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COMPUTATION OF MONODROMY MATRIX ON FLOATING

POINT ARITHMETIC WITH GODUNOV MODEL

ALİ OSMAN ÇIBIKDİKEN AND KEMAL AYDIN

Abstract. The results computed monodromy matrix on floating point arith-

metics according to Wilkinson Model have been given in [1]. In this study,

new results have been obtained by examining floating point arithmetics with

respect to Godunov Model the results in [1]. These results have been applied

to Schur stability of system of linear difference equations with periodic coef-

ficients. Also the effect of floating point arithmetics has been investigated on

numerical examples.
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1. Introduction

Consider the following linear difference equation system with period T

(1.1) xn+1 = Anxn, An = An+T , n ∈ Z,

where An is N × N dimensional periodic matrix.
It is important to investigate Schur stability in order to know the behaviours

of solution without compute the solutions of the system (1.1) [2, 3, 4, 5, 6]. In
literature, the parameter is used as Schur stability parameter. It is well-known
that

(1.2) ω1(A, T ) =

∥∥∥∥∥
∞∑
k=0

(X∗
T )

k
(XT )

k

∥∥∥∥∥ < ∞

implies Schur stability of the the system (1.1), where the matrix XT is monodromy
matrix of the the system (1.1) [7], and system (1.1) is Schur stable if and only if
the monodromy matrix XT is Schur stable [2, 3]. According to spectral criterion,
the monodromy matrix XT is Schur stable if and only if each eigenvalue of the
monodromy matrix XT belongs to unit disc (|λ(XT )| < 1) [4]. It is clear that
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Schur stability of the the system (1.1) depends on the monodromy matrix XT in
both cases. The computation processes on computer are related to floating point.
The errors are produced when computer is used to perform calculations, by nature.
Therefore, Schur stability of the the system (1.1) and quality of Schur stability
are affected by occured errors on computation of the monodromy matrix XT . In
[1], the results on computation of the monodromy matrix XT on floating point
arithmetics with Wilkinson Model have been given. As parallel the results with
Wilkinson Model in [1], the new results have been obtained according to floating
point arithmetics with Godunov Model in this study. In Section 2 of this study,
floating point numbers and arithmetics with respect to Godunov Model and linear
difference equations with periodic coefficients are investigated. Some results on
the computation of fundamental matrix of linear difference equations with periodic
coefficients in floating point arithmetics are obtained in Section 3. The obtained
results are applied to Schur stability of the system (1.1) in Section 4. Finally, these
results are supported with numerical examples.

2. Preliminaries

2.1. Floating Point Numbers and Arithmetic, Godunov Model. The set

(2.1) F = F (γ, p−, p+, k) = {0} ∪
{
z|z = ±γp(z)mγ(z)

}
is called as the set of computer numbers or Format set [2]. The set F is also
characterized by the parameters ε0, ε1 and ε∞, where

(2.2) ε0 = γp−−1, ε1 = γ1−k, ε0 = γp−−1, ε∞ = γp+

(
1− 1

γk

)
are defined (see, for example, [2, 9]). In the represent (2.1), p− ∈ Z

−, k, p+ ∈ Z
+

for p− ≤ p ≤ p+, p ∈ Z and
(2.3)

mγ(z) =
m1

γ
+

m2

γ2
+ ...+

mk

γk
; mj ∈ Z, 0 ≤ mj ≤ γ − 1, j = 1, 2, · · · , k (m1 �= 0)

is defined [2, 8, 9, 10, 11, 12, 13]. In [2, 9, 14], the operator

(2.4) fl : D → F, f l(z) = z (1 + α) + β; ‖α‖ ≤ u, ‖β‖ ≤ v, αβ = 0

converts the elements of D = [−ε∞, ε∞] ∩ R to floating point numbers, where

(2.5) u =

{
ε1
2 , rounding

ε1, chopping
, v =

{
ε0
2 , rounding

ε0, chopping
.

We have called as Godunov Model, the model which is defined by the equation
(2.4). A vector x = (xi) ∈ D

N and a matrix A = (aij) ∈ MN (D) can be stored
to memory by floating point as fl(x) = (fl (xi)) ; fl(A) = (fl (aij)). The upper
bound of error that storing vector x by floating point is

(2.6) ‖x− fl(x)‖ ≤ u ‖x‖+ v
√
N,

[2, 10], the upper bound of the error storing matrix fl(A) is

(2.7) ‖A− fl(A)‖ ≤ u
√
N ‖A‖+ vN,

[2]. The upper bound errors of fl(AB) and fl(A+B) are

(2.8) ‖AB − fl(AB)‖ ≤ uN2 ‖A‖ ‖B‖+ vN,



COMPUTATION OF MONODROMY MATRIX ON FLOATING POINT ARITHMETIC WITH GODUNOV MODEL25

(2.9) ‖(A+B)− fl(A+B)‖ ≤ uN ‖A+B‖+ vN,

where u, v are defined by (2.5) and A,B ∈ MN (D) [9].

2.2. Linear Difference Equations with Periodic Coefficients. The system
(1.1) and for given x0 ∈ R

N initial value

(2.10) xn+1 = Anxn, x0 − initial vector, n ≥ 0

is called linear difference-Cauchy problem with periodic coefficients. If I is identity
matrix and

(2.11) Xn+1 = AnXn, X0 = I, n ≥ 0

is solution of Cauchy problem, then

(2.12) Xn =

n−1∏
j=0

Aj = An−1An−2 · · ·A0,

is called fundamental matrix of the system (2.10).

(2.13) XT =
T−1∏
j=0

Aj = AT−1AT−2 · · ·A0,

is called monodromy matrix of the system (2.10) [2, 3, 7, 15, 16, 17]. The solution
of the system (2.10) is

(2.14) XkT+m = XmXk
Tx0

where x0 ∈ R
N inital value xn = Xnx0, n = kT +m , 0 ≤ m ≤ T − 1 [3, 7].

3. Computation of Fundamental Matrix

In this chapter, the computation of fundamental matrix Xn that given by (2.10)
will be investigated on floating point arithmetics with Godunov model. Let us
introduce some definitions and symbols before calculation.

Let

Qn,s =
n−1∏
j=s

Aj ; Qn,s ×Qs,r = Qn,r; Qn,0 = Xn, Qn,n = I (I − identity matrix).

qn,s =
n−1∏
j=s

‖Aj‖ ; qn,s × qs,r = qn,r; qn,0 = qn, qn,n = 1,

r−1∑
j=s

kj =

{
0−matrix, kj-matrix function

0, kj-real function
,

where r ≤ s ≤ n and r, s, n are natural numbers. Linear Cauchy problem can be
written

(3.1) fl(An−1Yn−1) = Yn = An−1Yn−1 + ϕn; Y0 = I, n = 1, 2, 3, · · · ,
where An−1 ∈ MN (F), Yn = fl(An−1Yn−1) is computation of the matrix Xn by
floating point numbers. Matrix ϕn is the computation error of An−1Yn−1 and it is
clear that ϕ1 = 0.
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It is clear that the solution of difference-Cauchy problem (2.14) is

(3.2) Yn = Xn +
n∑

k=2

Qn,kϕk.

Let us investigate the upper boundary of ϕn in equation (2.14) according to

(3.3) ‖ϕn‖ ≤ u
√
Nqn,n−1 ‖Yn−1‖+ vN, Y0 = I, n = 2, 3, · · · .

Theorem 3.1. The inequality

‖ϕn‖ ≤ u
√
N

(
1 + u

√
N
)n−2

qn+uvN
3
2

n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn,j+vN, n = 2, 3, · · ·

holds, where ϕn is error from (3.3) and u, v are defined by (2.5).

Proof. 1. Let consider

‖ϕk‖ ≤ u
√
Nqk,k−1 ‖Yk−1‖+ vN, ‖Yk‖ ≤ qk,k−1 ‖Yk−1‖+ ‖ϕk‖ , k = 2, 3, · · ·

from (3.3). Let us write Yn−1 and ϕn−1

‖ϕn‖ ≤ u
√
Nqn,n−1 ‖Yn−1‖+ vN

in this inequality.

‖ϕn‖ ≤ u
√
Nqn,n−1 (qn−1,n−2 ‖Yn−2‖+ ‖ϕn−1‖) + vN

≤ u
√
Nqn,n−2 ‖Yn−2‖+ u

√
Nqn,n−1

(
u
√
Nqn−1,n−2 ‖Yn−2‖+ vN

)
+ vN

= u
√
N

(
1 + u

√
N
)
qn,n−2 ‖Yn−2‖+ uvN

√
Nqn,n−1 + vN.

If we write Yn−2 and ϕn−2 in last inequality, we can obtain

‖ϕn‖ ≤ u
√
N

(
1 + u

√
N
)
qn,n−2 (qn−2,n−3 ‖Yn−3‖+ ‖ϕn−2‖) + uvN

√
Nqn,n−1 + vN

≤ u
√
N

(
1 + u

√
N
)
qn,n−3 ‖Yn−3‖+ u

√
N

(
1 + u

√
N
)
qn,n−2

(
u
√
Nqn−2,n−3 ‖Yn−3‖+ vN

)
+ uvN

√
Nqn,n−1 + vN

≤ u
√
N

(
1 + u

√
N
)2

qn,n−3 ‖Yn−3‖+ uvN
√
N

(
1 + u

√
N
)
qn,n−2 + uvN

3
2 qn,n−1 + vN.

We can iterate to n same way, and

‖ϕn‖ ≤ u
√
N

(
1 + u

√
N
)n−2

qn+uvN
3
2

n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn,j+vN, n = 2, 3, · · ·

is obtained. �

Proof. 2.

‖ϕn‖ ≤ u
√
Nqn,n−1 ‖Yn−1‖+ vN, n = 2, 3, · · ·

can be written by (3.3).

‖Yn−1‖ ≤
(
1 + u

√
N
)n−2

qn−1 + vN
n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn−1,j
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can be written from Theorem 3.2. We ordered in this inequality,

‖ϕn‖ ≤ u
√
Nqn,n−1

⎡
⎣(1 + u

√
N
)n−2

qn−1 + vN
n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn−1,j

⎤
⎦+ vN

= u
√
N

(
1 + u

√
N
)n−2

qn + uvN
3
2 qn,n−1

n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn−1,j + vN

= u
√
N

(
1 + u

√
N
)n−2

qn + uvN
3
2

n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn,j + vN.

So the inequality

‖ϕn‖ ≤ u
√
N

(
1 + u

√
N
)n−2

qn + uvN
3
2

n−1∑
j=2

(
1 + u

√
N
)n−j−1

qn,j + vN

is obtained. �

Theorem 3.2. The inequality

‖Yn‖ ≤
(
1 + u

√
N
)n−1

qn + vN
n∑

j=2

(
1 + u

√
N
)n−j

qn,j , n = 1, 2, 3, · · ·

holds, where Yn is defined by (3.1) and u, v are defined by (2.5).

Proof. Consider

‖ϕk‖ ≤ u
√
Nqk,k−1 ‖Yk−1‖+ vN ; ‖Yk‖ ≤ qk,k−1 ‖Yk−1‖+ ‖ϕk‖ , k = 2, 3, · · ·

by (3.3).

‖Yn‖ ≤ qn,n−1 ‖Yn−1‖+ ‖ϕn‖ ≤ qn,n−1 ‖Yn−1‖+ u
√
Nqn,n−1 ‖Yn−1‖+ vN(3.4)

=
(
1 + u

√
N
)
qn,n−1 ‖Yn−1‖+ vN(3.5)

is obtained by (3.1). It can be obtained Cauchy problem of first-order variable
coefficient difference-inequality

‖Yn‖ ≤
(
1 + u

√
N
)
qn,n−1 ‖Yn−1‖+ vN, ‖Y1‖ = ‖A0‖ , n = 2, 3, · · · .

By iteration,

‖Yn‖ ≤
(
1 + u

√
N
)
qn,n−1

[(
1 + u

√
N
)
qn−1,n−2 ‖Yn−2‖+ vN

]
+ vN

=
(
1 + u

√
N
)2

qn,n−2 ‖Yn−2‖+
(
1 + u

√
N
)
vNqn,n−1 + vN

≤
(
1 + u

√
N
)2

qn,n−2 ‖Yn−2‖+ vN
[
1 +

(
1 + u

√
N
)
qn,n−1

]
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is written. Yn−2 is written in the inequality,

‖Yn‖ ≤
(
1 + u

√
N
)2

qn,n−2

[(
1 + u

√
N
)
qn−2,n−3 ‖Yn−3‖+ vN

]
+ vN

[
1 +

(
1 + u

√
N
)
qn,n−1

]
=

(
1 + u

√
N
)3

qn,n−3 ‖Yn−3‖+
(
1 + u

√
N
)2

vNqn,n−2 + vN
[
1 +

(
1 + u

√
N
)
qn,n−1

]
=

(
1 + u

√
N
)3

qn,n−3 ‖Yn−3‖+ vN

[
1 +

(
1 + u

√
N
)
qn,n−1 +

(
1 + u

√
N
)2

vNqn,n−2

]
.

By iteration in the same way, the inequality

‖Yn‖ ≤
(
1 + u

√
N
)n−1

qn + vN
n∑

j=2

(
1 + u

√
N
)n−j

qn,j

is obtained. �
Theorem 3.3. The inequality

‖Xn − Yn‖ ≤ u
√
N

n∑
k=2

(
1 + u

√
N
)k−2

qn+uvN
3
2

n∑
k=2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qn,j+vN

n∑
k=2

qn,k

holds, where the matrix Xn is fundamental matrix of the system (1.1), the matrix
Yn is computed fundamental matrix by (3.1), and u, v are defined by (2.5).

Proof. From (3.2),

‖Xn − Yn‖ ≤ ‖An−1An−2 · · ·A2ϕ2 +An−1An−2 · · ·A3ϕ3 + · · ·+An−1ϕn−1 + ϕn‖
is written, where fundamental matrix Xn of the system (1.1) and computed funda-
mental matrix Yn.

‖ϕk‖ ≤ u
√
N

(
1 + u

√
N
)k−2

qk + uvN
3
2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qk,j + vN

is known from

‖Xn − Yn‖ ≤
n∑

k=2

qn,k ‖ϕk‖

and Theorem 3.1. So

‖Xn − Yn‖ ≤
n∑

k=2

qn,k

⎡
⎣u√N

(
1 + u

√
N
)k−2

qk + uvN
3
2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qk,j + vN

⎤
⎦

is obtained. We arranged last inequality,

‖Xn − Yn‖ ≤ u
√
N

n∑
k=2

(
1 + u

√
N
)k−2

qn+uvN
3
2

n∑
k=2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qn,j+vN
n∑

k=2

qn,k

is obtained. �
We can write easily Corollary 3.1 from

n∑
k=2

(
1 + u

√
N
)k−2

=

(
1 + u

√
N
)n−1

− 1

u
√
N

and Theorem 3.3.
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Corollary 3.1. The inequality

‖Xn − Yn‖ ≤
[(

1 + u
√
N
)n−1

− 1

]
qn+uvN

3
2

n∑
k=2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qn,j+vN
n∑

k=2

qn,k

holds, where the matrix Xn is fundamental matrix of the system (1.1) and the matrix
Yn is the computed matrix of the fundamental matrix Xn of the system (1.1), and
u, v are defined by (2.5).

4. Applying the results to Schur stability of periodic systems

Applying the results to Schur stability of periodic system in section 4 of [1] that
obtained with Wilkinson Model is available for results with Godunov Model. The
changes due to differences in models can be occured in the computations.

Let

(4.1) yn+1 = (An +Bn) yn, n ∈ Z,

where An = An+T and Bn = Bn+T , N -dimensional periodic (T -period). It is
called perturbed system of the system (1.1).

Continuity theorem on the monodromy matrix in [16] guarantees Schur stability
of the system (4.1) when the system (1.1) or matrix XT is Schur stable. The
following theorem which is application of continuity theorem can easily be obtained
as same to Theorem 4.1 in [1].

For T = 1, the system (1.1) transforms the system

xn+1 = Axn, n ∈ Z,

and it is called lineer difference equation system with constant coefficients. There-
fore, ω1(A, T ) can be written

ω1(A, T ) = ω(A), ω(A) =

∥∥∥∥∥
∞∑
k=0

(A∗)kAk

∥∥∥∥∥ .
Furthermore, in this case ω1(A, 1) is equal to ω(X1) = ω(A) [7, 17].

Theorem 4.1. If the matrix YT is Schur stable and the inequality

(4.2) ‖YT −XT ‖ ≤
√
‖YT ‖2 + 1

ω (YT )
− ‖YT ‖

holds, then the matrix XT is Schur stable, where the matrix YT is computed mon-
odromy matrix of XT and the matrix XT is perturbed matrix of YT .

We can obtain following corollary by n = T in Corollary 3.1.

Corollary 4.1. The inequality

‖XT − YT ‖ ≤
[(

1 + u
√
N
)T−1

− 1

]
qT+uvN

3
2

T∑
k=2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qT,j+vN
T∑

k=2

qT,k

holds, where the matrix XT is monodromy matrix of the system (1.1) and the matrix
YT is the computed matrix of the monodromy matrix Xn.

The Corollary 4.2 guarantees Schur stability of the system (1.1) (or monodromy
matrix XT ) when the computed matrix YT is Schur Stable.
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Corollary 4.2. Let monodromy matrix XT of the system (1.1) and the computed
matrix YT of the matrix XT on floating point arithmetic. If the computed matrix
YT is Schur stable and the inequality

Δ < Δs

holds then monodromy XT is Schur stable, where

Δ =

[(
1 + u

√
N
)T−1

− 1

]
qT +uvN

3
2

T∑
k=2

k−1∑
j=2

(
1 + u

√
N
)k−j−1

qT,j +vN

T∑
k=2

qT,k,

Δs =

√
‖YT ‖2 + 1

ω (YT )
− ‖YT ‖ .

Proof. It is clear from Theorem 4.1. �

5. Numerical Examples

The MVC (Matrix Vector Calculator) software has been used in numerical com-
putation to calculate the value ω(A) of matrix A by function QdaStab [18].

In the examples, let us denote rounding by r, chopping by c, spectral norm of a
matrix by ‖A‖ and let Δr = Δ(Y r

T ), Δ
c = Δ(Y c

T ), Δ
r
s = Δs(Y

r
T ), Δ

c
s = Δs(Y

c
T ).

Example 5.1. Let F = F(10,−3, 3, 3) and matrices

A0 =

[
0.855 0.0005
0.956 0.156

]
, A1 =

[
0.953 0.155
1.55 0.165

]
where A0, A1 ∈ M2(F). Let us investigate Schur stability, where T = 2. Mon-
odromy matrix X2 of the system (1.1) has been computed with

X2 =

[
0.962995 0.0246565
1.48299 0.026515

]
.

And the monodromy matrix X2 is not Schur stable, since ω(X2) = ∞.
If the matrix Y2 is computed matrix in F, the matrices

Y r
2 =

[
0.963 0.0247
1.48 0.0265

]
, Y c

2 =

[
0.962 0.0246
1.48 0.0265

]
,

are obtained. ω(Xr
2 ) = ∞, ω(Xc

2) = 2655.69 and so, computed matrix Y2 is Schur
stable by chopping, but it is not Schur stable by rounding.

Example 5.2. Let F = F(10,−5, 5, 5) and matrices

A0 =

⎡
⎣2.002 0.1 1.675

1.5 0.017 0.008955
0.002 3.986 0.00245

⎤
⎦ , A1 =

⎡
⎣0.005 0.6 0.04
0.006 0.009842 0.0083
1.2 1.986 0.00025

⎤
⎦ ,

A2 =

⎡
⎣ 0.02 0.1982 0.03

0.002 0.056 0.0475
0.75622 0.03 0.0008

⎤
⎦

where A0, A1, A2 ∈ M3(F). Let us investigate Schur stability, where T = 3. The
matrices

Y r
3 =

⎡
⎣0.18495 0.014755 0.063124
0.25894 0.0095870 0.096916
0.69334 0.12980 0.012398

⎤
⎦ , Y c

3 =

⎡
⎣0.18495 0.014754 0.063123
0.25893 0.0095869 0.096916
0.69333 0.12980 0.012397

⎤
⎦ ,
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are computed matrices in F. So, the values

ω(Y r
3 ) = 1.6621,Δr

s = 0.3213943129,Δr = 0.001247028

ω(Y c
3 ) = 1.66207,Δc

s = 0.3214029037,Δc = 0.002494142

are obtained. It seems that Δr < Δr
s and Δc < Δc

s. Therefore, in both cases, Corol-
lary 4.2 guarantees Schur stability of the monodromy matrix X3 in F(10,−5, 5, 5).

6. Conclusion

In this study, the effects of floating point arithmetic using Godunov Model on
computation of the monodromy matrix XT were investigated. The bounds were
obtained for ‖XT − YT ‖, where the matrix YT is the computed value of monodromy
matrix. The obtained results were applied to Schur stability of the system (1.1).
Further, these results were supported with numerical examples.
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