
Konuralp Journal of Mathematics
Volume 3 No. 2 pp. 211–218 (2015) c©KJM

OSCILLATION OF A CLASS OF NONLINEAR DIFFERENCE

EQUATIONS OF SECOND ORDER WITH OSCILLATING

COEFFICIENTS

MUSTAFA KEMAL YILDIZ

Abstract. In this paper, we study asymptotic behaviour of solutions of the

following second-order difference equation:

∆
[
a(n)∆

[
x(n)+r(n)F (x(n−ρ))

]]
+p(n)G (x(n− τ))−q(n)G (x(n− σ)) = s(n),

where n ∈ N0 := N ∪ {0}, {r(n)}n∈N0
and {s(n)}n∈N0

are sequences of real
numbers, {p(n)}n∈N0

and {q(n)}n∈N0
are nonnegative sequences of real num-

bers, {a(n)}n∈N0
is positive, ρ, τ, σ ≥ 0 are integers and F,G are continuous

functions satisfying the usual sign condition; i.e., F (u)/u,G(u)/u > 0 for
u ∈ R\{0}. Various ranges of the sequence {r(n)}n∈N0

are considered, and

illustrating examples are provided to show applicability of the results.

1. Introduction

In the literature, all the papers concerning second-order equations deal with
asymptotic behaviour of all solutions of delay difference equations have the following
form:

∆ [a(n)∆ [x(n) + r(n)x(n− ρ)]] + p(n)x(n− τ) = f(n),

where n ∈ N0, {r(n)}n∈N0
is of single sign, {a(n)}n∈N0

and {p(n)}n∈N0
are nonneg-

ative sequences of real numbers, ρ, τ ≥ 0 are integers and {f(n)}n∈N0
is a sequence

of real numbers (see [1, 2]). Here, the forward difference operator ∆ is defined as
∆x(n) := x(n+ 1)− x(n) and ∆2x(n) := ∆ [∆x(n)] for n ∈ N0.

In this paper, depending on the sign of the sequence {r(n)}n∈N0
, we investigate

the oscillatory and asymptotic behavior of solutions of the second-order neutral
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nonlinear difference equation with positive and negative coefficients having the fol-
lowing form:
(1.1)
∆ [a(n)∆ [x(n) + r(n)F (x(n− ρ))]] + p(n)G (x(n− τ))− q(n)G (x(n− σ)) = s(n),

where n ∈ N0, {r(n)}n∈N0 and {s(n)}n∈N0 are allowed to oscillate, {p(n)}n∈N0 and
{q(n)}n∈N0 are nonnegative, {a(n)}n∈N0 is positive, ρ, τ, σ ≥ 0 are integers. To
the best of our knowledge, in the literature, there is no work done on second-order
difference equations involving oscillating coefficients inside the neutral part, and
positive and negative coefficients outside the neutral part. Moreover, some of our
results are not restricted with boundedness of the solutions. Also the readers are
referred to the paper [3] which introduces a new method for

∆ [a(n)∆ [x(n) + r(n)x(n− ρ)]] + p(n)x(n− τ)− q(n)x(n− σ) = s(n).

In [4], the authors study the following difference equation

∆

[
a(n)∆

[
x(t) +

∑
i∈R

ri(n)x(n− ρi)

]]
+
∑
i∈P

pi(n)x(n−τi)−
∑
i∈Q

qi(n)x(n−σi) = f(n),

and state new results depending on three different ranges of the sequence
{∑

i∈R ri(n)
}
n∈N0

.

Our results here extend the results of [4] for nonlinear equations, also see the results
in the paper [5] where the author gives results for the existence of positive solutions.

For the fundamentals on the oscillation theory, the readers are referred to the
books [6, 7, 8].

Let δ := max{ρ, τ, σ}. As is usual, a solution x of (1.1) is a sequence of real
numbers defined for all integers satisfying n ≥ −σ, and satisfies (1.1) identically for
all n ∈ N0. It is also known that (1.1) has a unique solution x if an initial sequence
x0 is given to hold x(n) = x0(n) for n = −δ,−δ + 1, . . . , 1. Throughout the paper,
for convenience, we do not consider eventually null solutions of (1.1).

2. Main Results

In this section, we give sufficient conditions for (1.1) to be almost oscillatory,
that is every solution of (1.1) oscillates or tends to zero at infinity. We state our
primary assumptions as follows:

(H1) 0 < F (u)/u ≤ M and N1 ≤ G(u)/u ≤ N2 for all u 6= 0 and some positive
constants M, N1, N2,

(H2) There exists a pair of nonnegative real numbers r−, r+ such that either one
the followings are true:
{i} −r− ≤ r(n) ≤ r+ holds for all sufficiently large n , and that [r− + r+]M <

1 holds,
{ii} r− ≤ r(n) ≤ r+ holds for all sufficiently large n and, satisfying Mr− >

1,
{iii} −r− ≤ r(n) ≤ −r+ holds for all sufficiently large n and satisfying

Mr+ > 1,
(H3)

∑∞
n (1/a(n)) is divergent,

(H4) {i} δ ≥ 1 holds, where δ = τ − σ,
{ii} {h(n)}n∈N0 defined by h(n) := p(n)−q(n−δ) is an eventually positive

sequence of reals,
{iii}

∑∞
n h(n) is divergent,
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{iv}
∑∞
n (1/a(n))

∑n−1
k=n−δ q(k) is convergent,

(H5) There exists a sequence {S(n)}n∈N0 such that limn→∞ S(n) exists and
∆ ((1/a(n))∆S(n)) = s(n) holds for all n ∈ N0.

Theorem 2.1. Assume that (H1), (H2){i}, (H3), (H4){i–iv} and (H5) hold, then
every solution of (1.1) oscillates or tends to zero at infinity.

Proof. Let (1.1) have a nonoscillatory solution x, which does not tend to zero at
infinity. Without loss in the generality, we may suppose that x is eventually positive,
the case where x is eventually negative is very similar and thus we omit. There
exists n1 ∈ N0 such that x(n) > 0 for all n ≥ n1. From (H2){i} and (H4){iv}, we
may find n2 ≥ n1 + δ such that

(2.1) N2

∞∑
n=n2

1

a(n)

n−1∑
k=n−δ

q(k) <
1

2

(
1− r−

)
holds. For n ≥ n2, set

(2.2) y(n) := x(n) + r(n)F (x(n− ρ))

and

(2.3) z(n) := y(n)−
n−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)G (x(l − σ))− S(n).

Using the fact that x is a solution of (1.1) and (H4){i,ii}, we have

∆w(n) =∆ [a(n)∆y(n)]− [q(n)G (x(n− σ))− q(n− δ)G (x(n− τ))]− s(n)

=− p(n)F (x(n− τ)) + q(n− δ)G(x(n− τ))

≤− p(n)G(x(n− τ)) + q(n− δ)G(x(n− τ))

=− [p(n)− q(n− δ)]G(x(n− τ))

=− h(n)G (x(n− τ)) ≤ 0(2.4)

for all n ≥ n2, where w is defined by w(n) := a(n)∆z(n) for n ≥ n2. Clearly, w is
eventually nonincreasing. Then, from (H4){ii,iii} and (2.4), we have either w < 0
or w > 0 for all n ≥ n3 for some n3 ≥ n2. Consider the following possible ranges:

(C1) w(n) < 0 holds for all n ≥ n3. We first claim that

(2.5) lim
n→∞

z(n) = −∞

holds. Considering the definition of w, we may write

(2.6) ∆z(n) ≤ w(n3)

a(n)
< 0

for all n ≥ n3, which proves that (2.5) is true by summing up from n3 to
∞ because of (H3). Hence, (H5) and (2.5) implies that

(2.7) lim
n→∞

[z(n) + S(n)] = −∞

holds. Next, we claim that x is bounded. If it is not the case, from (2.7),
there exists T ≥ n3,

(2.8) x(T ) = max{x(n) : n3 ≤ n ≤ T} and z(T ) + S(T ) < 0.
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Therefore, considering (H2){i}, (2.1), (2.3) and (2.8), we obtain the follow-
ing contradiction:

0 >z(T ) + S(T ) = y(T )−
N−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)G (x(l − σ))

≥x(T )− r−x(T − ρ)−N2

N−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)x(l − σ)

≥

(
1− r− −N2

N−1∑
k=n2

1

a(k)

k−1∑
l=k−δ

q(l)

)
x(T )

≥1

2

(
1− r−

)
x(T ) ≥ 0.

Thus, by (H2){i}, (H5), (2.1)–(2.3), we see that z is bounded. This is a
contradiction to (2.5). Hence, this case is not possible.

(C2) w (n) > 0 for all n ≥ n3. In this case, we see that L is a nonnegative
constant, where L := limn→∞ w(n). Considering (H4){iii} and summing
up (2.4) from n3 to ∞, we obtain

(2.9) ∞ > w(n3)− L = N1

∞∑
n=n3

h(n)x(n− τ),

which implies that lim infn→∞ x(n) = 0 and ` ∈ (0,∞) are true, where
` := lim supn→∞ x(n). Note that, z has limit at infinity because ∆z > 0
holds since a > 0 holds. Because of the boundedness of x, monotonicity
of z, (H4){iv}, (H5) and (2.3), we infer that y has a finite limit at infin-
ity. Now, we prove the contradiction that ` = 0 holds. For this purpose,
pick two increasing divergent sequences of integers {ζn}n∈N0 , {ξn}n∈N0 such
that limn→∞ x(ζn) = ` and limn→∞ x(ξn) = 0 hold. Without loss in the
generality, we may suppose that limn→∞ x(ζn − ρ) and limn→∞ x(ξn − ρ)
exist because of the boundedness of x, and it is trivial that all these limits
are not greater than `. From (2.2), we can estimate that

y(ζn)− y(ξn) =x(ζn) + r(ζn)F (x(ζn − ρ))− [x(ξn) + r(ξn)F (x(ξn − ρ))]

≥x(ζn)− r−F (x(ζn − ρ))−
[
x(ξn) + r+F (x(ξn − ρ))

]
≥x(ζn)− r−Mx(ζn − ρ)− x(ξn)− r+Mx(ξn − ρ)

is true for all n ∈ N0, which yields the inequality

0 ≥
(
1−

(
r− + r+

)
M
)
`

by letting n tend to infinity, and this implies that ` = 0 holds by (H2){i}.
A contradiction.

Contradictions appear in both possible distinct cases. Hence, every solution of
(1.1) oscillates or tends to zero at infinity. �

Theorem 2.2. Assume that (H1), (H2){ii}, (H3), (H4){i–iv}, and (H5) hold, then
every solution of (1.1) oscillates or tends to zero at infinity.
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Proof. Assume that (1.1) has an eventually positive solution x, which does not tend
to zero at infinity. Pick n1 ∈ N0 such that x(n) > 0 for all n ≥ n1. From (H2){ii}
and (H4){iv}, we may find n2 ≥ n1 + δ such

(2.10) M

∞∑
n=n2

1

a(n)

n−1∑
k=n−δ

q(k) <
1

2

holds. Set y, z and w as in the proof of Theorem 2.1, then we have (2.4) for all
n ≥ n2 for some n2 ≥ n1. It is not hard to prove that w < 0 is not possible by
following the steps in (C1) of the proof of Theorem 2.1. Then, by following the
steps in (C2) of the proof of Theorem 2.1, we learn that lim infn→∞ x(n) = 0 and
` ∈ (0,∞) are true, where ` is the superior limit of x, and y has a finite limit at
infinity. Now, we show that ` = 0 holds. Pick two increasing divergent sequences
of integers {ξn}n∈N0

, {ζn}n∈N0
as in the proof of Theorem 2.1. Without loss in the

generality, we may suppose that limn→∞ x(ξn+ρ) and limn→∞ x(ζn+ρ) exist. We
can estimate that

y(ξn + ρ)− y(ζn + ρ) =x(ξn + ρ) + r(ξn + ρ)F (x(ξn))− [x(ζn + ρ) + r(ζn + ρ)F (x(ζn))]

≤x(ξn + ρ) + r+Mx(ξn)− r−Mx(ζn)

is true for all n ∈ N0, which yields to the inequality

0 ≤
(
1 + r−M

)
`

by letting n tend to infinity, and this implies that ` = 0 by (H2){ii}. This is a
contradiction. Hence, every solution of (1.1) oscillates or tends to zero at infinity.

�

The proof of the following theorem is very similar to that of Theorem 2.2, and
thus we omit.

Theorem 2.3. Assume that (H3), (H2){iii}, (H3), (H4){i–iv} and (H5) hold, then
every bounded solution of (1.1) oscillates or tends to zero at infinity.

3. Applications

To illustrate the applicability of our main results in § 2, we give the following
examples.

Example 3.1. Consider the following neutral nonlinear difference equation:

∆2

[
x(n) +

2

5
(−1)n

x(n− 2)|x3(n− 2)|
|x3(n− 2)|+ 1

]
+

n

n2 + 1

x(n− 3)
(
|x3(n− 3)|+ 1

)
|x3(n− 3)|+ 3

(3.1)

− 1

3n
x(n− 1)

(
|x3(n− 1)|+ 1

)
|x3(n− 1)|+ 3

=
2

(n+ 1)(n+ 2)(n+ 3)
.

For this equation, we see that a(n) ≡ 1, r(n) = 2(−1)n/5, ρ = 2, p(n) = 1/(n+ 1),
τ = 3, q(n) = 1/3n, σ = 1, Hence, we have r− = r+ = 2/5, r− + r+ = 4/5 < 1,
δ = τ −σ = 3−1 = 2, h(n) = p(n)−q(n−δ) = 1/(n+1)−1/3n−2 → 0+ as n→∞
and S(n) = 1/ (n+ 1) for n ∈ N0. It is not hard to see that

∞∑
n

h(n) =

∞∑
n

(
n

n2 + 1
− 1

3n−2

)
=∞,
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and
∞∑
n=2

(
n−1∑
k=n−δ

q(k)

)
=

∞∑
n=2

(
n−1∑
k=n−2

1

3k

)
= 2

are true. Therefore, all conditions of Theorem 2.1 are satisfied, and thus every
solution of (3.1) oscillates or tends to zero at infinity. The following graphic belongs
to the solution with the initial conditions x(−3) = x(−2) = x(−1) = x(0) = x(1) =
1 and of 70 iterates:

Figure 1. Graphic of (n, x(n))

Next, we give another example.

Example 3.2. Consider the following neutral nonlinear difference equation:

∆

[
1

n
∆

[
x(n) + 3

x(n− 3)|x(n− 3)|
|x(n− 3)|+ 1

]]
+

n2

n3 + 1

x(n− 2) (|x(n− 2)|+ 3)

|x(n− 2)|+ 5
(3.2)

− 1

7n
x(n− 1) (|x(n− 1)|+ 3)

|x(n− 1)|+ 5
=

2

(n+ 2)(n+ 3)(n+ 4)
.

For this equation, we see that a(n) = 1/n, r(n) = 3, ρ = 3, p(n) = n2/(n3 + 1),
τ = 2, q(n) = 1/7n, σ = 1. Hence, we have r− = r+ = 3 > 1, δ = τ−σ = 2−1 = 1,
h(n) = p(n)−q(n−δ) = n2/(n3+1)−1/7n−1 → 0+ as n→∞ and S(n) = 1/(n+2)
for n ∈ N0. It is not hard to see that

∞∑
n

h(n) =

∞∑
n

(
n2

n3 + 1
− 1

7n−1

)
=∞,

and
∞∑
n=1

(
1

a(n)

n−1∑
k=n−δ

q(k)

)
=

∞∑
n=1

n

7n−1
=

49

36

are true. Therefore, all conditions of Theorem 2.2 are satisfied, and thus every
solution of (3.2) oscillates or tends to zero at infinity. The following graphic belongs
to the solution with the initial conditions x(−3) = x(−2) = x(−1) = x(0) = x(1) =
1 and of 70 iterates:
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Figure 2. Graphic of (n, x(n))

Next, we give another example.

Example 3.3. Consider the following neutral nonlinear difference equation:

∆

[
1

n
∆

[
x(n)− 2

x3(n− 1)

x2(n− 1) + 1

]]
+

n2

n3 + 1

x(n− 3)(x2(n− 3) + 2)

x2(n− 3) + 3
(3.3)

− 1

5n
x(n− 2)(x2(n− 2) + 2)

x2(n− 2) + 3
= 0.

For this equation, we see that a(n) = 1/n, r(n) = 1/4, p(n) = n2/(n3 + 1), τ = 3,
q(n) = 1/5n, σ = 1. Hence, we have r+ = 2, r−1 = 2, δ = τ − σ = 3 − 2 = 1,
h(n) = p(n)− q(n− δ) = n2/(n3 + 1)− 1/5n−1 → 0+ as n→∞ and S(n) ≡ 0 for
n ∈ N0. Also, one can shown that

∞∑
n

h(n) =

∞∑
n

(
n2

n3 + 1
− 1

5n−1

)
=∞,

and

∞∑
n=1

(
1

a(n)

n−1∑
k=n−δ

q(k)

)
=

∞∑
n=1

n

5n−1
=

25

16

hold. Therefore, all bounded solutions of (3.3) oscillate or tend to zero at infinity
by Theorem 2.3.

The following graphic probably belongs to an unbounded solution with the initial
conditions x(−3) = x(−2) = x(−1) = x(0) = x(1) = 1 and of 75 iterates:
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Figure 3. Graphic of (n, x(n))

Thus, the equation may also admit unbounded solutions.
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