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ON THE INVOLUTES FOR DUAL SPLIT QUATERNIONIC

CURVES

CUMALI EKICI AND HATICE TOZAK

Abstract. In this study, definition of involute-evolute curves for semi-dual

quaternionic curves in semi-dual spaces D4
2 known as dual split quaternion

and D3
1 are given and also some well-known theorems for involute-evolute dual

split quaternionic curves are obtained.

1. Introduction

The idea of a string involute is due to C. Huygens (1658) who is also known with
his work in optics. He discovered involutes while trying to build a more accurate
clock [4]. Later, the relations Frenet frame of involute-evolute couple in the space
E3 were given in [10].

In recent years, the theory of degenerate submanifolds has been treated by re-
searchers and some classical differential geometry topics have been extended to
Lorentz manifold. For instance, in [23], the authors extended and studied the
spacelike involute-evolute curves in Minkowski space-time ([2], [5], [23]).

The quaternions were first defined in 1843 by Hamilton. The dual quaternions
are extension of the real quaternions by means of the dual numbers [3], [22], and
they were first introduced by Clifford [6]. In D3 and D4 dual spaces, Serret Frenet
Formulas had been defined by Sivridağ [21]. Inclined curves and characterization
of quaternionic Lorentz manifolds were given in 1999 by Karadağ. In 2002, Serret
Frenet Formulas for quaternionic curves in Semi-Euclidean space were defined by
Tuna. The quaternionic inclined curves in the Semi-Euclidean space E4

2 were given

Date: January 1, 2013 and, in revised form, February 2, 2013.

1991 Mathematics Subject Classification. 53A04, 53A17, 53A25.
Key words and phrases. semi-dual quaternions, semi-dual space, Serret-Frenet formula,

involute-evolute curve couple.
The author is supported by ...

190



ON THE INVOLUTES FOR DUAL SPLIT QUATERNIONIC CURVES 191

in 2004 by Çöken and Tuna [8]. The split quaternions were identified with Semi-
Euclidean space E4

2 , while the vector part of split quaternions were identified with
Minkowski 3-space [11]. In 2009, Serret Frenet Formulas for split quaternionic
curves in Semi-Euclidean space E4

2 were given in [7].
In this paper, we firstly define involute-evolute curve couples in definition of

involute-evolute curves on D3
1 and D4

2. Later, we calculate Frenet frame of the
evolute curve by the help of the frame of the involute curve. We use the methods
expressed in [7]. (In this paper, we consider non-null curves, and a version of this
adapted to null curves can be studied.)

2. Preliminaries

In this section, we will give basic definitions of the dual spaces D3 and D4 and
then the semi-dual spaces D3

1 and D4
2.

A dual number has the form a + ξa∗ where a and a∗ are real numbers and
ξ = (0, 1) is the dual unit with the property that ξ2 = 0. The set of all dual
numbers form a comutative ring over the real number field and denoted by D [25].

D3 dual vector space (D - Module) can be written as

D3 = {(A1, A2, A3) : A1, A2, A3 ∈ D } .
The Euclidean inner-product of two dual vectors A, B ∈ D3 is defined as

〈, 〉 : D3 × D3 −→ D
(A,B) −→ 〈A,B〉 = 〈a, b〉+ ξ(〈a∗, b〉+ 〈a, b∗〉).

Given a dual vector A = a+ ξa∗, the norm of A is

‖A‖ = (〈A,A〉)
1
2 = ‖a‖+ ξ

〈a, a∗〉
‖a‖

, a 6= 0.

The cross-product of two dual vectors A,B ∈ D3 is defined as,

A ∧B = a ∧ b+ ξ (a ∧ b∗ + a∗ ∧ b) .
Similarly, D4 dual vector space can be written as

D4 = {(A1, A2, A3, A4) : A1, A2, A3, A4 ∈ D } .
The same definitions of inner-product, norm and cross-product are hold for D4.

The Lorentzian inner-product of two dual vectors A = a+ ξa∗ and B = b+ ξb∗,
a, b ∈ R3

1 is given as

〈A,B〉 = 〈a, b〉+ ξ(〈a∗, b〉+ 〈a, b∗〉)
with the signature (−,+,+) in R3

1. The D−module D3 with the Lorentzian inner-
product is called the semi-dual space D3

1 [24].
On the other hand, a semi-Euclidean inner-product of two dual vectors in D4,

A = a+ ξa∗ and B = b+ ξb∗, a, b ∈ R4
2, can be defined as

〈A,B〉 = 〈a, b〉+ ξ(〈a∗, b〉+ 〈a, b∗〉)
with the signature (−,−,+,+) in R4

2. The dual space D4 with the semi-Euclidean
inner-product is called the semi-dual space D4

2 or dual-split quaternion [12].
Let A be a dual vector in D3

1. If 〈a, a〉 < 0, then A is called timelike, if 〈a, a〉 > 0,
then A is called spacelike and if 〈a, a〉 = 0, then A is called lightlike (or null) vector.
A smooth curve on the semi-dual space D3

1 is said to be timelike, spacelike or null
if its tangent vectors are timelike, spacelike or null, respectively. Observe that, a
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timelike curve corresponds to the path of an observer moving at less than the speed
of light while the spacelike curves are faster and the null curves are equal to the
speed of light [17].

A real quaternion consists of a set of four ordered real numbers
a, b, c, d associated with four units e1, e2, e3 and 1, respectively. The three units
e1, e2 and e3 have the following properties:

(1)
e21 = e22 = e23 = −1,
e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2
e2 × e1 = −e3, e3 × e2 = −e1, e1 × e3 = −e2

A real quaternion q may be written as q = ae1 + be2 + ce3 + d.
Clearly, a quaternion q consists of two parts: the scalar part Sq = d and the

vector part Vq = ae1 + be2 + ce3. The set of all real quaternions is denoted by QR.
The multiplication of two real quaternions p and q is defined as

(2) p× q = Vp ∧ Vq − 〈Vp, Vq〉+ SpSq + SpVq + SqVp

where 〈, 〉 and ∧ are the inner-product and the cross-product on R3 , respectively.
The conjugate of the quaternion q is denoted by αq and defined as αq = Sq − Vq.

The h−inner-product of two quaternions is defined as

(3) h(p, q) =
1

2
(p× αq + q × αp), p, q ∈ QR

The real number [h(p, p)]1/2 is called the norm of the real quaternion p and is
denoted by ‖p‖ . Hence we obtain that

(4) ‖p‖2 = h(p, q) = a2 + b2 + c2 + d2.

It is easy to see that, if p = a1e1+b1e2+c1e3+d1 and q = a2e1+b2e2+c2e3+d2,
then

(5) h(p, q) = a1a2 + b1b2 + c1c2 + d1d2 [1].

Given two real quaternions p and p∗, we define the dual quaternion as
P=p+ξ p∗ and denote the set of dual quaternions by QD. For given A,B,C,D ∈ D,
we can write P = Ae1 + Be2 + Ce3 +D. Here SP = D is called the scalar part of
P and VP = Ae1 +Be2 + Ce3 is called the vector part of P.

The multiplication of two dual quaternions P and Q is defined as

(6) P ×Q = p× q + ξ (p× q∗ + p∗ × q)
where P = p+ξ p∗ and Q = q+ξq∗ and × shows the real quaternion multiplication.
It is clear that

(7) P ×Q = SPSQ + SPVQ + SQVP − 〈VP , VQ〉+ VP ∧ VQ
where 〈, 〉 is the inner product and ∧ is the cross-product on D3 . If P = SP + VP ,
then the conjugate of P is defined by αP = SP − VP . By using this definition, the
following properties can be easily proved:

(i) α(αP ) = P,
(ii) α(P ×Q) = αQ× αP.

The symmetric dual-valued bilinear form H is defined as

(8) H(P,Q) =
1

2
(P × αQ+Q× αP ).



ON THE INVOLUTES FOR DUAL SPLIT QUATERNIONIC CURVES 193

As a result, we obtain the followings :
1- For all elements P,Q of QD, we have

H(P,Q) = h(p, q) + ξ[h(p, q∗) + h(p∗, q)]

where h is the symmetric real-valued bilinear form.
2- If P = Ae1 +Be2 + Ce3 +D, then we have

H(P, P ) = A2 +B2 + C2 +D2.

3- ∀ P ∈ QD, the norm of P is defined by

‖P‖ = ‖p‖+ ξ
h(p, p∗)

‖p‖
,

and so

(9) ‖P‖2 = H(P, P ) = P × αP .

4- ∀ P ∈ QD, the scalar part and the vector part of P is

SP =
1

2
(P + αP ), VP =

1

2
(P − αP ).

As a result,

(i) if P + αP = 0, then P ∈ D−module,
in this case, P is called dual-spatial quaternion

(ii) if P − αP = 0, then P ∈ D,
in this case, P is called dual-temporal quaternion.

Let P and Q be two dual-spatial quaternion. If H(P,Q) = 0, we say that P
and Q are H−orthogonal[19].

A semi-real quaternion consists of a set of four ordered real numbers a, b, c, d
associated with four units e1, e2,e3 and 1, respectively. The three units e1, e2 and
e3 have the following properties:

(10)
i) ei × ei = −ε(ei), 1 ≤ i ≤ 3
ii) in R3

1, ei × ej = ε(ei)ε(ej)ek 1 ≤ i, j, k ≤ 3,
iii) in R4

2, ei × ej = −ε(ei)ε(ej)ek, 1 ≤ i, j, k ≤ 3,

where (ijk) is the even permutation of (123).
Notice here that,

ε(ei) =

{
−1 , ei timelike
+1 , ei spacelike

.

As a notation, we denote the semi-real quaternions by Qν with an index ν = 1, 2
such that

Qν =

{
q | q = ae1 + be2 + ce3 + d, a, b, c, d ∈ R

e1, e2, e3 ∈ R3
1, hν(ei, ei) = ε(ei), 1 ≤ i ≤ 3

}
.

The multiplication of two semi-real quaternions p and q is defined as

p× q = Vp ∧ Vq − 〈Vp, Vq〉+ SpSq + SpVq + SqVp

where 〈, 〉 and ∧ are the inner-product and the cross-product on R3
1, respectively.

The conjugate of the quaternion q is denoted by αq and defined as αq = Sq − Vq.
For every p, q ∈ Qν , the h−inner-product hν : Qν × Qν −→ D of p and q is

defined as:
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h1(p, q) =
1

2
[ε(p)ε(αq)(p× αq) + ε(q)ε(αp)(q × αp)] for R3

1

and

h2(p, q) =
−1

2
[ε(p)ε(αq)(p× αq) + ε(q)ε(αp)(q × αp)] for R4

2.

The real number [hν(p, p)]1/2 is called the norm of semi-real quaternion p and is
denoted by ‖p‖ . Hence we see that

‖p‖2 = |hν(p, p)| = |ε(p)(p× αp)|.

Given q ∈ Qν , if q + αq = 0, then q is called semi-real spatial quaternion. If
q − αq = 0, q is called semi-real temporal quaternion. The set of semi-real spatial
quaternions is isomorphic to R3

1 .
In general, we can write that

q =
1

2
[q + αq] +

1

2
[q − αq].

For p, q ∈ Qν , if h(p, q) = 0, p and q are called h−orthogonal. If the norm of q
is unit, then it is called unit semi-real quaternion and denoted by q0. So,

Nq =
√
|q × αq| =

√
|−a2 − b2 + c2 + d2|

and

q0 =
q

Nq
=

ae1 + be2 + ce3 + d√
|−a2 − b2 + c2 + d2|

([8],[20]).

Let p and p∗ be two semi-real quaternions. We define the semi-dual quater-
nion as P = p+ ξ p∗ and denote the set of semi-dual quaternions by QD,ν with an
index ν = 1, 2 such that

QD,ν =
{
P | P = Ae1 +Be2 + Ce3 +D, A,B,C,D ∈ D, e1, e2, e3 ∈ R3

1

}
.

We will use H1(ei, ei) = εi, i = 0, 1, 2 for D3
1 and H2(ei, ei) = ε(ei), i = 0, 1, 2, 3

for D4
2 . The multiplication of two dual quaternions P and Q is defined as

P ×Q = p× q + ξ (p× q∗ + p∗ × q) where P = p+ ξ p∗ and Q = q + ξq∗ and ×
shows the quaternion multiplication. It is clear that

(12) P ×Q = SPSQ + SPVQ + SQVP − 〈VP , VQ〉+ VP ∧ VQ
where 〈, 〉 is the inner product and ∧ is the cross-product on D3

1 . If P = SP +VP ,
then the conjugate of P is defined by αP = SP − VP . By using this, the following
properties can be easily proved:

(i) α(αP ) = P,
(ii) α(P ×Q) = αQ× αP.

For every P,Q ∈ QD,ν , we define the symmetric dual-valued bilinear form
Hν : QD,ν ×QD,ν −→ D as

(13) H1(P,Q) =
1

2
[ε(P )ε(αQ)(P × αQ) + ε(Q)ε(αP )(Q× αP )] for D3

1
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and

(14) H2(P,Q) =
−1

2
[ε(P )ε(αQ)(P × αQ) + ε(Q)ε(αP )(Q× αP )] for D4

2.

The following results may be obtained:
1- For all elements P,Q of QD,ν , we have

Hν(P,Q) = hν(p, q) + ξ[hν(p, q∗) + hν(p∗, q)]

where h is the symmetric real-valued bilinear form.
2- If P = Ae1 +Be2 + Ce3 +D, then we have

Hν(P, P ) = −A2 −B2 + C2 +D2.

3- ∀ P ∈ QD,ν , the norm of P is defined by

‖P‖ = ‖p‖+ ξ
hν(p, p∗)

‖p‖
and so

(15) ‖P‖2 = |Hν(P, P )| = |ε(P )(P × αP )|.

4- ∀ P ∈ QD,ν , the scalar part and the vector part of P are

SP =
1

2
(P + αP ), VP =

1

2
(P − αP ).

As a result,

(i) if P + αP = 0, then P ∈ D−module,
in this case, P is called semi-dual-spatial quaternion

(ii) if P − αP = 0, then P ∈ D,
in this case, P is called semi-dual-temporal quaternion.

Let P and Q be two semi-dual spatial quaternion. If Hν(P,Q) = 0, we say that
P and Q are Hν−orthogonal.

Now, we give the Serret-Frenet formulas for a non-null semi-dual quater-
nionic curve in D3

1.

Consider the smooth curve β ⊂ D3
1 , {β ∈ Qν | β + αβ = 0} given by

β : I ⊂ R −→ Qν ⊂ D3
1

s −→ β(s) =
3∑
i=1

βi(s)ei.

Let s be the parameter along β. For any s ∈ I, if {t(s), n1(s), n2(s)} is the Serret-
Frenet frame and k(s), r(s) are the curvatures, then we have the following formulas

(16)
t′ = ε(n1)kn1

n′1 = ε(t)[ε(t)ε(n1)rn2 − kt]
n′2 = −ε(n2)rn1

where t(s) = t+ ξt∗, n1(s) = n1 + ξn∗1 and n2(s) = n2 + ξn∗2 with the Serret-Frenet
frame {t(s), n1(s), n2(s)} of R3

1.

If a curve is a non-null semi-dual quaternionic curve, then the Serret-Frenet
formulas in D4

2 are defined as following :
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Consider the smooth curve γ ⊂ D4
2,

γ : I −→ QD,ν ⊂ D4
2

s −→ γ(s) =
4∑
i=1

βi(s)ei, e4 = 1.

with β4(s)e4 = D(s), D(s) = d(s) + ξd∗(s). For any s ∈ I, if {T (s), N1(s), N2(s),
N3(s)} is the Serret-Frenet frame of dual-split quaternionic curve, then

(17)

T ′ = ε(N1)KN1

N ′1 = ε(n1)kN2 − ε(N1)ε(t)KT
N ′2 = −ε(t)kN1 + ε(n1)[r − ε(T )ε(t)ε(N1)K]N3

N ′3 = −ε(n2)[r − ε(T )ε(t)ε(N1)K]N2

where T (s) = T+ξT ∗, N1(s) = N1+ξN∗1 , N2(s) = N2+ξN∗2 and N3(s) = N3+ξN∗3
with the Serret-Frenet frame {T (s), N1(s),
N2(s), N3(s)} of R4

2 and K = ε(N1) ‖T ′‖ [7].

3. THE INVOLUTES OF THE SEMI-DUAL CURVES IN D3
1

Definition 3.1. Let M1, M2 ⊂ D3
1 be two curves which are given by (I, β) and

(I, β∗) coordinate neighbourhoods, respectively. Let Frenet frame of M1 and M2

be {t, n1, n2} and {t∗,n∗1, n∗2}, respectively. M2 is called the involute of M1(M1 is
called the evolute of M2) if

(18) H1(t, t∗) = 0.

Theorem 3.1. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, β) and (I, β∗) coordinate neighbourhoods, respectively. The distance between
the points β(s) ∈M1 and β∗(s∗) ∈M2 is given by

d(β(s), β∗(s)) = ε0 |c− s| , c=dual constant.

Proof. If M2 is the involute of M1, we have

(19) β∗(s) = β(s) + λ(s)t(s)

Let us derivate both side with respect to s:

(20)
dβ∗

ds
=
dβ

ds
+
dλ

ds
t+ λ

dt

ds

Because of
dt

ds
= t

′
= ε1kn1,

(21)
dβ∗

ds
= (1 +

dλ

ds
)t+ λε1kn1

where s and s∗are arc parameters of M1 and M2, respectively.
Thus we have

(22) t∗
ds∗

ds
= (1 +

dλ

ds
)t+ λε1kn1.

By using the equation (22), we have

(23) H1(t, t∗)
ds∗

ds
= (1 +

dλ

ds
)H1(t, t) + λε1kH1(t, n1).
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From the definition of the involute-evolute curve couple, H1(t, t∗) = 0. Thus we
obtain

(24) 1 +
dλ

ds
= 0 and λ = c− s, c = dual constant.

From the definition of the distance on Lorentzian space, we easily find

(25)
d(β(s), β∗(s)) = ‖β∗(s)− β(s)‖

= ε0 |c− s| .

�

Theorem 3.2. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, β) and (I, β∗) coordinate neighbourhoods, respectively. Let Frenet frames of
M1 and M2 in the points β(s) ∈M1 and β∗(s∗) ∈M2 be {t,n1, n2} and {t∗,n∗1, n∗2},
respectively. For the curvature and torsion of curve M2, we have

k∗ =
ε∗1

(c− s)k
√
|ε0k2 + ε2r2|.

Proof. If M2 is the involute of M1, we have

β∗(s) = β(s) + λ(s)t(s).

Let us derivate both side with respect to s. From equations (22) and (24), we obtain

(26) t∗
ds∗

ds
= (c− s) ε1kn1

where s and s∗are arc parameters of M1 and M2, respectively. We can find

(27)
ds∗

ds
= ε∗0ε1 (c− s) k.

Thus we have

(28) t∗ = ε∗0n1.

Hence {t∗(s), n1(s)} is linear dependent. That’s why we consider that

(29) t∗(s) = n1(s).

By derivating t∗ and using equations (16), (27) and (29), then we get

(30) ε∗1k
∗n∗1 =

ε∗0ε1
(c− s) k

[ε0[ε0ε1rn2 − kt]] .

Then, by the norm of the both side of the equation (30), we have

(31) k∗ =
ε∗1

(c− s)k
√
|ε0k2 + ε2r2|.

�

Theorem 3.3. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, α) and (I, β) coordinate neighbourhoods,respectively. Let Frenet frames of M1

and M2 in the points β(s) ∈ M1 and β∗(s∗) ∈ M2 be {t,n1, n2} and {t∗,n∗1, n∗2},
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respectively, and let the curvature and torsion of curves M1 and M2 be k, r and k∗,
r∗, respectively. We have

n∗1 =
ε∗1ε
∗
0√

|ε∗1(ε2r2 + ε0k2)|
[ε0(ε0ε1rn2 − kt)]

n∗2 =
1√

|ε∗1(ε2r2 + ε0k2)|
(ε2rt+ ε1kn2)

r∗ =
ε2(k

′
r − kr′

)

(ε2r2 + ε0k2)(c− s)k
.

Proof. By using equation (30) and (31), we get

(32) n∗1 =
ε∗1ε
∗
0√

|ε∗1(ε2r2 + ε0k2)|
[ε0(ε0ε1rn2 − kt)] .

From n2 = ε0ε1 (t× n1), we find

n∗2 = ε∗0ε
∗
1 (t∗ × n∗1)

n∗2 = ε∗0ε
∗
1

(
n1 ×

ε∗1ε
∗
0√

|ε∗1(ε2r2 + ε0k2)|
[ε0(ε0ε1rn2 − kt)]

)

n∗2 =
1√

|ε∗1(ε2r2 + ε0k2)|
(ε2rt+ ε1kn2).(3.1)

By derivating n∗2 and using this result in equation (16), we obtain

(34) r∗ =
ε∗0ε
∗
1ε
∗
2ε2(k

′
r − kr′

)

(ε2r2 + ε0k2)(c− s)k
.

�

4. THE INVOLUTES OF THE SEMI-DUAL CURVES IN D4
2

Definition 4.1. Let M1, M2 ⊂ D4
2 be two curves which are given by (I, β) and

(I, β∗) coordinate neighbourhoods, respectively. Let Frenet frame of M1 and M2

be {T ,N1, N2, N3} and {T ∗,N∗1 , N∗2 , N∗3 }, respectively. M2 is called the involute of
M1(M1 is called the evolute of M2) if

(35) H2(T, T ∗) = 0.

Theorem 4.1. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, γ) and (I, γ∗) coordinate neighbourhoods, respectively. The distance between
the points γ(s) ∈M1 and γ∗(s∗) ∈M2 is given by

d(γ(s), γ∗(s)) = |c− s| , c = dual constant.

Proof. If M2 is the involute of M1, we have

(36) γ∗(s) = γ(s) + λ(s)T (s).

Let us derivate both side with respect to s:

(37)
dγ∗

ds
=
dγ

ds
+
dλ

ds
T + λ

dT

ds
.
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Because of
dT

ds
= T

′
= ε(N1)KN1,

(38)
dγ∗

ds
= (1 +

dλ

ds
)T + λε(N1)KN1

where s and s∗are arc parameters of M1 and M2, respectively. Thus we have

(39) T ∗
ds∗

ds
= (1 +

dλ

ds
)T + λε(N1)KN1.

Taking inner product with t this equation’s both side, we have

(40) H2(T, T ∗)
ds∗

ds
= (1 +

dλ

ds
)H2(T, T ∗) + λε1KH(T,N1).

From the definition of the involute-evolute curve couple, H2(T, T ∗) = 0. Thus we
obtain

(41) 1 +
dλ

ds
= 0 and λ = c− s, c=dual constant.

From the definition of the distance on Lorentzian space, we easily find

(42)
d(γ(s), γ∗(s)) = ‖γ∗(s)− γ(s)‖

= |c− s| .

�

Theorem 4.2. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, γ) and (I, γ∗) coordinate neighbourhoods, respectively. Let Frenet frames of
M1 and M2 in the points γ(s) ∈ M1 and γ∗(s∗) ∈ M2 be {T,N1, N2, N3} and
{T ∗, N∗1 , N∗2 , N∗3 }, respectively. For the curvature and torsion of curve M2, we
have

K∗(s∗) =
|ε(N∗1 )|

√
|ε(N2)k2 + ε(T )K2|
(c− s)K

.

Proof. If M2 is the involute of M1, we have

γ∗(s) = γ(s) + λ(s)T (s).

Let us derivate both side with respect to s. From equations (39) and (41), we obtain

(43) T ∗
ds∗

ds
= ε(N1) (c− s)KN1

where s and s∗are arc parameter of M1 and M2, respectively. We can find

(44)
ds∗

ds
= |ε(T ∗)| |(c− s)|K.

Thus we have

(45) T ∗ = |ε(T ∗)| ε(N1)N1.

Hence {T ∗(s), N1(s)} is linear dependent. We consider that

(46) T ∗(s) = N1(s).

By derivating T ∗ and using equations (17), (44) and (46), then we get

(47) ε(N∗1 )K∗N∗1 =
|ε(T ∗)|
|(c− s)| k

(ε1kN2 − ε(N1)ε1KT ) .
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Then, by the norm of the both side of equation (47), we have

(48) K∗(s∗) =
|ε(N∗1 )|

√
|ε(N2)k2 + ε(T )K2|
(c− s)K

.

�

Theorem 4.3. Let (M1, M2) be the involute-evolute curve couple which are given
by (I, γ) and (I, γ∗) coordinate neighbourhoods, respectively. Let Frenet frames of
M1 and M2 in the points γ(s) ∈ M1 and γ∗(s∗) ∈ M2 be {T ,N1, N2, N3} and
{T ∗,N∗1 , N∗2 , N∗3 }, respectively, and let the curvature and torsion of curves M1 and
M2 be K, r, k and K∗, r∗, k ,respectively. we have

N∗1 =
ε(N∗1 ) |ε(N1)|√
|ε(N2)k2 + ε(T )K2|

(ε1kN2 − ε(N1)ε1KT )

N∗2 =
ε(T ∗)√

|ε∗1(ε2r2 + ε0k2)|
(ε2ε0rN2 + ε(T )kT )

N∗3 =
ε(T ∗)ε2ε0√
|ε∗1(ε2r2 + ε0k2)|

(−ε(T )T + ε1kN2).

Proof. By using equations (47) and (48), we get

(49) N∗1 =
ε(N∗1 ) |ε(N1)|√

||ε(N2)| k2 + |ε(T )|K2|
(ε1kN2 − ε(N1)ε1KT ) .

From equalities N2 = ε(T ) (n1 × T ), n2 × N1 = ε1ε2N2 and t × N1 = −ε(T )T ,
we find

N∗2 = ε(T ∗) (n∗1 × T ∗)

N∗2 =
ε(T ∗)ε∗1ε

∗
0√

|ε∗1(ε2r2 + ε0k2)|
(ε2ε0rN2 + ε(T )kT ).50(4.1)

If we use similar step as equation (50) and equality N3 = ε(T ) (n2 × T ), then

N∗3 = ε(T ∗) (n∗2 × T ∗)

N∗3 =
ε(T ∗)ε2ε0√
|ε∗1(ε2r2 + ε0k2)|

(−ε(T )T + ε1kN2).

�
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