Konuralp Journal of Mathematics
Volume 4 No. 1 Pp. 45-53 (2016) ©KJM

ON THE W_{5}-CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS

D. G. PRAKASHA, VASANT CHAVAN AND KAKASAB MIRJI

Abstract

The object of the paper is to characterize generalized Sasakian-space-forms satisfying certain curvature conditions on W_{5}-curvature tensor. We characterize W_{5}-flat, ϕ - W_{5}-flat and ϕ - W_{5}-semisymmetric generalized Sasakian-space-forms.

1. Introduction

Generalized Sasakian-space-forms have become today a rather special topic in contact Riemannian geometry, but many contemporary works are concerned with the study of its properties and their related curvature tensor. The study of generalized Sasakian-space-forms was initiated by Algre et al., in [1] and then it was continued by many other authors. A generalized Sasakian-space-form is an almost contact metric manifold (M, ϕ, ξ, η, g) whose curvature tensor R is given by

$$
\begin{aligned}
R(X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{aligned}
$$

where f_{1}, f_{2}, f_{3} are differentiable functions on M and X, Y, Z are vector fields on M. In such case we will write the manifold as $M\left(f_{1}, f_{2}, f_{3}\right)$. This kind of manifolds appears as a natural generalization of the Sasakian-space-forms by taking: $f_{1}=\frac{c+3}{4}$ and $f_{2}=f_{3}=\frac{c-1}{4}$, where c denotes constant ϕ-sectional curvature. The ϕ-sectional curvature of generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ is $f_{1}+3 f_{2}$. Moreover, cosymplectic space-form and Kenmotsu space-form are also considered as particular types of generalized Sasakian-space-form. Generalized Sasakian-space-forms have

[^0]been studied in a number of papers from several points of view (for instance, [2]-[4], [6]-[8], [9]-[11], [13]-[17], etc).

In the context of generalized Sasakian-space-forms, Kim [11] studied conformally flat and locally symmetric generalized Sasakian-space-forms. Some symmetric properties of generalized Sasakian-space-forms with projective curvature tensor were studied by De and Sarkar [6] and Sarkar and Akbar [16]. In [13], Prakasha shown that every generalized Sasakian space-form is Weyl-pseudosymmetric. Hui [10] studied W_{2}-curvature tensor in generalized Sasakian-space-forms. Also, Prakasha and Nagaraja [14] studied quasi-conformally flat and quasi-confomally semisymmetric generalized Sasakian-space-forms. In a recent paper [8], De and Majhi studied ϕ-Weyl semisymmetric and ϕ-projectively semisymmetric generalized Sasakian-space-forms. Conharmonically flat generalized Sasakian-space-forms and conharmonically locally ϕ-symmetric generalized Sasakian-space-forms were studied in [17]. In a recent paper, Hui and Prakasha [9] studied certain properties on the CBochner curvature tensor of generalized Sasakian-space-forms. As a continuation of this study, in this paper we plan to characterize flatness and symmetry property of generalized Sasakian-space-forms regarding W_{5}-curvature tensor.

The paper is organized as follows: after preliminaries in Section 3, we study the W_{5}-flat generalized Sasakian space-forms. We prove that a generalized Sasakian-space-form is W_{5}-flat if and only if $f_{1}=3 f_{2} / 1-2 n=f_{3}$. In section 4 , we study ϕ - W_{5}-flat generalized Sasakian-space-form and obtain that a generalized Sasakian-space-form of dimension greater than three is ϕ - W_{5}-flat if and only if it is conformally flat. In the last section, we prove that a generalized Sasakian-space-form is ϕ - W_{5}-semisymmetric if and only if it is W_{5}-flat.

2. Preliminaries

An odd-dimensional Riemannian manifold (M, g) is said to be an almost contact metric manifold [5] if there exist on M a $(1,1)$ tensor field ϕ, a vector field ξ (called the structure vector field) and a 1-form η such that

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \phi \xi=0, \eta(\xi)=1, \eta(\phi X)=0 \tag{2.1}\\
g(X, \xi)=\eta(X), g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{gather*}
$$

for arbitrary vector fields X and Y. In view of (2.1) and (2.2), we have

$$
\begin{aligned}
g(\phi X, Y)=- & g(X, \phi), \quad g(\phi X, X)=0 \\
& \left(\nabla_{X} \eta\right)(Y)=g\left(\nabla_{X} \xi, Y\right) .
\end{aligned}
$$

Again, we know that in a generalized Sasakian space-form

$$
\begin{aligned}
(2 R 2) X, Y) Z & =f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{aligned}
$$

for any vector fields X, Y, Z on M, where R denotes the curvature tensor of M and f_{1}, f_{2}, f_{3} are smooth functions on the manifold. The Ricci operator Q and Ricci tensor S of the manifold of dimension $(2 n+1)$ are respectively given by

$$
\begin{equation*}
Q X=\left(2 n f_{1}+3 f_{2}-f_{3}\right) X-\left\{3 f_{2}+(2 n-1) f_{3}\right\} \eta(X) \xi \tag{2.4}
\end{equation*}
$$

$(2.5) S(X, Y)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y)-\left\{3 f_{2}+(2 n-1) f_{3}\right\} \eta(X) \eta(Y)$.

ON THE W_{5}-CURVATURE TENSOR OF GENERALIZED SASAKIAN-SPACE-FORMS 4
In addition to the relation (2.3)-(2.5), for an $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ the following relations also hold [1]:

$$
\begin{align*}
\eta(R(X, Y) Z) & =\left(f_{1}-f_{3}\right)\{g(Y, Z) \eta(X)-g(X, Z) \eta(Y)\} \tag{2.6}\\
R(X, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(Y) X-\eta(X) Y\} \tag{2.7}\\
R(\xi, X) Y & =\left(f_{1}-f_{3}\right)\{g(X, Y) \xi-\eta(Y) X\} \tag{2.8}
\end{align*}
$$

The W_{5}-curvature tensor on a $(2 n+1)$-dimensional generalized Sasakian-spaceform $M\left(f_{1}, f_{2}, f_{3}\right)$ is given by [12]

$$
\begin{equation*}
W_{5}(X, Y, Z, U)=R(X, Y, Z, U)+\frac{1}{2 n}\{g(X, Z) S(Y, U)-g(Y . U) S(X, Z)\} \tag{2.9}
\end{equation*}
$$

For $n \geq 1, M\left(f_{1}, f_{2}, f_{3}\right)$ is locally W_{5}-flat if and only if the W_{5}-curvature tensor vanishes, Also, notice that W_{5}-curvature tensor is symmetric with change of pairs of the vector fields and does not satisfies the cyclic property. A relativistic significance of W_{5}-curvature tensor has been explored by Pokhariyal [12],

In view of (2.6)-(2.8), it can be easily construct that in a $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$, the W_{5}-curvature tensor satisfies the following conditions:

$$
\begin{align*}
\eta\left(W_{5}(X, Y) Z\right) & =\left(f_{1}-f_{3}\right)\{g(Y, Z) \eta(X)\}-\frac{1}{2 n} \eta(Y) S(X, Z) \tag{2.10}\\
W_{5}(X, Y) \xi & =\left(f_{1}-f_{3}\right)\{\eta(Y) X-2 \eta(X) Y\}+\frac{1}{2 n} \eta(X) Q Y \tag{2.11}\\
\eta\left(W_{5}(X, Y) \xi\right) & =0 \tag{2.12}
\end{align*}
$$

3. W_{5}-flat generalized Sasakian-space-forms

Definition 3.1. A $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form is called W_{5}-flat if it satisfies the condition

$$
W_{5}(X, Y) Z=0
$$

for any vector fields X, Y and Z on the manifold.
Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 n+1)$-dimensional $(n>1) W_{5}$-flat generalized Sasakian space-form. Then, by Definition 3.1) and (2.9), we get

$$
\begin{equation*}
R(X, Y) Z=\frac{1}{2 n}\{S(X, Z) Y-g(X, Z) Q Y\} \tag{3.1}
\end{equation*}
$$

In view of (2.6) and (2.7), the above equation takes the form
(3.2) $R(X, Y) Z=-\frac{1}{2 n}\left[3 f_{2}+(2 n-1) f_{3}\right]\{\eta(X) \eta(Z) Y-g(X, Z) \eta(Y) \xi\}$.

Using (2.3) in (3.2) yields

$$
\begin{aligned}
& f_{1}\{g(Y, Z) X-g(X, Z) Y\}+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
+ & f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\} \\
(3 \boldsymbol{\exists}) & -\frac{1}{2 n}\left[3 f_{2}+(2 n-1) f_{3}\right]\{\eta(X) \eta(Z) Y-g(X, Z) \eta(Y) \xi\}
\end{aligned}
$$

Taking $Z=\phi Z$ in (3.3), we have

$$
\begin{aligned}
& f_{1}\{g(Y, \phi Z) X-g(X, \phi Z) Y\} \\
+ & f_{2}\left\{g\left(X, \phi^{2} Z\right) \phi Y-g\left(Y, \phi^{2} Z\right) \phi X+2 g(X, \phi Y) \phi^{2} Z\right\} \\
+ & f_{3}\{g(X, \phi Z) \eta(Y) \xi-g(Y, \phi Z) \eta(X) \xi \\
= & \frac{1}{2 n}\left[3 f_{2}+(2 n-1) f_{3}\right]\{g(X, \phi Z) \eta(Y) \xi\} .
\end{aligned}
$$

If we take $Y=\xi$, then we obtain from the above equation

$$
\begin{equation*}
-2 n\left(f_{1}-f_{3}\right) g(X, \phi Z) \xi=\left[3 f_{2}+(2 n-1) f_{3}\right] g(X, \phi Z) \xi \tag{3.4}
\end{equation*}
$$

Since $g(X, \phi Z) \xi \neq 0$, in general. Thus from (3.4), it follows that

$$
\begin{equation*}
2 n f_{1}+3 f_{2}-f_{3}=0 \tag{3.5}
\end{equation*}
$$

Again, we take $X=\xi$ in (3.3), we obtain

$$
\begin{align*}
& \left(f_{1}-f_{3}\right)\{g(Y, Z) \xi-\eta(Z) Y\} \tag{3.6}\\
= & \frac{1}{2 n}\left[3 f_{2}+(2 n-1) f_{3}\right] \eta(Z)\{Y-\eta(Y) \xi\}
\end{align*}
$$

Taking inner product with ξ of (3.6), we obtain

$$
\begin{equation*}
\left(f_{1}-f_{3}\right)\{g(Y, Z)-\eta(Z) \eta(Y)\}=0 \tag{3.7}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
f_{1}=f_{3} \tag{3.8}
\end{equation*}
$$

Since $g(Y, Z) \neq \eta(Y) \eta(Z)$, in general. From (3.5) and (3.8), it is easy to see that

$$
\begin{equation*}
f_{3}=\frac{3 f_{2}}{1-2 n} \tag{3.9}
\end{equation*}
$$

Thus in view of (3.8) and (3.9), we have

$$
\begin{equation*}
f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3} \tag{3.10}
\end{equation*}
$$

Conversely, suppose that (3.10) holds. Then from (2.4) and (2.5), we have $Q X=0$ and $S(X, Y)=0$, respectively.
Making use of this in (2.9), we get

$$
\begin{equation*}
W_{5}^{\prime}(X, Y, Z, U)=R^{\prime}(X, Y, Z, U) \tag{3.11}
\end{equation*}
$$

where $W_{5}^{\prime}(X, Y, Z, U)=g\left(W_{5}(X, Y) Z, U\right)$ and $R^{\prime}(X, Y, Z, U)=g(R(X, Y) Z, U)$.
Putting $Y=Z=e_{i}$ in (3.11) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} W_{5}^{\prime}\left(X, e_{i}, e_{i}, U\right)=S(X, U) \tag{3.12}
\end{equation*}
$$

Next, because of (2.3) and (3.11), we have

$$
\begin{align*}
& W^{\prime}(X, Y, Z, U) \tag{3.13}\\
= & f_{1}\{g(Y, Z) g(X, U)-g(X, Z) g(Y, U)\} \\
+ & f_{2}\{g(X, \phi Z) g(\phi Y, U)-g(Y, \phi Z) g(\phi X, U)+2 g(X, \phi Y) g(\phi Z, U)\} \\
+ & f_{3}\{\eta(X) \eta(Z) g(Y, U)-\eta(Y) \eta(Z) g(X, U) \\
+ & g(X, Z) \eta(Y) \eta(U)-g(Y, Z) \eta(X) \eta(U)\} .
\end{align*}
$$

Now, putting $Y=Z=e_{i}$ in (3.13) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{align*}
& \sum_{i=1}^{2 n+1} W_{5}^{\prime}\left(X, e_{i}, e_{i}, U\right) \tag{3.14}\\
= & 2 n f_{1} g(X, U)+3 f_{2} g(\phi X, \phi U)-f_{3}\{(2 n-1) \eta(X) \eta(U)+g(X, U)\} .
\end{align*}
$$

By virtue of $S(X, U)=0,(3.12)$ and (3.14) we have

$$
\begin{align*}
& 2 n f_{1} g(X, U)+3 f_{2} g(\phi X, \phi U) \tag{3.15}\\
-\quad & f_{3}\{(2 n-1) \eta(X) \eta(U)+g(X, U)\}=0
\end{align*}
$$

Putting $X=U=e_{i}$ in (3.15) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get $f_{1}=0$. Then in view of (3.10), $f_{2}=f_{3}=0$. Therefore, we obtain from (2.3) that

$$
\begin{equation*}
R(X, Y) Z=0 \tag{3.16}
\end{equation*}
$$

Using (3.15) and $S(X, Y)=Q X=0$, we have from (2.9) that $W_{5}(X, Y) Z=0$, That is, $M\left(f_{1}, f_{2}, f_{3}\right)$ is W_{5}-flat. This leads us to state the following:

Theorem 3.1. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form is W_{5}-flat if and only if $f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3}$.

4. $\phi-W_{5}$-flat generalized Sasakian-space-forms

Definition 4.1. A $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form is called $\phi-W_{5}$-flat if it satisfies the condition

$$
\begin{equation*}
\phi^{2} W_{5}(\phi X, \phi Y) \phi Z=0 \tag{4.1}
\end{equation*}
$$

for any vector fields X, Y and Z on the manifold.
First, taking $X=\phi X, Y=\phi Y$ and $Z=\phi Z$ in (2.9), we have

$$
\begin{align*}
& W_{5}(\phi X, \phi Y) \phi Z \tag{4.2}\\
= & R(\phi X, \phi Y) \phi Z+\frac{1}{2 n}\{g(\phi X, \phi Z) Q \phi Y-S(\phi X, \phi Z) \phi Y\}
\end{align*}
$$

Using (2.4) and (2.5) in (4.2), we get

$$
W_{5}(\phi X, \phi Y) \phi Z=R(\phi X, \phi Y) \phi Z
$$

In virtue of (2.3), we get from above equation

$$
\begin{align*}
& W_{5}(\phi X, \phi Y) \phi Z \tag{4.3}\\
= & f_{1}\{g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y\} \\
+ & f_{2}\left\{g(X, \phi Z) \phi^{2} Y-g(Y, \phi Z) \phi^{2} X+2 g(X, \phi Y) \phi^{2} Z\right\} .
\end{align*}
$$

Applying ϕ^{2} to both sides of (4.3), we have

$$
\begin{align*}
& \phi^{2} W_{5}(\phi X, \phi Y) \phi Z \tag{4.4}\\
= & \phi^{2}\left[f_{1}\{g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y\}\right. \\
+ & \left.f_{2}\left\{g(X, \phi Z) \phi^{2} Y-g(Y, \phi Z) \phi^{2} X+2 g(X, \phi Y) \phi^{2} Z\right\}\right]
\end{align*}
$$

Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 n+1)$-dimensional $(n>1) \phi$ - W_{5}-flat generalized Sasakian-space-form. Then, by Definition 4.1 and (4.4), we get

$$
\begin{align*}
& \phi^{2}\left[f_{1}\{g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y\}\right. \tag{4.5}\\
+\quad & \left.f_{2}\left\{g(X, \phi Z) \phi^{2} Y-g(Y, \phi Z) \phi^{2} X+2 g(X, \phi Y) \phi^{2} Z\right\}\right]=0
\end{align*}
$$

By virtue of (2.1) and (2.2), the above equation yields

$$
\begin{align*}
& f_{1}\{g(Y, Z) \phi X-\eta(Y) \eta(Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y\} \tag{4.6}\\
+\quad & f_{2}\left\{g(X, \phi Z) \phi^{2} Y-g(Y, \phi Z) \phi^{2} X+2 g(X, \phi Y) \phi^{2} Z\right\}=0 .
\end{align*}
$$

Taking inner product with U in (4.6), we obtain

$$
\begin{align*}
& f_{1}\{g(Y, Z) g(\phi X, U)-\eta(Y) \eta(Z) g(\phi X, U)-g(X, Z) g(\phi Y, U) \tag{4.7}\\
+ & \eta(X) \eta(Z) g(\phi Y, U)\}+f_{2}\left\{g(X, \phi Z) g\left(\phi^{2} Y, U\right)-g(Y, \phi Z) g\left(\phi^{2} X, U\right)\right. \\
+ & \left.2 g(X, \phi Y) g\left(\phi^{2} Z, U\right)\right\}=0
\end{align*}
$$

Putting $Y=Z=e_{i}$ in (4.7) and taking summation over $i, 1 \leq i \leq 2 n+1$, we get $3 f_{2} g(X, \phi U)=0$. Since $g(X, \phi U) \neq 0$, in general. Hence, it follows that

$$
\begin{equation*}
f_{2}=0 \tag{4.8}
\end{equation*}
$$

In (4.7) again putting $Y=U=e_{i}$, and taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
\left\{f_{1}+(2 n+1) f_{2}\right\} g(\phi X, Z)-f_{1}\{g(X, Z)-\eta(X) \eta(Z)\} \psi=0 \tag{4.9}
\end{equation*}
$$

where $\psi=$ Trace of ϕ. Plugging $X=Z=e_{i}$ in (4.9), and taking summation over $i, 1 \leq i \leq 2 n+1$, we obtain $\left\{(2 n-1) f_{1}+(2 n+1) f_{2}\right\}=0$. Which in view of (4.8) yields $f_{1}=0$. Hence, we have $f_{1}=f_{2}=0$.

Conversely, if $f_{1}=f_{2}=0$ then from (4.4) it follows that

$$
\begin{equation*}
\phi^{2} W_{5}(\phi X, \phi Y) \phi Z=0 \tag{4.10}
\end{equation*}
$$

That is, $M\left(f_{1}, f_{2}, f_{3}\right)$ is $\phi-W_{5}$-flat. Therefore, the converse holds when $f_{1}=f_{2}=$ 0 . Thus we are able to state the following:

Theorem 4.1. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form is $\phi-W_{5}$-flat if and only if $f_{1}=f_{2}=0$ holds.

In [11], U. K. Kim proved that for a $(2 n+1)$-dimensional generalized Sasakian-space-form the following holds:
(i) If $n>1$, then M is conformally flat if and only if $f_{2}=0$.
(ii) If M is conformally flat and ξ is a Killing vector field, then M is locally symmetric and has constant ϕ-sectional curvature.

In view of the first part of the above theorem of Kim we immediately obtain the following:

Theorem 4.2. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form is $\phi-W_{5}$-flat if and only if it is conformally flat.

Also, in view of the second part of the above theorem of Kim we get the following:
Theorem 4.3. $A(2 n+1)$-dimensional $(n>1) \phi-W_{5}$-flat generalized Sasakian-space-form with ξ as a Killing vector field is locally symmetric and has constant ϕ-sectional curvature.

5. ϕ - W_{5}-semisymmetric generalized Sasakian-space-forms

Definition 5.1. A $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ is called ϕ - W_{5}-semisymmetric if it satisfies the condition

$$
\begin{equation*}
W_{5}(X, Y) \cdot \phi=0 \tag{5.1}
\end{equation*}
$$

for any vector fields X, Y on the manifold.
Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 n+1)$-dimensional $(n>1) \phi$ - W_{5}-semisymmetric generalized Sasakian-space-form. The condition $W_{5}(X, Y) \cdot \phi=0$ implies that

$$
\begin{equation*}
\left(W_{5}(X, Y) \cdot \phi\right) Z=W_{5}(X, Y) \phi Z-\phi W_{5}(X, Y) Z=0 \tag{5.2}
\end{equation*}
$$

for any vector fields X, Y and Z. Now,

$$
\begin{equation*}
W_{5}(X, Y) \phi Z=R(X, Y) \phi Z+\frac{1}{2 n}\{g(X, \phi Z) Q Y-S(X, \phi Z) Y\} \tag{5.3}
\end{equation*}
$$

Using (2.3), (2.6) and (2.7) in (5.3), we get

$$
\begin{align*}
& =f_{1}\{g(Y, \phi Z) X-g(X, \phi Z) Y\}+f_{2}\{g(Y, Z) \phi X-g(X, Z) \phi Y+\eta(X) \eta(Z) \phi Y \tag{5.4}\\
& -\eta(Y) \eta(Z) \phi X-2 g(X, \phi Y) Z+2 g(X, \phi Y) \eta(Z) \xi\}+f_{3}\{g(X, \phi Z) \eta(Y) \xi \\
& -g(Y, \phi Z) \eta(X) \xi\}-\left[\frac{3 f_{2}+(2 n-1) f_{3}}{2 n}\right] g(X, \phi Z) \eta(Y) \xi
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\phi W_{5}(X, Y) Z=\phi R(X, Y) Z+\frac{1}{2 n}\{g(X, Z) \phi Q Y-S(X, Z) \phi Y\} \tag{5.5}
\end{equation*}
$$

By virtue of (2.3), (2.6) and (2.7) we obtain from (5.5) that
(5.6) $\phi W_{5}(X, Y) Z$
$=f_{1}\{g(Y, Z) \phi X-g(X, Z) \phi Y\}+f_{2}\{g(Y, \phi Z) X-g(X, \phi Z) Y+g(X, \phi Z) \eta(Y) \xi$
$-\quad g(Y, \phi Z) \eta(X) \xi-2 g(X, \phi Y) Z+2 g(X, \phi Y) \eta(Z) \xi\}+f_{3}\{\eta(X) \eta(Z) \phi Y$
$-\quad \eta(Y) \eta(Z) \phi X\}+\left[\frac{3 f_{2}+(2 n-1) f_{3}}{2 n}\right] \eta(X) \eta(Z) \phi Y$.
Substituting (5.3) and (5.5) in (5.2) yields

$$
\begin{align*}
& +\left(f_{2}-f_{3}\right)\{\eta(X) \eta(Z) \phi Y-\eta(Y) \eta(Z) \phi X-g(X, \phi Z) \eta(Y) \xi+g(Y, \phi Z) \eta(X) \xi\} \tag{5.7}\\
& -\left[\frac{3 f_{2}+(2 n-1) f_{3}}{2 n}\right]\{g(X, \phi Z) \eta(Y) \xi-\eta(X) \eta(Z) \phi Y\}=0
\end{align*}
$$

Putting $Y=\xi$ in (5.7), we obtain

$$
\begin{equation*}
\left[\frac{f_{3}-3 f_{2}-2 n f_{1}}{2 n}\right] g(X, \phi Z) \xi=\left(f_{1}-f_{3}\right) \eta(Z) \phi X \tag{5.8}
\end{equation*}
$$

Taking inner product with U, we get from (5.8)

$$
\begin{equation*}
\left.\left[\frac{f_{3}-3 f_{2}-2 n f_{1}}{2 n}\right] g(X, \phi Z)\right) \eta(U)=\left(f_{1}-f_{3}\right) \eta(Z) g(\phi X, U) \tag{5.9}
\end{equation*}
$$

Putting $X=U=e_{i}$ in (5.9), and then taking summation over $i, 1 \leq i \leq 2 n+1$, we get

$$
\begin{equation*}
\left(f_{1}-f_{3}\right) \eta(Z) \psi=0 \tag{5.10}
\end{equation*}
$$

where $\psi=$ Trace of ϕ. From (5.10), we get

$$
\begin{equation*}
f_{1}=f_{3} \tag{5.11}
\end{equation*}
$$

Making use of (5.11) in (5.8), we obtain

$$
\begin{equation*}
\left.\left[(1-2 n) f_{3}-3 f_{2}\right] g(X, \phi Z)\right) \xi=0 \tag{5.12}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
f_{3}=\frac{3 f_{2}}{1-2 n} \tag{5.13}
\end{equation*}
$$

Thus in view of (5.11) and (5.13), we have

$$
\begin{equation*}
f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3} \tag{5.14}
\end{equation*}
$$

Conversely, suppose (5.13) holds. Then in view of Theorem 3.1, we have $W_{5}=0$ and hence $W_{5}(X, Y) \cdot \phi=0$. Thus we can state the following:

Theorem 5.1. $A(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space-form is $\phi-W_{5}$-semisymmetric if and only if $f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3}$.

In [7], De et al., proved the following result:
Theorem 5.2. A (2n+1)-dimensional $(n>1)$ generalized Sasakian space-form is conharmonically flat if and only if $f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3}$.

Taking into account of Theorem 3.1, Theorem 5.1 and Theorem 5.2, now we may present the following theorem:
Theorem 5.3. Let $M\left(f_{1}, f_{2}, f_{3}\right)$ be a ($2 n+1$)-dimensional $(n>1)$ generalized Sasakian space-form. Then the following statements are equivalent:
(1) $M\left(f_{1}, f_{2}, f_{3}\right)$ is W_{5}-flat;
(2) $M\left(f_{1}, f_{2}, f_{3}\right)$ is ϕ - W_{5}-semisymmetric;
(3) $M\left(f_{1}, f_{2}, f_{3}\right)$ is conharmonically flat;
(4) $f_{1}=\frac{3 f_{2}}{1-2 n}=f_{3}$.

References

[1] P. Alegre, D. E Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 14 (2004), 157-183.
[2] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Diff. Geo. and its Application, 26 (2008), 656-666.
[3] P. Alegre and A. Carriazo, Submanifolds generalized Sasakian-space-forms, Taiwanese J. Math., 13 (2009), 923-941.
[4] P. Alegre and A. Carriazo, Generalized Sasakian-space-forms and conformal change of metric, Results Math., 59 (2011), 485-493.
[5] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer-Verlag, 1976.
[6] U. C. De and A. Sarkar, On the projective curvature tensor of generalized Sasakian-spaceforms, Quaestiones Mathematicae, 33 (2010), 245-252.
[7] U. C. De, R. N. Singh and S. K. Pandey, On the conharmonic curvature tensor of generalized Sasakian-space-forms, ISRN Geometry, (2012), Article ID 876276, 14 pages doi:10.5402/2012/876276
[8] U. C. De and P. Majhi, ϕ-semisymmetric generalized Sasakian-space-forms, Arab J Math Sci., 21 (2015), 170-178.
[9] S. K. Hui and D. G. Prakasha, On the C-Bochner curvature tensor of generalized Sasakian-space-forms, Proc. Natl. Acad. Sci., India. Sect. A Phys. Sci. 85(3) (2015), 401-405.
[10] S. K. Hui and A. Sarkar, On the W_{2}-curvature tensor of generalized Sasakian-space-forms, Math. Pannonica, 23(1) (2012), 113-124.
[11] U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note di Matematica, 26 (2006), 55-67.
[12] G. P. Pokhariyal, Relativistic significance of curvature tensors, Internat. J. Math \& Math. Sci.,5(1) (1982), 133-139.
[13] D. G. Prakasha, On generalized Sasakian-space-forms with Weyl-conformal curvature tensor, Lobachevskii J. Math., 33(3)(2012), 223-228.
[14] D. G. Prakasha and H. G. Nagaraja, On quasi-conformally flat and quasi-conformally semisymmetric generalized Sasakian-space-forms, Cubo (Temuco) 15(3) (2013), 59-70.
[15] D. G. Prakasha and V. Chavan On weak symmetries of generalized Sasakian-space-forms, Communications in Mathematics and Applications, 5 (3) (2014), 83-89.
[16] A. Sarkar and A. Akbar, Generalized Sasakian-space-forms with projective curvature tensor, Demonstr. Math., XLVII(3) (2014), 726-738.
[17] A. Sarkar, M. Sen and A. Akbar, Generalized Sasakian-space-forms with conharmonic curvature tensor, Palestine J. Math., 4 (1) (2015), 84-90.

Department of Mathematics, Karnatak University, Dharwad - 580 003, INDIA.
E-mail address: prakashadg@gmail.com, kcvasant@gmail.com, mirjikk@gmail.com

[^0]: Date: Received: November 16, 2015, Accepted: March 12, 2016.
 2000 Mathematics Subject Classification. 53C15, 53C25, 53D15.
 Key words and phrases. Generalized Sasakian-space-forms; W_{5}-curvature tensor; W_{5}-flat; ϕ -W_{5}-flat; ϕ - W_{5}-semisymmetric.

 The second author (Vasant Chavan) is thankful to University Grants Commission, New Delhi, India, for financial support in the form of Rajiv Gandhi National fellowship (F1-17.1/2013-14/RGNF-2013-14-SC-KAR-46330).

