \alpha_{1} b^{\prime}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(b \alpha_{2} a^{\prime}\right) \beta_{1}\left(a \alpha_{1} b^{\prime}\right) \beta_{2}\left(b \alpha_{2} a^{\prime}\right) & =b \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \alpha_{1} a^{\prime} \\
& =b \alpha_{2}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \alpha_{1} a^{\prime} \\
& =b \alpha_{2} a^{\prime}
\end{aligned}
$$

Hence $a \alpha_{1} b^{\prime} \in V_{\beta_{1}}^{\beta_{2}}\left(b \alpha_{2} a^{\prime}\right)$. Again since $a \alpha_{1} b^{\prime} \in \operatorname{Ker} \rho, b \alpha_{2} a^{\prime} \in \operatorname{Ker} \rho$ and let $\left(a \alpha_{1} b^{\prime}\right) \rho e$ and $\left(b \alpha_{2} a^{\prime}\right) \rho f$ for γ-idempotent e and δ-idempotent f. Now $a=$ $a \alpha_{1}\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(a^{\prime} \beta_{1} a\right) \rho a \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \rho\left(a \alpha_{1} b^{\prime}\right) \beta_{2}\left(b \alpha_{2} a^{\prime}\right) \beta_{1} a \rho e \gamma f \delta a=f \delta e \gamma f$ $\delta a \rho\left(b \alpha_{2} a^{\prime}\right) \beta_{1}\left(a \alpha_{1} b^{\prime}\right) \beta_{2}\left(b \alpha_{2} a^{\prime}\right) \beta_{1} a=b \alpha_{2}\left(a^{\prime} \beta_{1} a\right) \alpha_{1}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(a^{\prime} \beta_{1} a\right)=b \alpha_{2}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}$ $\left(a^{\prime} \beta_{1} a\right) \rho b \alpha_{2}\left(b^{\prime} \beta_{2} b\right) \alpha_{2}\left(b^{\prime} \beta_{2} b=b\right.$. i.e, $(a, b) \in \rho$. Hence the proof.

References

[1] F. Pastijn and M. Petrich., Congruences on regular semigroups, Trans. Amer. Math. Soc., 295(1986), 607-633.
[2] G.M.S. Gomes., R-unipotent congruences on regular semigroups, emigroup Forum, 31(1985), 265-280.
[3] J.M. Howie, An introduction to semigroup Theory, Clarendon Press, Oxford, 1995,
[4] K.S.S. Nambooripad, Structure of regular semigroups I, Mem. Amer. Math. Soc. 22 (1979), no. 224 .
[5] M.K. Sen, M.K. and N.K. Saha., On Г-semigroup I, Bull. Cal. Math. Soc., 78(1986), 180-186.
[6] N.K. Saha., On Г-semigroup II, Bull. Cal. Math. Soc, 79(1987), 331-335.
[7] N.K. Saha., On Γ-semigroup III, Bull. Cal. Math. Soc., 80(1988), 1-12.
[8] S. Chattopadhyay., Right inverse Г-semigroup, Bull. Cal. Math. Soc., 93(6),(2001), 435-442.
[9] S. Chattopadhyay., Right orthodox Γ-semigroup, Southeast Asian Bull. of Mathematics,(2005)29, 1-18.
[10] S. Chattopadhyay., Sandwich sets on regular Γ-semigroup, Communicated.
Sovarani Memorial College, Jagatballavpur, Howrah -711408, West Bengal, INDIA
E-mail address: chatterjees04@yahoo.co.in

[^0]: Date: July 25, 2014 and, in revised form, April 28, 2015.
 2000 Mathematics Subject Classification. 20M17.
 Key words and phrases. Γ-Semigroup, right orthodox Γ-Semigroup, right inverse Γ - semigroup, left partial congruence, ip - congruence, normal subsemigroup, ip - congruence pair.

