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AN ALTERNATIVE TECHNIQUE FOR SOLVING ORDINARY
DIFFERENTIAL EQUATIONS

NESE DERNEK, FATIH AYLIKCI, AND SEVIL KIVRAK

ABSTRACT. In this paper, a new method for solving ordinary differential equa-
tions is given by using the generalized Laplace transform L,. Firstly, the
authors introduce a differential operator § that is called the d-derivative. A
relation between the £,-transform of the d-derivative of a function and the £,,-
transform of the function itself are derived. Then, the convolution theorem
is proven. Using obtained theorems, a few initial-value problems for ordinary
differential equations are solved as illustrations.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

The Laplace transform is defined by

(1.1) LU @) = [ ep(-oy)fla)da.

The following Laplace-type the Lo transform
(12) Lo{f(@)iy) = [wexp(-a*y?) f(a)d
0

was introduced by Yurekli and Sadek [10]. After then Aghili, Ansari and Sedghi [1]
derived the following complex inversion formula

c+io0
_ 1
13 LMLU@N =5 [ 2@ Vi explu)dy,
where Lo{f(z);/y} has a finite number of singularities in the left half plane
Re(y) < c¢. The generalized Laplace transform £, and the inverse generalized
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Laplace transform £, ! were introduced by Dernek and Aylikg in

(14) Lalf @iy} = [0 exp(-amy") (o)
0
c+i00
—1 ]- i n
(15) LMEWin) = o [ nLalf@iut b ep(ua”)dy,

respectively. The £, -transform is related to the Laplace transform with

1 i
(1.6) Lolf(z)iyt = —L{f(@");y"}.
Definition 1.1. The ¢ differential operator ¢ that we call the d-derivative is defined
as
- 1 d
1. =
(1.7) Oy e (n €N)
and
B 1 d? —-1) d
(1.8) 32 = 3,0, = & -

22n—2 2 2n—1 dp°
The 6 derivative operator can be successively applied in a similar fashion for any

positive integer power.

Definition 1.2. The convolution of f(x) and g(x) is defined by

(1.9) f() * glx) = / () f((@ — 7)Y,
0

The above integral is often referred to as the convolution integral.

2. THE MAIN RESULTS

In this section we will give some properties of the £,,-transform that will be used
to solve the initial-boundary-value problems for ordinary differential equations.

Here we will derive a relation between the £,,-transform of the §-derivative of a
function (1.7) and the £, -transform of the function itself.

Theorem 2.1. If f, f/, ..., f*=1 are all continuous functions with a piecewise con-
tinuous derivative f*) on the interval [0, 00), and if all functions are of exponential
order exp(a™z™) as x — oo for some constant « then

Lo{0e f(@)sy} = (ny™FLo{f(@);y} — (ny™)E =1 F(0T)

—<k—2 k—1

(2.1) —(ny") 202 )(0%) — . = ny™ (8, " F)(0F) ~ (3,

for k> 1, k is a positive integer.

£

Proof. Suppose that f(z) is a continuous function with a piecewise continuous de-
rivative f'(x) on the interval [0, 00). Also, suppose that f and f’ are of exponential



70 NESE DERNEK, FATIH AYLIKCI, AND SEVIL KIVRAK

order exp(a™z™) as x — oo where « is a constant. With using the definitions of
L,-transform and the § derivative and integration by parts, we obtain

o0

(2.2) Lo{3.f(x);y) = / exp(—y"z") f' (),

0
/eXp( ynxn)f/(iv)dx:blggof(x) exp(—y"z"™)[}
0

(2.3) —&—ny”/x"‘l exp(—y"z") f(z)dx.
0

Since f is of exponential order exp(a™z™) as x — 0o, it follows

(2.4) lim exp(—y"z")f(z) =0

T—>00

and consequently,

(2.5) Lo{d:f(2);y} = ny" Lo{f(x);y} — F(O).
Similarly, if f and f’ are continuous functions with a piecewise continuous derivative

/" on the interval [0, 00). If all three functions are of exponential order exp(a™z™)
as ¢ — oo, we can use (1.8) to obtain

(2.6) Lo{0f(2);y} = n2y* Lo (@)} — ny" F(OF) — 5, F(0F).
Using (2.5) and (2.6), we get

Lo{00 @)y} = n®y* Lo {f(x);y} — n2y? F(0T)

(2.7) —ny"5.f(0) ~ 5,.£(0°).
With repeated application of (2.5) and (2.7), we obtain the identity (2.1) of Theorem
1.

Theorem 2.2. If f is piecewise continuous on the interval [0,00) and is of expo-

nential order exp(a™x™) as x — o0, then the following relation holds true:

(-1
nk

(2.8) Lo{a™ f(x);y} = Se Lol f(@)iy}

for k> 1, k is a positive integer.

Proof. The L,{f(x);y} defined by (1.4) is an analytic function in the half plane
Re(y) > a. Tt has derivatives of all orders and the derivatives can be formally
obtained by differentiating (1.4). Applying the 0 with respect to the variable y, we
obtain

5y Lol f(2)iy} = —

d o0
— exp —y"z™) f(z)dx
d !

(2.9) 1_1 /x"fl(fx”nynfl exp(—y"z™)) f(z)dz = —nL,{z" f(x); y}.
0
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If we keep taking the d-derivative of (1.4) with respect to the variable y, then we

deduce

(2.10) 5L {f(2):y} = / 15" exp(—y"a") f (x)de

for £ € N. Where

/ "5y exp(—y"a") f(z)de = / 218, [(—n)a" exp(—y"a")] f (x)da
0

0

21 = /wnfl[(*n)kxk" exp(—y"a")] f(2)dz = (—n)"Lo{a*" f(2);}.
0
Thus we obtain the relation (2.8).

Theorem 2.3. Let L,{f(x);y"/"} be an analytic function of y except at singular
points each of which lies to the left of the vertical line Re y = a and they are finite
numbers. Suppose that y = 0 is not a branch point and hm LA f(x);y"/™} =0 in
the left plane Re y < a then, the following identity

a+i00

LML @) =5 [ nLal )it explya)dy
(2.12) Z Res{nL,{f(z);y""}exp(ya™);y = yi}]

holds true for m smgular points.

Proof. We take a vertical closed semi-circle as contour of integration. Using residues
theorem and boundedness of £, {f(x);y'/"}, we show that the identity (2.12) of
Theorem 3 is valid. When y = 0 is a branch point we take key-hole contour instead
of simple vertical semi-circle.

We assume that £,{f(x),y'/"} has a finite number of singularities in the left
half plane Rey < a. Let v = 1 + ¥2 be the closed contour consisting of the vertical
line segment ~y;, which is defined from a — iR to a + iR and vertical semi-circle
Y2, that is defined as |y — a| = R. Let 7, lie to the left of vertical line v;. The
radius R can be taken large enough so that v encloses all the singularities of the
L, {f(x);y"/™}. Hence, by the residues theorem we have

a+i00

o | nEalf@ig " exp(ya)dy

a—100

- / nLalF (@)} explya )y — 5 / Rl f(); g/} exp(ya™)dy
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ZRes{nE {f(x); Un}exp(ya? ;Y = Yi ]
k=1

1

o
Y2

(2.13) nLn{f(x);y"/"} exp(ya™)dy

where y1,%2,. .., ym are all the singularities of £, {f(z);y*/"}. Taking the limit
from both sides of the relation (2.13) as R tends to 400, because of the Jordan’s
Lemma, the second integral in the right tends to zero.

Even £,{f(x);y'/™} has one branch point at y = 0, we can use the identity
(2.12). The proof of the proposition is similar to the proof of the Main Theorem in
the paper [1], where we take n = 2.

If the number of singularities is infinite, we take the semi-circles ~,, which is
centered at point a, with radius R,, = 7?m?,m € N.

We illustrate the above Theorem with showing the following examples.

Example 2.1. We show

(2.14) L‘,;l{

where Re a > 0.
Using the assertion (2.12) of Theorem 3, we obtain

1

n
ﬁ;x} = 751n(an33n)
Y= + a<m a™

(2.15) L;l{m } Z Res[ P exp(yx");y = yk}

where the singular points are yr = Fia™ , k = 1,2. Then we have

010 {1 ] gy Moot ot
and similarly we have
1 exp(—ia™z™)
y? + a?n 2ia™
Using the relations (2.16) and (2.17), we find the formula (2.14) from (2.15) as
follows:

(2.17) Res [n exp(yx™); fia"} =-n

C_l{ 1 ) } _n exp(ia™z™) — exp(—ia™z™)
"oy a2n’ T gn 2
(2.18) = sin(a™z™).

an

Example 2.2. We show

n

(2.19) ﬁﬁl{yin exp ( - Z—n)x} = nJo(2a"*2"/?)

where Jj is the Bessel function of order zero.
Using the assertion (2.12) of Theorem 3, we have

n

(2.20) 1{— exp ( — Z—) x} = Res {n; exp ( ay”) exp(yz"),y = yr|-
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From the following Taylor expansions of the exponential functions in (2.20),

mn X kxnk

1 a” n n - Y
noep (= exp(ya™) = T3 (<)M TS
Yy Y Y m=o Y=o )
n an a2n a?m " y 2ny2 x?m
2.21 - [1 _a _ 4 } [1 ry }
(2.21) 7 R I TR v R | L TR TR TR
we find Res[n exp(—4 )exp(yx )] as the coefficient of the term 1 , as follows
1 n " ax" a2nm2n a3nx3n
Res [n; exp ( — ?) exp(yx )} = n[l - GE + CIE - EIE + ]

)mn

— 7’LJ0(2G7L/2.’)37L/2).

(2.22) i
2)a

Thus, we obtain from (2.2
2.

nd the formula (2.20), the assertion (2.19) of Example

Theorem 2.4. (Convolution Theorem)

If L.{f(x);y} = F(y) and L,{g(z);y} = G(y), then we have

(2.23) LoAf(@)*g(@);y} = Lo f(2);y}Ln{g(2)iy} = F(y)G(y).
Or equivalently,

(2.24) LHF(y)Gy);a} = f(z) * g(x),

where f(x)* g(x) is called the convolution of f(x) and g(x) and it is defined by the
relation (1.9).

Proof. We have, by definitions (1.4) and (1.9),

oo

(2.25) En{f(x)*g(x),y}:/ "~ Lexp(—a"y") /T" ! (2" — 7)YV drda.
0 0

The integration in (2.25) is first performed with respect to 7 from 7 =0 to 7 = x
of the vertical strip and then from x = 0 to oo by moving the vertical strip from
x = 0 outwards to cover the whole region under the line 7 = x. We now change
the order of integration so that we integrate first along the horizontal strip from
t = 7 to oo and then from 7 = 0 to co by moving the horizontal strip vertically
from 7 = 0 upwards. Evidently, (2.25) becomes

Lo{f(z) *g(x);y}
(2.26) = [ " lg(1) 2" Lexp(—z"y") f((a" — 7)™ dxdr,
[0 )
which is, by the change of variable z" — 7™ = u",
Lalfta) xglelin) = [ 77 g(r) [t exp(-(u + 7)) (w)duds

T
oo 0
0 0
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(o) o0
/7’ exp(—7"y") (/U exp(—u"y") f(u )du)
0 0
(2.27) GY)F(y).
3. APPLICATION OF THE L,-TRANSFORM TO ORDINARY DIFFERENTIAL
EQUATIONS

Example 3.1. We solve the following ordinary differential equation
(3.1) xz”—(?v—&—n—?))z’—i—x"*lzzo keN, veN.

solution: Dividing (3.1) by 27!, adding and subtracting the term = =

21 2" we obtain

2 +2=0.

(3.2) x”( 1, n-1 ,) n-1, 2v4+n-3

I2n72z o x2nflz Zn—1 z on—1

Using the definition of the d-derivative given in (1.7) and (1.8), we can express (3.2)
as

(3.3) 232 (x) — 2(v — 1)3u2(x) + 2(x) = 0.
Applying the £, -transform to (3.3), we find
(3.4) En{xngiz; Yy —2(v — 1)L, {02y} + Lo{2(x);y} = 0.

Using Theorem 1 for k = 1 and k = 2 in (3.4) and performing necessary calculations
we obtain

(35) 2B, La () — 20~ DLa{Bziy) + Lafziyh =0

L 142z nyna(0*) - 5,2(07))

ny” Ldy

(3.6) —2(v = 1)(ny"Z(y) — 2(07)) + Z(y) = 0
where Z(y) = L,{z(z);y}. We assume that z(0") = 0. Thus, we obtain the
following first order differential equation:

1
—

Solving the first order differential equation (3.7), we have

= 1
(38) E(y) =C Z (_1)m m!n2mymn+2n+2v72 :

=0
Applying the £, transform, we obtain

mn+n+2v72

3.9 =C
( ) mzo m'F m + n+2v 2 + 1)7127" 1
where we use the following relations

Nk +1
(3.10) Ln{xk;y}w , k=mn+n+2v—2
and

xmn+n+2v—2

1 n
3.11 ﬁ‘l{—; }: ,
( ) n ymn+n+2v—2+n €z F(m—I— 1 4 21{;2 + 1)
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Setting a = W ,C=n" 272_2, we obtain the solution of the ordinary differ-
ential equation (3.1),
no 2 .
(3.12) z(z) = a:TJa(fx@),
n

where o € Z because of the inequality v > n (v,n € N) and J,, is the Bessel function
of the first kind of order a.

Example 3.2. We solve the following ordinary differential equation
(3.13) w2 —(n? = 1) + 2" =0, n=0,1,2,..,

solution: Dividing (3.13) by 2"~!, adding and subtracting the term ;n%llz’ we
obtain

" 1 n—1 n—1
o (e (@) — gmr? @) + ¥ @)

(3.14) —(n?—1)

Z'(x) + 2(z) = 0.

an—1
Using the definition of the ,-derivative (1.7) and (1.8), we can express (3.14) as
(3.15) x"giz(x) —n(n—1)5,2(x) + z(z) = 0.

Considering the following relations;
(3.16)

_ 1_ _
Lo{2"5oz(x);y} = 755y£n{5iz(x)§y} = —2n%y"z(y) — ny" % (y) + nz(07),

n(n — 1) La{dz2(x);y} = n(n —1)(ny"z(y) — 2(07))

(3.17) =n*(n—1)y"2(y) —n(n —1)z(0"),

and applying the £, -transform to (3.15), we obtain

(3.18) Lofa"Boz(@)iy} — n(n — 1) La{B,2(@)i v} + Laf2(@)iy} =0
(3.19) ny" 7 (y) + [0 (n + 1)y — 1Jz(y) — n?2(0%) =0

where Z(y) = L,{z(2);y}.
We may assume

(3.20) z(0M) = 0.

Solving the first order differential equation after substituting (3.20) into (3.19), we
get

- e 1
(3.21) zZ(y) = Cy exp ( — n2y”)'

Calculating the Taylor expansion of the exponential function in (3.21), we have

_ = (=)™ 1
.22 = .
(3 ) Z(y) sz::O mln2m yn+nm+n2

Using the following relation,

1 ,’,Lx’rnn-i-n2
3.23 5—1{7; } =
( ) " | yntnmin? v F(m+n+1)
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and applying the £, transform to (3.22), we find

n? — 1 2™/ 2\ 2mAn
24 = CnmHar S (- (5-)
Setting C' = n~""! in (3.24), we obtain the solution of the equation (3.13)
71,2 2 n
(3.25) z2(zx) =o7 Jn{fx?}
n

where J,, is the Bessel function of the first kind of order n.
Example 3.3. We solve the following initial-value problem:

1
(3.26) Upy — (N — 1) =y — 2" tu, = 2®" 72 f(2), v >0,

x
(3.27) u(07) =0, u,(07) =0.
solution: Dividing both sides of (3.26) by 22”2, we get
(3.28) 7 2y, — (0 — D™ 2"y, — o7, = f(2).
We use the definitions (1.7) and (1.8), the equation (3.28) becomes
(3.29) giu —6,u = f(x).
Applying the £, -transform on both sides of (3.29), we have

72 —

(330) En{éwua y} - En{émuv y} = ‘Cn{f(w)7 y}'
Using the definitions (1.7) and (1.8), we get
(331) 02U —nyu(0) — (B.u)(0F) — ny"U + u(0%) = F(y)

where Ly {u(z);y} = U(y), Lo{f(2);y} = F(y).
Applying the initial conditions (3.27), we get the following equation:

(332) Uls) = oy Flo) = = F (o).

The inverse generalized Laplace transform (1.5) together with the Convolution The-
orem (2.24) leads to the solution:

633 ule) = £ { i)« fle) - £ i) < fGo),

ny™ —1
where
B3y L) = tim (- )7 explua”) = expla”/n),
_ 1
(3.35) L’nl{m;x} —1
and
(3.36) u(z) = (exp(z™/n) — 1) x f(z).

By the definition of convolution for the £, -transform, we get the following formal

solution:
T

(3.37) u(z) = / -l [exp (%(az” - Tn)) - 1] F(r)dr.

0
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In particular, if we take f(x) = Ay =constant then the solution (3.37) is reduced

to
n

(3.38) u(z) = Ao(exp(x"/n) - % - 1).

Example 3.4. We solve the following initial-value problem:

—1
(3.39) Uaw — Sy 2" Yy = 222 f(2), x> 0
(3.40) uw(0%) =0, u,(07) =0.
solution: Dividing both sides of (3.39) by 2”2, we have
1 n—1 1
(341) Wum — x?nflux + xnfl Uy = f(m)

Using the definitions of §, and gi—derivatives (1.7,1.8), we get
(3.42) 52w+ d,u = f(2)
Applying the £,-transform to both sides of (3.42), we obtain

(3.43) Lo{oou;y} + Lo{ausy} = Lo{f(2); ).

Using the formulas (2.5) and (2.6) of Theorem 1 and the initial conditions (3.40),
we find the following equation:

1 1
(3.44) Uly) = F(y) — W

ny™

F(y).

Applying the £ *-inverse transform to both sides of (3.44) and using the Convolu-
tion Theorem, we get

e pey Ve L :

(3.45) u(e) = £, P — £ P,

I oyt
(346) )= £ f e f) - £ e+ S )
where

—1 L _ —1 1 . _ _n

(3.47) L {ny”’x} =1and L {rﬂ n 1,96} = exp(—z"/n).
Substituting the relations in (3.47) into (3.46), we find
(3.48) u(z) = (1 —exp(—z"/n)) * f(z).

From the definition (1.9) of convolution for the £,,-transform, we have the following
formal solutions:

(3.49) u(z) = /7'"_1(1 —exp(—7"/n)) f((&" — 7))/ ")dr
0

or

(3.50) u(z) = /TH (1 — exp ( - %(x" - T”)))f(T)dT.
0
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In particular if f(x) = Ap =constant, then the solution (3.49) reduces to

(3.51) u(z) = Ao(exp(—x"/n) + % - 1).
Example 3.5. We solve the following initial-value problem:
(3.52) T2 Upy — NTUL = fl@), >0
(3.53) w(0") =0, u,(07) =0.
solution: We can write the non-homogenous equation (3.52) the following form:

o/ 1 n—1 n 1
(3.54) z? (mQ"—Q Ugg — x2n_1ux) T e = f(z)

Using the definitions &, and Si differential operators (1.7,1.8), we have
(3.55) z%giu —a"0,u = f(x).
Taking the L, -transform yields
(3.56) En{xmgiu; Yy — Lo{z"0usy} = Lo {f(2); 9}
Using the relation 2.8 of Theorem 2 and the relation 2.1 of Theorem 1, we find
12 =2 1- -
1 1 d* n-14d n N -
n? (y2n—2 dy? oyt @) [n*y*"U — ny"u(0") — (3,u)(0")]
d

3.58 —[ny"U —u(0")] = F
(3.5%) g U (0] = F)
Using the given initial conditions 3.53, we obtain the following differential equations:
(3.59) y?Uyy + (3n + 2)yU, +n(2n + 1)U = F(y).
Multiplying to 2" of (3.59), we get
(3.60) d(y>"2U,) +nd(y*"F1U) = y*" F(y).

Integrating both sides of (3.60) and multiplying by y~"~2 both sides of the result,
we have

(3.61) y"Uy + ny" U = y*"*Q / yZ”F(y)dy + clgf”*z
and then,
(3.62) dy"U) =y "2 /yz"F(y)dy +ay "?

where ¢ is an arbitrary constant.
Integrating both sides of (3.62) and multiplying y~" both sides of the result, we
obtain

3.63 Uly) =y [y 2] [ *"F(y)dyldy — c1 2
(3.63) (y) =y /y [/y (y)dyldy R

where ¢y is an arbitrary constant. If we take f(z) =0, then £, {f(z);y} = F(y) =
0. Making use the following relation:

—2n—1
n

+ c2y

T'(k+1)
kn, _
(364) ﬁn{x 79} - nyn(k_;’_l) 9
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the solution of the problem becomes
n xn-{-l

(365) U(.T) = Nncg — Clmm.

Conclusion: We conclude this investigation by remarking that many other
available initial-boundary value problems can be solved in this manner by apply-
ing the above theorems. In some problems, this method is useful than the other
methods.
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