Konuralp Journal of Mathematics
Volume 4 No. 1 Pp. 92-107 (2016) © CJM

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS

DIBYENDU BANERJEE AND NILKANTA MONDAL

Abstract

In this paper, we study some growth properties of generalized iterated entire functions to generalize some earlier results.

1. INTRODUCTION AND DEFINITIONS

If f and g be two transcendental entire functions defined in the open complex plane \mathbb{C}, then Clunie [4] proved that $\lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, f)}=\infty$ and $\lim _{r \rightarrow \infty} \frac{T(r, f \circ g)}{T(r, g)}=\infty$. In [10] Singh proved some comparative growth properties of $\log T(r, f \circ g)$ and $T(r, f)$ and raised the problem of investigating the comparative growth properties of $\log T(r, f \circ g)$ and $T(r, g)$. After this several authors \{see [3], [7] etc., \} made close investigation on comparative growth of $\log T(r, f \circ g)$ and $T(r, g)$ by imposing certain restrictions on orders of f and g. In the present paper, we study such growth properties for generalized iterated entire functions.

Definition 1.1. Let f be a meromorphic function and $T(r, f)$ be its Nevanlinna's characteristic function. Then the numbers $\rho(f), \lambda(f)$ defined by

$$
\rho(f)=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

and $\quad \lambda(f)=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}$ are respectively called order and lower order of f.

Definition 1.2. ([3]) Let f be a meromorphic function. Then the numbers $\rho_{p}(f)$, $\lambda_{p}(f)$ defined by

$$
\rho_{p}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} T(r, f)}{\log r}
$$

and $\quad \lambda_{p}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} T(r, f)}{\log r}$, where $p=1,2,3, \ldots$
are respectively called p -th order and p -th lower order of f.
For $p=1$, the above definition coincides with the classical definition of order and lower order.

[^0]If f is entire one can easily verify that

$$
\rho_{p}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p+1]} M(r, f)}{\log r}
$$

and $\quad \lambda_{p}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p+1]} M(r, f)}{\log r}$, where $p=1,2,3, \ldots \quad$.
Definition 1.3. ([3]) Let f be a meromorphic function. Then the numbers $\bar{\rho}_{p}(f)$, $\bar{\lambda}_{p}(f)$ defined by

$$
\bar{\rho}_{p}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p+1]} T(r, f)}{\log r}
$$

and $\quad \bar{\lambda}_{p}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p+1]} T(r, f)}{\log r}$, where $p=1,2,3, \ldots$
are respectively called pth hyper order and pth hyper lower order of f.
If f is entire one can easily verify that

$$
\bar{\rho}_{p}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p+2]} M(r, f)}{\log r}
$$

and $\quad \bar{\lambda}_{p}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p+2]} M(r, f)}{\log r}$, where $p=1,2,3, \ldots$.
Definition 1.4. ([3]) Let f be a meromorphic function of order zero. Then the numbers $\rho_{p}^{*}(f)$ and $\lambda_{p}^{*}(f)$ are defined as follows

$$
\rho_{p}^{*}(f)=\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} T(r, f)}{\log ^{[2]} r}
$$

and $\quad \lambda_{p}^{*}(f)=\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} T(r, f)}{\log ^{[2]} r}$, where $p=1,2,3, \ldots \quad$.
Definition 1.5. ([7]) A function $\lambda_{f}(r)$ is called a lower proximate order of a meromorphic function f if
i) $\lambda_{f}(r)$ is non negative and continuous for $r \geq r_{0}$ say;
ii) $\lambda_{f}(r)$ is differentiable for $r \geq r_{0}$ except possibly at isolated points at which $\lambda_{f}^{\prime}(r-0)$ and $\lambda_{f}^{\prime}(r+0)$ exist;
iii) $\lim _{r \rightarrow \infty} \lambda_{f}(r)=\lambda(f)<\infty$;
iv) $\lim _{r \rightarrow \infty} r \lambda_{f}^{\prime}(r) \log r=0$; and
v) $\liminf _{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda} f(r)}=1$.

Definition 1.6. A real valued function $\varphi(r)$ is said to have the property P_{1} if
i) $\varphi(r)$ is non negative and continuous for $r \geq r_{0}$ say;
ii) $\varphi(r)$ is strictly increasing and $\varphi(r) \rightarrow \infty$ as $r \rightarrow \infty$;
iii) $\log \varphi(r) \leq \delta \varphi\left(\frac{r}{4}\right)$ holds for every $\delta>0$ and for all sufficiently large values of r.

Remark 1.1. If $\varphi(r)$ satisfies the property P_{1} then it is clear that $\log ^{[p]} \varphi(r) \leq \delta \varphi\left(\frac{r}{4}\right)$ holds for every $p \geq 1$.

Definition 1.7. ([1]) Let f and g be two non-constant entire functions and α be any real number satisfying $0<\alpha \leq 1$. Then the generalized iteration of f with respect to g is defined as follows:

$$
\begin{aligned}
& f_{1, g}(z)=(1-\alpha) z+\alpha f(z) \\
& f_{2, g}(z)=(1-\alpha) g_{1, f}(z)+\alpha f\left(g_{1, f}(z)\right) \\
& f_{3, g}(z)=(1-\alpha) g_{2, f}(z)+\alpha f\left(g_{2, f}(z)\right)
\end{aligned}
$$

$$
\stackrel{\cdots}{f_{n, g}(z)=} \begin{aligned}
& \cdots \\
& (1-\alpha) g_{n-1, f}(z)+\alpha f\left(g_{n-1, f}(z)\right)
\end{aligned}
$$

and so are

$$
\begin{aligned}
g_{1, f}(z) & =(1-\alpha) z+\alpha g(z) \\
g_{2, f}(z) & =(1-\alpha) f_{1, g}(z)+\alpha g\left(f_{1, g}(z)\right) \\
g_{3, f}(z) & =(1-\alpha) f_{2, g}(z)+\alpha g\left(f_{2, g}(z)\right) \\
\ldots \cdot & \ldots . \quad \ldots \\
g_{n, f}(z) & =(1-\alpha) f_{n-1, g}(z)+\alpha g\left(f_{n-1, g}(z)\right) .
\end{aligned}
$$

Definition 1.8. ([3]) Let a be a complex number, finite or infinite. The Valiron deficiency $\delta(a, f)$ of a with respect to a meromorphic function f is defined as:

$$
\begin{aligned}
\delta(a, f) & =1-\liminf _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)} \\
& =\limsup _{r \rightarrow \infty} \frac{m(r, a ; f)}{T(r, f)}
\end{aligned}
$$

We do not explain the standard notations and definitions of the theory of entire and meromorphic functions as those are available in [5] and [11]. Throughout we assume f, g etc., are non-constant entire functions such that maximum modulus functions of f, g and all of their generalized iterated functions satisfy property P_{1}.

2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. ([5]) If $f(z)$ be regular in $|z| \leq R$, then for $0 \leq r<R$
$T(r, f) \leq \log ^{+} M(r, f) \leq \frac{R+r}{R-r} T(R, f)$.
In particular, if f be non-constant entire, then for all large values of r $T(r, f) \leq \log M(r, f) \leq 3 T(2 r, f)$.

Lemma 2.2. ([7]) Let f be a meromorphic function. Then for $\delta>0$ the function $r^{\lambda(f)+\delta-\lambda_{f}(r)}$ is an increasing function of r.

Lemma 2.3. ([8]) Let f be an entire function of finite lower order. If there exist entire functions $a_{i}(i=1,2,3, \ldots m ; m \leq \infty)$ satisfying $T\left(r, a_{i}\right)=o\{T(r, f)\}$ and $\sum_{i=1}^{m} \delta\left(a_{i}, f\right)=1$ then

$$
\lim _{r \rightarrow \infty} \frac{T(r, f)}{\log M(r, f)}=\frac{1}{\pi}
$$

Lemma 2.4. ([2]) If f is meromorphic and g is entire then for all large values of r
$T(r, f \circ g) \leq(1+o(1)) \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f)$.
Since g is entire so using Lemma 2.1, we have
$T(r, f \circ g) \leq(1+o(1)) T(M(r, g), f)$.

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS 95

Lemma 2.5. ([9]) Let f and g be transcendental entire functions with $\rho(g)<\infty, \eta$ be a constant satisfying $0<\eta<1$ and δ be a positive number. Then $T(r, f \circ g)+O(1) \geq N(r, 0 ; f \circ g)$

$$
\geq\left(\log \frac{1}{\eta}\right)\left[\frac{N\left(M\left((\eta r)^{\frac{1}{1+\delta}}, g\right), 0 ; f\right)}{\log \left(M\left((\eta r)^{\frac{1}{1+\delta}}, g\right)-O(1)\right)}-O(1)\right]
$$

as $r \rightarrow \infty$ through all values.

Lemma 2.6. Let f and g be two non-constant entire functions. Then $M(r, f \circ g) \leq M(M(r, g), f)$ holds for all large values of r.

Lemma 2.7. ([3]) For a meromorphic function f of finite lower order, lower proximate order exists.

3. MAIN THEOREMS

In this section, we present the main results of this paper.

Theorem 3.1. Let $f(z)$ and $g(z)$ be two entire functions such that $\lambda_{p}(f)$ and $\rho_{p}(g)$ are finite and $\lambda_{p}(g)>0$. Then for even n
i) $\quad \liminf _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} \leq 3 \rho_{p}(f) 2^{\lambda(g)}$
ii) $\quad \limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} \geq \frac{\lambda_{p}(f)}{2.4^{(n-1) \lambda(g)}}$.

Proof. If $\lambda(g)=\infty$, then (i) and (ii) are obvious. So we suppose that $\lambda(g)<\infty$.
If $\rho_{p}(f)=\infty$ then (i) is obvious. So we suppose that $\rho_{p}(f)<\infty$. Since f and g are non-constants so
(3.1) $\quad M(r, f) \geq \mu r$ and $M(r, g) \geq \mu r \quad$ for some $0<\mu<1$.

Now by Lemma 2.1 we get for all large values of r and arbitrary $\epsilon>0$
$T\left(r, f_{n, g}\right) \leq \log M\left(r, f_{n, g}\right)$

$$
=\log M\left(r,(1-\alpha) g_{n-1, f}+\alpha f\left(g_{n-1, f}\right)\right)
$$

$$
\leq \log \left\{(1-\alpha) \frac{1}{\mu} M\left(M\left(r, g_{n-1, f}\right), f\right)+\frac{1}{\mu} \alpha M\left(M\left(r, g_{n-1, f}\right), f\right)\right\}
$$

using (3.1) and Lemma 2.6

$$
\begin{equation*}
=\log M\left(M\left(r, g_{n-1, f}\right), f\right)+O(1) \tag{3.2}
\end{equation*}
$$

or, $\log { }^{[p]} T\left(r, f_{n, g}\right) \leq \log ^{[p+1]} M\left(M\left(r, g_{n-1, f}\right), f\right)+O(1)$

$$
<\left(\rho_{p}(f)+\epsilon\right) \log M\left(r, g_{n-1, f}\right)+O(1)
$$

or, $\log ^{[2 p]} T\left(r, f_{n, g}\right)<\log ^{[p]} \log M\left(r, g_{n-1, f}\right)+O(1)$

$$
<\log ^{[p]}\left\{\log M\left(M\left(r, f_{n-2, g}\right), g\right)\right\}+O(1), \quad \text { using }(3.2)
$$

$$
<\left(\rho_{p}(g)+\epsilon\right) \log M\left(r, f_{n-2, g}\right)+O(1)
$$

So, $\log ^{[3 p]} T\left(r, f_{n, g}\right)<\left(\rho_{p}(f)+\epsilon\right) \log M\left(r, g_{n-3, f}\right)+O(1)$.
Proceeding similarly after some steps we get

$$
\log ^{[(n-2) p]} T\left(r, f_{n, g}\right)<\left(\rho_{p}(g)+\epsilon\right) \log M\left(r, f_{2, g}\right)+O(1)
$$

So, $\log { }^{[(n-1) p]} T\left(r, f_{n, g}\right)<\left(\rho_{p}(f)+\epsilon\right) \log M\left(r, g_{1, f}\right)+O(1)$

$$
\begin{aligned}
& =\left(\rho_{p}(f)+\epsilon\right) \log M(r,(1-\alpha) z+\alpha g(z))+O(1) \\
& \leq\left(\rho_{p}(f)+\epsilon\right)\{\log M(r, z)+\log M(r, g)\}+O(1) \\
& =\left(\rho_{p}(f)+\epsilon\right)\{\log r+\log M(r, g)\}+O(1)
\end{aligned}
$$

On the other hand, since $\liminf _{r \rightarrow \infty} \frac{T(r, g)}{r^{\lambda g(r)}}=1$, we get for a sequence of values of r tending to infinity

$$
\begin{equation*}
T(r, g)<(1+\epsilon) r^{\lambda g(r)} \tag{3.4}
\end{equation*}
$$

and for all large of values of r,
(3.5) $\quad T(r, g)>(1-\epsilon) r^{\lambda g(r)}$.

Therefore, for all large values of r, we get from (3.3) and (3.5)
$\frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)}<\frac{\left(\rho_{p}(f)+\epsilon\right)\{\log r+\log M(r, g)\}+O(1)}{(1-\epsilon) r^{\lambda g(r)}}$

$$
\begin{aligned}
& =\frac{\left(\rho_{p}(f)+\epsilon\right) \log M(r, g)}{(1-\epsilon) r^{\lambda g(r)}}+o(1) \quad\left[\text { since } \lim _{r \rightarrow \infty} \lambda_{g}(r)=\lambda(g)>0\right] \\
& \leq \frac{\left(\rho_{p}(f)+\epsilon\right) 3 T(2 r, g)}{(1-\epsilon) r^{\lambda g(r)}}+o(1) .
\end{aligned}
$$

Therefore we get from (3.4) for a sequence of values of r tending to infinity
$\frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} \leq \frac{3\left(\rho_{p}(f)+\epsilon\right)(1+\epsilon)(2 r)^{\lambda(g)+\delta}}{(1-\epsilon)(2 r)^{\lambda(g)+\delta-\lambda g(2 r)} r^{\lambda g(r)}}+o(1)$

$$
\begin{aligned}
& =\frac{3\left(\rho_{p}(f)+\epsilon\right)(1+\epsilon)}{(1-\epsilon)} 2^{\lambda(g)+\delta} \frac{r^{\lambda(g)+\delta-\lambda g(r)}}{(2 r)^{\lambda(g)+\delta-\lambda g(2 r)}}+o(1) \\
& \leq \frac{3\left(\rho_{p}(f)+\epsilon\right)(1+\epsilon)}{(1-\epsilon)} 2^{\lambda(g)+\delta}+o(1)
\end{aligned}
$$

because $r^{\lambda(g)+\delta-\lambda_{g}(r)}$ is an increasing function of r.
Since $\epsilon>0$ and $\delta>0$ are arbitrary we get
$\liminf _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} \leq 3 \rho_{p}(f) 2^{\lambda(g)}$ and (i) is proved.
$\stackrel{r \rightarrow \infty}{\text { If } \lambda_{p}^{\infty}(f)=0 \text {, then (ii) is obvious. So we suppose that } \lambda_{p}(f)>0 \text {. Then we have }}$ for all large values of r

$$
\begin{aligned}
T\left(r, f_{n, g}\right) & =T\left(r,(1-\alpha) g_{n-1, f}+\alpha f\left(g_{n-1, f}\right)\right) \\
& \geq T\left(r, \alpha f\left(g_{n-1, f}\right)\right)-T\left(r,(1-\alpha) g_{n-1, f}\right)+O(1) \\
& \geq T\left(r, f\left(g_{n-1, f}\right)\right)-T\left(r, g_{n-1, f}\right)+O(1) \quad[\text { for } \alpha \neq 1] \\
& >\frac{1}{3} \exp ^{[p-1]}\left\{\frac{1}{9} M\left(\frac{r}{4}, g_{n-1, f}\right)\right\}^{\lambda_{p}(f)-\epsilon}-T\left(r, g_{n-1, f}\right)+O(1),
\end{aligned}
$$

$$
\text { see [10], page } 100\}
$$

or, $\log { }^{[p]} T\left(r, f_{n, g}\right)>\log \left\{\frac{1}{9} M\left(\frac{r}{4}, g_{n-1, f}\right)\right\}^{\lambda_{p}(f)-\epsilon}-\log ^{[p]} T\left(r, g_{n-1, f}\right)+O(1)$

$$
\begin{array}{r}
\geq\left(\lambda_{p}(f)-\epsilon\right) \log M\left(\frac{r}{4}, g_{n-1, f}\right)-\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) \log M\left(\frac{r}{4}, g_{n-1, f}\right) \\
+O(1),
\end{array}
$$

using property P_{1} and Lemma 2.1

$$
\begin{equation*}
=\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) \log M\left(\frac{r}{4}, g_{n-1, f}\right)+O(1) \tag{3.6}
\end{equation*}
$$

or, $\log { }^{[2 p]} T\left(r, f_{n, g}\right)>\log ^{[p]}\left\{\log M\left(\frac{r}{4}, g_{n-1, f}\right)\right\}+O(1)$

$$
\begin{aligned}
& \geq \log ^{[p]} T\left(\frac{r}{4}, g_{n-1, f}\right)+O(1), \quad \text { using Lemma } 2.1 \\
& >\frac{1}{2}\left(\lambda_{p}(g)-\epsilon\right) \log M\left(\frac{r}{4^{2}}, f_{n-2, g}\right)+O(1) . \quad \text { using }(3.6)
\end{aligned}
$$

Proceeding similarly after some steps we get
(3.7) $\quad \log ^{[(n-2) p]} T\left(r, f_{n, g}\right)>\frac{1}{2}\left(\lambda_{p}(g)-\epsilon\right) \log M\left(\frac{r}{4^{n-2}}, f_{2, g}\right)+O(1)$.

So, $\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)>\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) \log M\left(\frac{r}{4^{n-1}}, g_{1, f}\right)+O(1)$

$$
\begin{align*}
& =\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) \log M\left(\frac{r}{4^{n-1}},(1-\alpha) z+\alpha g(z)\right)+O(1) \\
& \geq \frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)\left\{\log M\left(\frac{r}{4^{n-1}}, g\right)-\log M\left(\frac{r}{4^{n-1}}, z\right)\right\}+O(1) \\
& \geq \frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)\left\{T\left(\frac{r}{4^{n-1}}, g\right)-\log \frac{r}{4^{n-1}}\right\}+O(1) . \tag{3.8}
\end{align*}
$$

From (3.4), (3.5) and (3.9) we get for a sequence of values of r tending to infinity

$$
\begin{aligned}
\frac{\log [(n-1) p]}{T\left(r, f_{n, g}\right)} & >\frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)\left\{T\left(\frac{r}{4^{n-1}}, g\right)-\log \frac{r}{4^{n-1}}\right\}+O(1)}{(1+\epsilon) r^{\lambda g(r)}} \\
& =\frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) T\left(\frac{r}{\left.4^{n-1}, g\right)}\right.}{(1+\epsilon) r^{\lambda g(r)}}+o(1) \quad\left\{\text { since } \lim _{r \rightarrow \infty} \lambda_{g}(r)=\lambda(g)>0\right\} \\
& >\frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)(1-\epsilon)\left(\frac{r}{4^{n-1}}\right)^{\lambda g\left(\frac{r}{4^{n-1}}\right)}}{(1+\epsilon) r^{\lambda g(r)}}+o(1)
\end{aligned}
$$

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS 97

$$
\begin{aligned}
& =\frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)(1-\epsilon)}{(1+\epsilon)}\left(\frac{1}{4^{n-1}}\right)^{\lambda(g)+\delta} \frac{r^{\lambda(g)+\delta-\lambda g(r)}}{\left(\frac{r}{4^{n-1}}\right)^{\lambda(g)+\delta-\lambda g\left(\frac{r}{4^{n-1}}\right)}}+o(1) \\
& \geq \frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)(1-\epsilon)}{(1+\epsilon) 4^{(n-1)(\lambda(g)+\delta)}}+o(1)
\end{aligned}
$$

because $r^{\lambda(g)+\delta-\lambda_{g}(r)}$ is ultimately an increasing function of r.
Since $\epsilon>0$ and $\delta>0$ are arbitrary, so we have from above that $\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} \geq \frac{\lambda_{p}(f)}{2.4^{(n-1) \lambda(g)}}$ and (ii) is proved.

Theorem 3.2. Let $f(z)$ and $g(z)$ be two entire functions such that $\lambda_{p}(g)$ and $\rho_{p}(f)$ are finite and $\lambda_{p}(f)>0$. Then for odd n
i) $\quad \liminf _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, f)} \leq 3 \rho_{p}(g) 2^{\lambda(f)}$
ii) $\quad \limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, f)} \geq \frac{\lambda_{p}(g)}{2.4^{(n-1) \lambda(f)}}$.

Theorem 3.3. Let $f(z)$ and $g(z)$ be two entire functions such that $\lambda_{p}(g)>0$. Also suppose that there exist entire functions $a_{i}(i=1,2,3, \ldots, m ; m \leq \infty)$ such that $T\left(r, a_{i}\right)=o\{T(r, g)\}$ as $r \rightarrow \infty(i=1,2,3, \ldots, m)$ and $\sum_{i=1}^{m} \delta\left(a_{i}, g\right)=1$. Then for even n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} \geq \frac{\pi \lambda_{p}(f)}{2.4^{(n-1) \lambda(g)}} .
$$

Proof. If $\lambda(g)=\infty$ or $\lambda_{p}(f)=0$, then the theorem is obvious. So we suppose that $\lambda(g)<\infty$ and $\lambda_{p}(f)>0$.

For $0<\epsilon<\min \left\{\lambda_{p}(f), \lambda_{p}(g), 1\right\}$ we get from (3.8)
$\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)>\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)\left\{\log M\left(\frac{r}{4^{n-1}}, g\right)-\log \frac{r}{4^{n-1}}\right\}+O(1)$
Therefore, $\frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)}>\frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)\left\{\log M\left(\frac{r}{\left.\left.4^{n-1}, g\right)-\log \frac{r}{4^{n-1}}\right\}+O(1)}\right.\right.}{T(r, g)}$

$$
\begin{aligned}
& =\frac{\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) \log M\left(\frac{r}{4^{n-1}}, g\right)}{T(r, g)}+o(1) \\
& =\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right) \frac{\log M\left(\frac{r}{4^{n-1}}, g\right)}{T\left(\frac{n\left(\frac{r}{4^{n-1}}, g\right)}{} \frac{T\left(\frac{r}{\left.4^{n-1}, g\right)}\right.}{T(r, g)}+o(1) .\right.} .
\end{aligned}
$$

But from (3.4) and (3.5) we get for a sequence of values of r tending to infinity and for $\delta>0$

$$
\begin{aligned}
\frac{T\left(\frac{r}{4^{n-1}}, g\right)}{T(r, g)} & >\frac{(1-\epsilon)}{(1+\epsilon)} \frac{\left(\frac{r}{4^{n-1}}\right)^{\lambda(g)+\delta}}{\left(\frac{r}{4^{n-1}}\right)^{\lambda(g)+\delta-\lambda g\left(\frac{r}{4^{n-1}}\right)} \frac{1}{r^{\lambda g(r)}}} \\
& \geq \frac{(1-\epsilon)}{(1+\epsilon)} \frac{1}{\left(4^{n-1}\right)^{\lambda(g)+\delta}}
\end{aligned}
$$

because $r^{\lambda(g)+\delta-\lambda_{g}(r)}$ is an increasing function of r.
Since $\epsilon(>0)$ and $\delta(>0)$ are arbitrary, so we have from Lemma 2.3 and above that

$$
\begin{aligned}
\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, g)} & \geq \frac{\pi \frac{1}{2} \lambda_{p}(f)}{4^{(n-1) \lambda(g)}} \\
& =\frac{\pi \lambda_{p}(f)}{2.4^{(n-1) \lambda(g)}} .
\end{aligned}
$$

Theorem 3.4. Let $f(z)$ and $g(z)$ be two entire functions such that $\lambda_{p}(f)>0$. Also suppose that there exist entire functions $a_{i}(i=1,2,3, \ldots, m ; m \leq \infty)$ such that $T\left(r, a_{i}\right)=o\{T(r, f)\}$ as $r \rightarrow \infty(i=1,2,3, \ldots, m)$ and $\sum_{i=1}^{m} \delta\left(a_{i}, f\right)=1$. Then for odd n
$\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T(r, f)} \geq \frac{\pi \lambda_{p}(g)}{2.4^{(n-1) \lambda(f)}}$.

Theorem 3.5. Let $f(z)$ be an entire function and $g(z)$ be a transcendental entire function such that $\rho_{p}(f), \lambda(g)$ and $\rho_{p}(g)$ are finite. Also suppose that there exist entire functions $a_{i}(i=1,2,3, \ldots, m ; m \leq \infty)$ such that $T\left(r, a_{i}\right)=o\{T(r, g)\}$ as $r \rightarrow \infty(i=1,2,3, \ldots, m)$ and $\sum_{i=1}^{m} \delta\left(a_{i}, g\right)=1$. Then for even n

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T\left(2^{n-2} r, g\right)} \leq \pi \lambda_{p}(f)
$$

Proof. We have for all large values of r
$T\left(r, f_{n, g}\right)=T\left(r,(1-\alpha) g_{n-1, f}+\alpha f\left(g_{n-1, f}\right)\right)$

$$
\begin{aligned}
& \leq T\left(r, g_{n-1, f}\right)+T\left(r, f\left(g_{n-1, f}\right)\right)+O(1) \\
& \leq T\left(r, g_{n-1, f}\right)+(1+o(1)) T\left(M\left(r, g_{n-1, f}\right), f\right)+O(1), \text { using Lemma } 2.4
\end{aligned}
$$

or, $\quad \log ^{[p]} T\left(r, f_{n, g}\right) \leq \log ^{[p]} T\left(r, g_{n-1, f}\right)+\log ^{[p]} T\left(M\left(r, g_{n-1, f}\right), f\right)+O(1)$

$$
<\log ^{[p]} T\left(r, g_{n-1, f}\right)+\left(\rho_{p}(f)+\epsilon\right) \log M\left(r, g_{n-1, f}\right)+O(1)
$$

$$
\leq T\left(2 r, g_{n-1, f}\right)+\left(\rho_{p}(f)+\epsilon\right) 3 T\left(2 r, g_{n-1, f}\right)+O(1)
$$ using Lemma 2.1

$$
\begin{equation*}
=\left\{3\left(\rho_{p}(f)+\epsilon\right)+1\right\} T\left(2 r, g_{n-1, f}\right)+O(1) \tag{3.10}
\end{equation*}
$$

or, $\log { }^{[2 p]} T\left(r, f_{n, g}\right)<\log ^{[p]} T\left(2 r, g_{n-1, f}\right)+O(1)$

$$
<\left\{3\left(\rho_{p}(g)+\epsilon\right)+1\right\} T\left(2^{2} r, f_{n-2, g}\right)+O(1), \quad \text { using }(3.10)
$$

or, $\log ^{[3 p]} T\left(r, f_{n, g}\right)<\log ^{[p]} T\left(2^{2} r, f_{n-2, g}\right)+O(1)$.
Proceeding similarly after some steps we get
$\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)<\log ^{[p]} T\left(2^{n-2} r, f_{2, g}\right)+O(1)$

$$
\begin{aligned}
& =\log ^{[p]} T\left(2^{n-2} r,(1-\alpha) g_{1, f}+\alpha f\left(g_{1, f}\right)\right)+O(1) \\
& \leq \log ^{[p]} T\left(2^{n-2} r, g_{1, f}\right)+\log ^{[p]} T\left(2^{n-2} r, f\left(g_{1, f}\right)\right)+O(1) \\
& \leq \log ^{[p]} T\left(2^{n-2} r, g_{1, f}\right)+\log ^{[p]} T\left(M\left(2^{n-2} r, g_{1, f}\right), f\right)+O(1)
\end{aligned}
$$

using Lemma 2.4
Therefore, for a sequence of values of r tending to infinity

$$
\begin{aligned}
& \log ^{[(n-1) p]} T\left(r, f_{n, g}\right)<\log ^{[p]} T\left(2^{n-2} r, g_{1, f}\right)+\left(\lambda_{p}(f)+\epsilon\right) \log M\left(2^{n-2} r, g_{1, f}\right)+O(1) \\
&=\log ^{[p]} T\left(2^{n-2} r,(1-\alpha) z+\alpha g\right)+\left(\lambda_{p}(f)+\epsilon\right) \\
& \quad \times \log M\left(2^{n-2} r,(1-\alpha) z+\alpha g\right)+O(1) \\
& \leq \log ^{[p]} T\left(2^{n-2} r, z\right)+\log { }^{[p]} T\left(2^{n-2} r, g\right)+\left(\lambda_{p}(f)+\epsilon\right)\left\{\log M\left(2^{n-2} r, z\right)\right. \\
&\left.+\log M\left(2^{n-2} r, g\right)\right\}+O(1) \\
& \leq \log ^{[p+1]}\left(2^{n-2} r\right)+\log ^{[p]} T\left(2^{n-2} r, g\right)+\left(\lambda_{p}(f)+\epsilon\right)\left\{\log \left(2^{n-2} r\right)\right. \\
&\left.+\log M\left(2^{n-2} r, g\right)\right\}+O(1)
\end{aligned}
$$

Therefore, $\frac{\log [(n-1) p] T\left(r, f_{n, g}\right)}{T\left(2^{n-2} r, g\right)}<\frac{\log { }^{[p]} T\left(2^{n-2} r, g\right)+\left(\lambda_{p}(f)+\epsilon\right) \log M\left(2^{n-2} r, g\right)+O(1)}{T\left(2^{n-2} r, g\right)}$

$$
=\left(\lambda_{p}(f)+\epsilon\right) \frac{\log M\left(2^{n-2} r, g\right)}{T\left(2^{n-2} r, g\right)}+o(1)
$$

Since $\epsilon(>0)$ is arbitrary, we get using Lemma 2.3 that
$\liminf _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T\left(2^{n-2} r, g\right)} \leq \pi \lambda_{p}(f)$.

Remark 3.1. Under the hypothesis of Theorem 3.5 we have also
$\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T\left(2^{n-2} r, g\right)} \leq \pi \rho_{p}(f)$.

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS 99

Theorem 3.6. Let $f(z)$ be a transcendental entire function and $g(z)$ be an entire function such that $\rho_{p}(f), \lambda(f)$ and $\rho_{p}(g)$ are finite. Also suppose that there exist entire functions $a_{i}(i=1,2,3, \ldots, m ; m \leq \infty)$ satisfying $T\left(r, a_{i}\right)=o(T(r, f))$ as $r \rightarrow \infty(i=1,2,3, \ldots, m)$ and $\sum_{i=1}^{m} \delta\left(a_{i}, f\right)=1$. Then for odd n
$\liminf _{r \rightarrow \infty} \frac{\log ^{\left[(n-1)_{p]}\right.} T\left(r, f_{n, g}\right)}{T\left(2^{n-2} r, f\right)} \leq \pi \lambda_{p}(g)$.

Remark 3.2. Under the hypothesis of Theorem 3.6 we have also
$\underset{r \rightarrow \infty}{\limsup } \frac{\log g^{[(n-1) p]} T\left(r, f_{n, g}\right)}{T\left(2^{n-2} r, f\right)} \leq \pi \rho_{p}(g)$.

Theorem 3.7. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty$ and $0<\lambda_{p}(g) \leq \rho_{p}(g)<\infty$. Then for even n
$\frac{\bar{\lambda}_{p}(g)}{\rho_{p}(g)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)} \leq \limsup _{r \rightarrow \infty} \frac{\log { }^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)} \leq \frac{\bar{\rho}_{p}(g)}{\lambda_{p}(g)}$

$$
\text { for } k=0,1,2, \ldots
$$

Proof. We have for all large values of r from (3.9)
$\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)>\frac{1}{2}\left(\lambda_{p}(f)-\epsilon\right)\left\{T\left(\frac{r}{4^{n-1}}, g\right)-\log \frac{r}{4^{n-1}}\right\}+O(1)$
or,
or,

$$
\begin{equation*}
\log ^{[n p]} T\left(r, f_{n, g}\right)>\log ^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)-\log ^{[p+1]}\left(\frac{r}{4^{n-1}}\right)+O(1) \tag{3.12}
\end{equation*}
$$

Since $\limsup \frac{\log ^{[p]} T\left(r, g^{(k)}\right)}{\log r}=\rho_{p}(g)$ so for all large values of r we obtain
(3.14) $\log ^{[p]} T\left(r, g^{(k)}\right)<\left(\rho_{p}(g)+\epsilon\right) \log r$.

Now from (3.13) and (3.14)

$$
\begin{aligned}
\frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{k}\right)} & >\frac{\log ^{[p+1]} T\left(\frac { r } { 4 ^ { n - 1 } , g) - \operatorname { l o g } } \left(\rho_{p}(p+2]\right.\right.}{}\left(\frac{r}{4^{n-1}}\right)+O(1) \\
& =\frac{1}{\left(\rho_{p}(g)+\epsilon\right)} \frac{\log ^{[p+1]} T\left(\frac{r}{4^{n-1}}, g\right)}{\log ^{\left(\frac{4}{4 n-1}\right)}} \frac{\log \left(\frac{r}{4^{n-1}}\right)}{\log r}+o(1) .
\end{aligned}
$$

Since $\epsilon(>0)$ was arbitrary, by Definition 1.3

$$
\begin{equation*}
\frac{\bar{\lambda}_{p}(g)}{\rho_{p}(g)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)} \tag{3.15}
\end{equation*}
$$

From (3.3) for all large values of r and arbitrary $\epsilon>0$
$\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)<\left(\rho_{p}(f)+\epsilon\right)\{\log r+\log M(r, g)\}+O(1)$
or,

$$
\begin{equation*}
\log ^{[n p]} T\left(r, f_{n, g}\right)<\log ^{[p+1]} r+\log ^{[p+1]} M(r, g)+O(1) \tag{3.16}
\end{equation*}
$$

or, $\quad \log ^{[n p+1]} T\left(r, f_{n, g}\right)<\log ^{[p+2]} r+\log ^{[p+2]} M(r, g)+O(1)$.
Therefore,

$$
\begin{equation*}
\frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)}<\frac{\log ^{[p+2]} M(r, g)}{\log ^{[p]} T\left(r, g^{(k)}\right)}+o(1) \tag{3.17}
\end{equation*}
$$

Since $\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} T\left(r, g^{(k)}\right)}{\log r}=\lambda_{p}(g)$, it follows for all large values of r
(3.18) $\quad \log ^{[p]} T\left(r, g^{(k)}\right)>\left(\lambda_{p}(g)-\epsilon\right) \log r$.

Now from (3.17) and (3.18)

$$
\frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)}<\frac{\log ^{[p+2]} M(r, g)}{\log r \cdot\left(\lambda_{p}(g)-\epsilon\right)}+o(1)
$$

Since $\epsilon(>0)$ is arbitrary, we have

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)} \leq \frac{\bar{\rho}_{p}(g)}{\lambda_{p}(g)} \tag{3.19}
\end{equation*}
$$

The theorem follows from (3.15) and (3.19).

Theorem 3.8. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty$ and $0<\lambda_{p}(g) \leq \rho_{p}(g)<\infty$. Then for odd n

$$
\begin{aligned}
\frac{\lambda_{p}(f)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, f^{(k)}\right)} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[n p+1]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, f^{(k)}\right)} \leq \frac{\bar{\rho}_{p}(f)}{\lambda_{p}(f)} \\
\quad \text { for } k=0,1,2, \ldots .
\end{aligned}
$$

Theorem 3.9. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty, 0<\lambda_{p}(g) \leq \rho_{p}(g)<\infty$ and $\lambda(g)<\infty$. Then for even n
$\frac{\lambda_{p}(g)}{\rho_{p}(g)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[p p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} \leq 1 \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} \leq \frac{\rho_{p}(g)}{\lambda_{p}(g)}$.

Proof. From (3.12) we get for all large values of r

$$
\begin{align*}
\frac{\log { }^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} & >\frac{\log { }^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)-\log ^{[p+1]}\left(\frac{r}{4^{n-1}}\right)+O(1)}{\log ^{[p]} T(r, g)} \\
& =\frac{\log { }^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)}{\log \left(\frac{r}{4^{n-1}}\right)} \frac{\log r-\log 4^{n-1}}{\log { }^{[p]} T(r, g)}+o(1) \\
& =\frac{\log { }^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)}{\log \left(\frac{r}{4^{n-1}}\right)} \frac{\log r}{\log ^{[p]} T(r, g)}+o(1) . \tag{3.20}
\end{align*}
$$

Since $\limsup \frac{\log ^{[p]} T(r, g)}{\log r}=\rho_{p}(g)$, for all large values of r, we obtain
(3.21) $\log ^{[p]} T(r, g)<\left(\rho_{p}(g)+\epsilon\right) \log r$.

Since $\epsilon(>0)$ is arbitrary, we get from (3.20) and (3.21)

$$
\begin{equation*}
\frac{\lambda_{p}(g)}{\rho_{p}(g)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} . \tag{3.22}
\end{equation*}
$$

From (3.16) we get for all large values of r
(3.23) $\quad \log { }^{[n p]} T\left(r, f_{n, g}\right)<\log { }^{[p+1]} r+\log { }^{[p+1]} M(r, g)+O(1)$.

Again from Lemma 2.1 and (3.4) we get for a sequence of values of r tending to infinity and for $\delta>0$

$$
\begin{aligned}
\log M(r, g) & <3(1+\epsilon)(2 r)^{\lambda_{g}(2 r)} \\
& =3(1+\epsilon) \frac{(2 r)^{\lambda(g)+\delta}}{(2 r)^{\lambda(g)+\delta-\lambda_{g}(2 r)}} \\
& =3(1+\epsilon) 2^{\lambda(g)+\delta} \frac{r^{\lambda(g)+\delta-\lambda_{g}(r)}}{\left(2 r^{\lambda(g)+\delta-\lambda_{g}(2 r)}\right.} r^{\lambda_{g}(r)} \\
& \leq 3(1+\epsilon) 2^{\lambda(g)+\delta} r^{\lambda_{g}(r)}
\end{aligned}
$$

because $r^{\lambda(g)+\delta-\lambda_{g}(r)}$ is an increasing function of r.
Using (3.5) we get for a sequence of values of r tending to infinity

$$
\log M(r, g)<\frac{3(1+\epsilon)}{1-\epsilon} 2^{\lambda(g)+\delta} T(r, g)
$$

Therefore, $\log ^{[p+1]} M(r, g)<\log ^{[p]} T(r, g)+O(1)$.
So, from (3.23) we get for a sequence of values of r tending to infinity $\frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}<1+o(1)$.
So,
(3.24) $\quad \liminf _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} \leq 1$.

Also from (3.16) we get for all large values of r $\frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}<\frac{\log ^{[p+1]} r+\log ^{[p+1]} M(r, g)+O(1)}{\log ^{[p]} T(r, g)}$

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS101

$$
\begin{align*}
& =\frac{\log ^{[p+1]} M(r, g)}{\log ^{[p]} T(r, g)}+o(1) \\
& =\frac{\log ^{[p+1]} M(r, g)}{\log r} \frac{\log r}{\log }{ }^{[p]} T(r, g) \tag{3.25}
\end{align*} o(1) .
$$

Since $\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} T(r, g)}{\log r}=\lambda_{p}(g)$, it follows for all large values of r

$$
(3.26) \quad \log ^{[p]} T(r, g)>\left(\lambda_{p}(g)-\epsilon\right) \log r
$$

Since $\epsilon(>0)$ is arbitrary, we get from (3.25) and (3.26)
(3.27) $\quad \limsup _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} \leq \frac{\rho_{p}(g)}{\lambda_{p}(g)}$.

From (3.12) we get for all large values of r
$\frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log { }^{[p]} T(r, g)}>\frac{\log ^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)-\log ^{[p+1]}\left(\frac{r}{4^{n-1}}\right)+O(1)}{\log ^{[p]} T(r, g)}$

$$
\begin{equation*}
=\frac{\log ^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)}{\log ^{[p]} T(r, g)}+o(1) \tag{3.28}
\end{equation*}
$$

Now from (3.5) we get for all large values of r

$$
T\left(\frac{r}{4^{n-1}}, g\right)>(1-\epsilon)\left(\frac{r}{4^{n-1}}\right)^{\lambda_{g}\left(\frac{r}{4^{n-1}}\right)}
$$

$$
\begin{aligned}
& \quad=(1-\epsilon)\left(\frac{1}{4^{n-1}}\right)^{\lambda_{g}+\delta} \frac{r^{\lambda(g)+\delta-\lambda_{g}(r)}}{\left(\frac{r}{\left.4^{n-1}\right)^{\lambda(g)+\delta-\lambda_{g}\left(\frac{r}{4^{n-1}}\right)}} r^{\lambda_{g}(r)}\right.} \\
& \quad \geq(1-\epsilon)\left(\frac{1}{4^{n-1}}\right)^{\lambda_{g}+\delta} r^{\lambda_{g}(r)} \\
& \text { because } r^{\lambda(g)+\delta-\lambda_{g}(r)} \text { is an increasing function of } r .
\end{aligned}
$$

So, by (3.4) we get for a sequence of values of r tending to infinity
$T\left(\frac{r}{4^{n-1}}, g\right)>(1-\epsilon)\left(\frac{1}{4^{n-1}}\right)^{\lambda(g)+\delta} \cdot \frac{T(r, g)}{1+\epsilon}$.
So,
(3.29) $\quad \log ^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)>\log ^{[p]} T(r, g)+O(1)$.

Therefore by (3.28) and (3.29) we get for a sequence of values of r tending to infinity

$$
\frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}>\frac{\log ^{[p]} T(r, g)}{\log { }^{[p]} T(r, g)}+o(1)
$$

Hence,
(3.30) $\quad \limsup _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)} \geq 1$.

The theorem follows from (3.22), (3.24), (3.27) and (3.30).

Remark 3.3. If in addition to the condition of Theorem 3.9, we suppose that $\rho_{p}(g)=$ $\lambda_{p}(g)$ then for even n
$\lim _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}=1$.
Remark 3.4. The conditions $\lambda_{p}(f)>0$ or $\rho_{p}(f)<\infty$ cannot be omitted in Theorem 3.9 and Remark 3.3 which are evident from the following examples.

Example 3.1. Let $f(z)=z, g(z)=\exp z, p=1$ and $\alpha=1$.
Then $\rho_{p}(f)=\lambda_{p}(f)=0,0<1=\rho_{p}(g)=\lambda_{p}(g)<\infty$ and $f_{n, g}(z)=\exp ^{\left[\frac{n}{2}\right]} z$ for even n.

Now, $\quad \log ^{[n p]} T\left(r, f_{n, g}\right)=\log ^{[n]} T\left(r, \exp ^{\left[\frac{n}{2}\right]} z\right)$

$$
\begin{aligned}
& \leq \log ^{[n]}\left(\log M\left(r, \exp ^{\left[\frac{n}{2}\right]} z\right)\right) \\
& =\log ^{\left[\frac{n}{2}+1\right]} r
\end{aligned}
$$

Therefore, $\lim _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}=0$.
Example 3.2. Let $f(z)=\exp ^{[2]} z, g(z)=\exp z, p=1$ and $\alpha=1$.

Then $\rho_{p}(f)=\lambda_{p}(f)=\infty, \rho_{p}(g)=\lambda_{p}(g)=1$ and $f_{n, g}(z)=e x p^{\left[\frac{3 n}{2}\right]} z$ for even n.
Now, $\quad \log ^{[n p]} T\left(r, f_{n, g}\right)=\log ^{[n]} T\left(r, \exp { }^{\left[\frac{3 n}{2}\right]} z\right)$

$$
\begin{aligned}
& \geq \log ^{[n]}\left(\frac{1}{3} \log M\left(\frac{r}{2}, \exp ^{\left[\frac{3 n}{2}\right]} z\right)\right) \\
& =\exp ^{\left[\frac{n}{2}-1\right]}\left(\frac{r}{2}\right)+O(1) .
\end{aligned}
$$

Therefore, $\lim _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}=\infty$.

Theorem 3.10. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty, 0<\lambda_{p}(g) \leq \rho_{p}(g)<\infty$ and $\lambda(f)<\infty$. Then for odd n $\frac{\lambda_{p}(f)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, f)} \leq 1 \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, f)} \leq \frac{\rho_{p}(f)}{\lambda_{p}(f)}$.

Remark 3.5. If in addition to the condition of Theorem 3.10, we suppose that $\rho_{p}(f)=\lambda_{p}(f)$ then for odd n

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, f)}=1 .
$$

Remark 3.6. Similarly the conditions $\lambda_{p}(g)>0$ or $\rho_{p}(g)<\infty$ cannot be omitted in Theorem 3.10 and Remark 3.5, which are evident from the following examples.

Example 3.3. Let $f(z)=\exp z, g(z)=z, p=1$ and $\alpha=1$.
Then $\rho_{p}(g)=\lambda_{p}(g)=0,0<1=\rho_{p}(f)=\lambda_{p}(f)<\infty$ and $f_{n, g}(z)=\exp ^{\left[\frac{n+1}{2}\right]} z$ for odd n.

Now, $\log ^{[n p]} T\left(r, f_{n, g}\right)=\log ^{[n]} T\left(r, \exp ^{\left[\frac{n+1}{2}\right]} z\right)$

$$
\begin{aligned}
& \leq \log ^{[n]}\left(\log M\left(r, \exp ^{\left[\frac{n+1}{2}\right]} z\right)\right) \\
& =\log ^{\left[\frac{n+1}{2}\right]} r
\end{aligned}
$$

Therefore, $\lim _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, f)}=0$.

Example 3.4. Let $f(z)=\exp z, g(z)=\exp ^{[2]} z, p=1$ and $\alpha=1$.
Then $\rho_{p}(f)=\lambda_{p}(f)=1, \rho_{p}(g)=\lambda_{p}(g)=\infty$ and $f_{n, g}(z)=\exp ^{\left[1+\frac{3(n-1)}{2}\right]} z=$ $\exp ^{\left[\frac{3 n-1}{2}\right]} z$ for odd n.

Now, $\log ^{[n p]} T\left(r, f_{n, g}\right)=\log { }^{[n]} T\left(r, \exp ^{\left[\frac{3 n-1}{2}\right]} z\right)$

$$
\begin{aligned}
& \geq \log ^{[n]}\left(\frac{1}{3} \log M\left(\frac{r}{2}, \exp ^{\left[\frac{3 n-1}{2}\right]} z\right)\right) \\
& =\exp ^{\left[\frac{n-3}{2}\right]}\left(\frac{r}{2}\right)+O(1)
\end{aligned}
$$

Therefore, $\lim _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, g)}=\infty$.

Theorem 3.11. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty$ and $0<\lambda_{p}(g) \leq \rho_{p}(g)<\infty$. Then for even n

$$
\begin{aligned}
& \frac{\lambda_{p}(g)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, f^{(k)}\right)} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, f^{(k)}\right)} \leq \frac{\rho_{p}(g)}{\lambda_{p}(f)} \\
& \text { for } k=0,1,2,3, \ldots .
\end{aligned}
$$

Proof. From (3.12) we get for all large values of r

$$
\frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T(r, f(k))}>\frac{\log ^{[p]} T\left(\frac{r}{4^{n-1}}, g\right)-\log ^{[p+1]}\left(\frac{r}{4^{n-1}}\right)+O(1)}{\log ^{[p]} T\left(r, f^{(k)}\right)}
$$

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS103

$$
\begin{align*}
& =\frac{\log [p]}{\left[\frac{r}{4 n}, g\right)} \frac{\log r-\log 4^{n-1}}{\log \left(\frac{4^{n}-1}{4^{n-1}}\right)}+o(1) \\
& =\frac{\log ^{[p]} T\left(\frac{r}{4-1}, g\right)}{\log \left(\frac{4^{n}-1}{4 n-1}\right)} \cdot \frac{\log r}{\log (p] T\left(r, f^{(k)}\right)}+o(1) \text {. } \tag{3.31}
\end{align*}
$$

Since $\limsup _{r \rightarrow \infty} \frac{\log ^{[p]} T\left(r, f^{(k)}\right)}{\log r}=\rho_{p}(f)$, so for all large values of r

$$
\begin{equation*}
\stackrel{r \rightarrow \infty}{ } \log ^{[p]} T\left(r, f^{(k)}\right)<\left(\rho_{p}(f)+\epsilon\right) \log r . \tag{3.32}
\end{equation*}
$$

From (3.31) and (3.32)

$$
\frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, f^{(k)}\right)}>\frac{\lambda_{p}(g)-\epsilon}{\rho_{p}(f)+\epsilon}+o(1)
$$

Since $\epsilon(>0)$ is arbitrary

$$
\begin{equation*}
\frac{\lambda_{p}(g)}{\rho_{p}(f)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p]}}{\log ^{[p]} T\left(r, f_{n, g}\right)} . \tag{3.33}
\end{equation*}
$$

Also from (3.16) for all large values of r
$\frac{\log ^{[p p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, f^{(k)}\right)}<\frac{\log ^{[p+1]} r+\log ^{[p+1]} M(r, g)+O(1)}{\log ^{[p]} T\left(r, f^{(k)}\right)}$

$$
\begin{equation*}
=\frac{\log ^{[p+1]} M(r, g)}{\log r} \frac{\log r}{\log (p])} T\left(r, f^{(k)}\right)+o(1) . \tag{3.34}
\end{equation*}
$$

Since $\liminf _{r \rightarrow \infty} \frac{\log ^{[p]} T\left(r, f^{(k)}\right)}{\log r}=\lambda_{p}(f)$, it follows for all large values of r
(3.35) $\log ^{[p]} T\left(r, f^{(k)}\right)>\left(\lambda_{p}(f)-\epsilon\right) \log r$.

Since $\epsilon(>0)$ is arbitrary, we get from (3.34) and (3.35)

$$
\begin{equation*}
\operatorname{limsups}_{r \rightarrow \infty} \frac{\log ^{[n p]}\left[T\left(r, f_{n, g}\right)\right.}{\log ^{[p]} T\left(r, f^{(p)}\right)} \leq \frac{\rho_{p}(g)}{\lambda_{p}(f)} . \tag{3.36}
\end{equation*}
$$

The theorem follows from (3.33) and (3.36).

Theorem 3.12. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty$ and $0<\lambda_{p}(g) \leq \rho_{p}(g)<\infty$. Then for odd n
$\frac{\lambda_{p}(f)}{\rho_{p}(g)} \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[n p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r, g^{(k)}\right)} \leq \frac{\rho_{p}(f)}{\lambda_{p}(g)}$
for $k=0,1,2,3, \ldots$.

Theorem 3.13. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(f) \leq$ $\rho_{p}(f)<\infty$ and $\rho_{p}(g)<\infty$. Then
$\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p-1]} T\left(\exp { }^{[p]}\left(2^{n-2} r\right), f^{(k)}\right)}=0 \quad$ for $k=0,1,2,3, \ldots \quad$.

Proof. First suppose that n is even. Suppose $0<\epsilon<\lambda_{p}(f)$.
From (3.11) we have for all large values of r
$\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)<\log ^{[p]} T\left(2^{n-2} r, g_{1, f}\right)+\log ^{[p]} T\left(M\left(2^{n-2} r, g_{1, f}\right), f\right)+O(1)$

$$
\begin{gathered}
<\log ^{[p]} T\left(2^{n-2} r, g_{1, f}\right)+\left(\rho_{p}(f)+\epsilon\right) \log M\left(2^{n-2} r, g_{1, f}\right)+O(1) \\
=\log ^{[p]} T\left(2^{n-2} r,(1-\alpha) z+\alpha g\right)+\left(\rho_{p}(f)+\epsilon\right) \\
\times \log M\left(2^{n-2} r,(1-\alpha) z+\alpha g\right)+O(1) \\
\leq \log ^{[p]} T\left(2^{n-2} r, z\right)+\log ^{[p]} T\left(2^{n-2} r, g\right)+\left(\rho_{p}(f)+\epsilon\right)\left\{\log M\left(2^{n-2} r, z\right)\right. \\
\left.\quad+\log M\left(2^{n-2} r, g\right)\right\}+O(1) \\
<\log ^{[p+1]}\left(2^{n-2} r\right)+\left(\rho_{p}(g)+\epsilon\right) \log \left(2^{n-2} r\right)+\left(\rho_{p}(f)+\epsilon\right) \log \left(2^{n-2} r\right) \\
+\left(\rho_{p}(f)+\epsilon\right) \exp ^{[p-1]}\left(2^{n-2} r\right)^{\rho_{p}(g)+\epsilon}+O(1)
\end{gathered}
$$

On the other hand we get for all large values of r

$$
\frac{\log ^{[p]} T\left(r, f^{(k)}\right)}{\log r}>\lambda_{p}(f)-\epsilon
$$

or, $\log ^{[p-1]} T\left(r, f^{(k)}\right)>r^{\lambda_{p}(f)-\epsilon}$.
Therefore,
(3.38) $\quad \log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), f^{(k)}\right)>\left(\exp ^{[p]}\left(2^{n-2} r\right)\right)^{\lambda_{p}(f)-\epsilon}$.

From (3.37) and (3.38) we have for all large values of r

$$
\frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), f^{(k)}\right)}<\frac{\left(\rho_{p}(f)+\epsilon\right) \exp { }^{[p-1]}\left(2^{n-2} r\right)^{\rho_{p}(g)+\epsilon}}{\left(\exp ^{[p]}\left(2^{n-2} r\right)\right)^{\lambda^{p}(f)-\epsilon}}+o(1) .
$$

and hence, $\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), f^{(k)}\right)}=0$ and the theorem is proved for even n.

Also for odd n we get as in (3.37)

$$
\begin{aligned}
\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)<\log ^{[p+1]}\left(2^{n-2} r\right)+ & \left(\rho_{p}(f)+\epsilon\right) \log \left(2^{n-2} r\right)+\left(\rho_{p}(g)+\epsilon\right) \log \left(2^{n-2} r\right) \\
& +\left(\rho_{p}(g)+\epsilon\right) \exp ^{[p-1]}\left(2^{n-2} r\right)^{\rho_{p}(f)+\epsilon}+O(1)
\end{aligned}
$$

and consequently the theorem follows immediately.

Remark 3.7. The condition $\rho_{p}(g)<\infty$ cannot be omitted in Theorem 3.13 which is evident from the following example.

Example 3.5. Let $f(z)=\exp z, g(z)=\exp ^{[3]} z, p=1$ and $\alpha=1$.
Then $\rho_{p}(f)=\lambda_{p}(f)=1, \rho_{p}(g)=\infty$ and
$f_{n, g}(z)=\exp ^{[2 n]} z$ when n is even.

$$
=\exp ^{[2 n-1]} z \text { when } n \text { is odd. }
$$

Therefore for even n

$$
\begin{aligned}
\log ^{[(n-1) p]} T\left(r, f_{n, g}\right) & =\log ^{[n-1]} T\left(r, \exp ^{[2 n]} z\right) \\
& \geq \log ^{[n-1]}\left[\frac{1}{3} \log M\left(\frac{r}{2}, \exp ^{[2 n]} z\right)\right] \\
& =\exp ^{[n]}\left(\frac{r}{2}\right)+O(1)
\end{aligned}
$$

and for odd n

$$
\begin{aligned}
\log ^{[(n-1) p]} T\left(r, f_{n, g}\right) & =\log ^{[n-1]} T\left(r, \exp ^{[2 n-1]} z\right) \\
& \geq \log ^{[n-1]}\left[\frac{1}{3} \log M\left(\frac{r}{2}, \exp ^{[2 n-1]} z\right)\right] \\
& =\exp ^{[n-1]}\left(\frac{r}{2}\right)+O(1)
\end{aligned}
$$

Also, $\log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), f^{(k)}\right)=T\left(\exp \left(2^{n-2} r\right), f^{(k)}\right)$

$$
=\frac{\exp \left(2^{n-2} r\right)}{\pi} .
$$

Thus it follows that for any $n \geq 2$

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), f^{(k)}\right)}=\infty
$$

Theorem 3.14. Let $f(z)$ and $g(z)$ be two entire functions such that $0<\lambda_{p}(g) \leq$ $\rho_{p}(g)<\infty$ and $\rho_{p}(f)<\infty$. Then
$\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p-1]} T\left(\exp { }^{[p]}\left(2^{n-2} r\right), g^{(k)}\right)}=0 \quad$ for $k=0,1,2,3, \ldots \quad$.
Remark 3.8. The condition $\rho_{p}(f)<\infty$ cannot be omitted in Theorem 3.14 which is evident from the following example.

Example 3.6. Let $f(z)=\exp ^{[3]} z, g(z)=\exp z, p=1$ and $\alpha=1$.
Then $\rho_{p}(g)=\lambda_{p}(g)=1, \rho_{p}(f)=\infty$ and
$f_{n, g}(z)=\exp ^{[2 n]} z \quad$ when n is even.

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS105

$$
=\exp ^{[2 n+1]} z \quad \text { when } n \text { is odd. }
$$

Therefore as in Example 3.5 we get for even n

$$
\log ^{[(n-1) p]} T\left(r, f_{n, g}\right) \geq \exp ^{[n]}\left(\frac{r}{2}\right)+O(1)
$$

and for odd n
$\log [(n-1) p] T\left(r, f_{n, g}\right) \geq \exp ^{[n+1]}\left(\frac{r}{2}\right)+O(1)$.
Also, $\log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), g^{(k)}\right)=\frac{\exp \left(2^{n-2} r\right)}{\pi}$.
Thus it follows that for any $n \geq 2$
$\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p-1]} T\left(\exp ^{[p]}\left(2^{n-2} r\right), g^{(k)}\right)}=\infty$.
Theorem 3.15. Let $f(z)$ and $g(z)$ be two transcendental entire functions such that
(i) $0<\lambda_{p}(g) \leq \rho_{p}(g) \leq \rho(g)<\infty$;
(ii) $\lambda_{p}(f)>0$;
and (iii) $\delta(0 ; f)<1$.
Then for any real number A and for even n

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r^{A}, g^{(k)}\right)}=\infty \text { for } k=0,1,2,3, \ldots
$$

Proof. We suppose that $A>0$, because otherwise the theorem is obvious.
From (3.7) we get for all large values of r $\log { }^{[(n-2) p]} T\left(r, f_{n, g}\right)>\frac{1}{2}\left(\lambda_{p}(g)-\epsilon\right) \log M\left(\frac{r}{4^{n-2}}, f_{2, g}\right)+O(1)$

$$
\begin{array}{r}
=\frac{1}{2}\left(\lambda_{p}(g)-\epsilon\right) \log M\left(\frac{r}{4^{n-2}},(1-\alpha) g_{1, f}+\alpha f\left(g_{1, f}\right)\right)+O(1) \\
\geq \frac{1}{2}\left(\lambda_{p}(g)-\epsilon\right)\left\{\log M\left(\frac{r}{4^{n-2}}, f\left(g_{1, f}\right)\right)-\log M\left(\frac{r}{4^{n-2}}, g_{1, f}\right)\right\} \\
+O(1) \\
\geq \frac{1}{2}\left(\lambda_{p}(g)-\epsilon\right)\left\{T\left(\frac{r}{4^{n-2}}, f\left(g_{1, f}\right)\right)-\log M\left(\frac{r}{4^{n-2}}, g_{1, f}\right)\right\}+O(1)
\end{array}
$$

or,

$$
\begin{array}{r}
\log ^{[(n-1) p]} T\left(r, f_{n, g}\right) \geq \log ^{[p]} T\left(\frac{r}{4^{n-2}}, f\left(g_{1, f}\right)\right)-\log ^{[p+1]} M\left(\frac{r}{4^{n-2}}, g_{1, f}\right) \tag{3.39}\\
+O(1) .
\end{array}
$$

For given $\epsilon(0<\epsilon<1-\delta(0 ; f))$
$N(r, 0 ; f)>(1-\delta(0 ; f)-\epsilon) T(r, f)$ for all sufficiently large values of r .
So, from Lemma 2.5, for all sufficiently large values of r
$T\left(\frac{r}{4^{n-2}}, f\left(g_{1, f}\right)\right)+O(1) \geq\left(\log \frac{1}{\eta}\right)\left[\frac{(1-\delta(0 ; f)-\epsilon) T\left\{M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right), f\right\}}{\log M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right)-O(1)}-O(1)\right]$
or, $\quad \log { }^{[p]} T\left(\frac{r}{4^{n-2}}, f\left(g_{1, f}\right)\right) \geq \log ^{[p]} T\left(M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right), f\right)-\log ^{[p+1]} M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right)$
(3.40)

$$
\begin{equation*}
=\log { }^{[p]} T\left(M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right), f\right)+O(\log r) \tag{1}
\end{equation*}
$$

Again $\log ^{[p+1]} M\left(\frac{r}{4^{n-2}}, g_{1, f}\right)=\log ^{[p+1]} M\left(\frac{r}{4^{n-2}},(1-\alpha) z+\alpha g\right)$

$$
\begin{aligned}
& \geq \log ^{[p+1]} M\left(\frac{r}{4^{n-2}}, g\right)-\log ^{[p+1]} M\left(\frac{r}{4^{n-2}}, z\right) \\
& >\left(\lambda_{p}(g)-\epsilon\right) \log \left(\frac{r}{4^{n-2}}\right)-\log [p+1] \frac{r}{4^{n-2}} \\
& =O(\log r) .
\end{aligned}
$$

Therefore from (3.39), (3.40) and (3.41) for all sufficiently large values of r $\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)>\log ^{[p]} T\left(M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right), f\right)+O(\log r)$

$$
\left.\begin{array}{l}
>\left(\lambda_{p}(f)-\epsilon\right) \log M\left((\eta r)^{\frac{1}{1+\gamma}}, g_{1, f}\right)+O(\log r) \\
=\left(\lambda_{p}(f)-\epsilon\right) \log M\left((\eta r)^{\frac{1}{1+\gamma}},(1-\alpha) z+\alpha g(z)\right)+O(\log r) \\
\geq\left(\lambda_{p}(f)-\epsilon\right)\left(\log M\left((\eta r)^{\frac{1}{1+\gamma}}, g\right)-\log M\left((\eta r)^{\frac{1}{1+\gamma}}, z\right)\right)+O(\log r) \\
>\left(\lambda_{p}(f)-\epsilon\right)\left(\exp ^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}\left(\lambda_{p}(g)-\epsilon\right)\right.
\end{array} \log (\eta r)^{\frac{1}{1+\gamma}}\right)+O(\log r) .
$$

$$
\begin{equation*}
=\left(\lambda_{p}(f)-\epsilon\right) \exp ^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}\left(\lambda_{p}(g)-\epsilon\right)}+O(\log r) \tag{3.42}
\end{equation*}
$$

Also,
(3.43) $\quad \log ^{[p]} T\left(r^{A}, g^{(k)}\right)<A\left(\rho_{p}(g)+\epsilon\right) \log r$
for all sufficiently large values of r.
So from (3.42) and (3.43) for all sufficiently large values of r

$$
\frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r^{A}, g^{(k)}\right)}>\frac{O(\log r)}{A\left(\rho_{p}(g)+\epsilon\right) \log r}+\frac{\left(\lambda_{p}(f)-\epsilon\right) \exp ^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}\left(\lambda_{p}(g)-\epsilon\right)}{A\left(\rho_{p}(g)+\epsilon\right) \log r} .
$$

Therefore, $\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r^{A}, g^{(k)}\right)}=\infty$.
Theorem 3.16. Let $f(z)$ and $g(z)$ be two transcendental entire functions such that
(i) $0<\lambda_{p}(f) \leq \rho_{p}(f) \leq \rho(f)<\infty$;
(ii) $\lambda_{p}(g)>0$;
and (iii) $\delta(0 ; g)<1$.
Then for any real number A and for odd n
$\limsup _{r \rightarrow \infty} \frac{\log ^{[(n-1) p]} T\left(r, f_{n, g}\right)}{\log ^{[p]} T\left(r^{A}, f^{(k)}\right)}=\infty$ for $k=0,1,2,3, \ldots$.
Theorem 3.17. Let $f(z)$ and $g(z)$ be two entire functions such that $\rho_{p}(f)=0$, $\rho_{p}^{*}(f)<\infty$ and $\rho(g)<\infty$. Then for even $n, \rho_{(n-1) p}\left(f_{n, g}\right)<\infty$.

Proof. To prove the theorem we first prove that $\rho_{p}\left(g_{1, f}\right)<\infty$ for any $p \geq 1$.
We have $g_{1, f}(z)=(1-\alpha) z+\alpha g(z), \rho(z)=0$ and $\rho(g)<\infty$.
So, $\rho\left(g_{1, f}\right) \leq \max \{\rho(z), \rho(g)\}$.
Therefore, $\rho\left(g_{1, f}\right)<\infty$.
Again $\rho_{p}\left(g_{1, f}\right) \leq \rho\left(g_{1, f}\right)<\infty$.
From (3.11) for all large values of r

$$
\begin{aligned}
\frac{\log [(n-1) p]}{\log r} T\left(r, f_{n, g}\right) \leq & \frac{\log ^{[p]} T\left(2^{n-2} r, g_{1, f}\right)}{\log r}+\frac{\log ^{[p]} T\left(M\left(2^{n-2} r, g_{1, f}\right), f\right)}{\log r}+o(1) \\
= & \frac{\log g^{[p]} T\left(2^{n-2} r, g_{1, f}\right)}{\log \left(2^{n-2} r\right)} \frac{\log 2^{n-2}+\log r}{\log r}+\frac{\log [p] T\left(M\left(2^{n-2} r, g_{1, f}\right), f\right)}{\log \log M\left(2^{n-2} r, g_{1, f}\right)} \\
& \times \frac{\log \log M\left(2^{n-2} r, g_{1, f}\right)}{\log r}+o(1)
\end{aligned}
$$

Therefore, $\rho_{(n-1) p}\left(f_{n, g}\right)<\infty$.

Theorem 3.18. Let $f(z)$ and $g(z)$ be two entire functions such that $\rho_{p}(g)=0$, $\rho_{p}^{*}(g)<\infty$ and $\rho(f)<\infty$. Then for odd $n, \rho_{(n-1) p}\left(f_{n, g}\right)<\infty$.

References

[1] Banerjee, D. and Mondal, N., Maximum modulus and maximum term of generalized iterated entire functions, Bulletin of the Allahabad Mathematical Society, Vol.27, No. 1 (2012), 117131.
[2] Bergweiler, W., On the Nevanlinna characteristic of a composite function, Complex variables, Vol. 10 (1988), 225-236.
[3] Bhoosnurmath, S. S. and Prabhaiah, V. S., On the generalized growth properties of composite entire and meromorphic functions, Journal of Indian Acad Math., Vol.29, No. 2 (2007), 343369.
[4] Clunie, J., The composition of entire and meromorphic functions, Mathematical Essays dedicated to Macintyre, Ohio Univ. Press (1970), 75-92.
[5] Hayman,W. K., Meromorphic functions, Oxford University Press,1964.

ON THE GROWTH PROPERTIES OF GENERALIZED ITERATED ENTIRE FUNCTIONS107
[6] Lahiri, B. K. and Banerjee, D. , Relative fix points of entire functions, J. Indian Acad. Math., Vol.19, No. 1 (1997), 87-97.
[7] Lahiri, I. and Dutta, S.K., On the growth of composite entire and meromorphic functions, Indian J. pure appl. Math., Vol.35, No. 4 (2004), 525-543.
[8] Lin, Q. and Dai, C., On a conjecture of shah concerning small functions, Kexue Tongbao, Vol.31(1986), 220-224.
[9] Nino, K. and Suita, N., Growth of a composite function of entire functions, Kodai Math. J., Vol.3(1980), 374-379.
[10] Singh, A. P., Growth of composite entire functions, Kodai Math. J., Vol. 8 (1985), 99-102.
[11] Valron, G., Lectures on the general theory of integral functions, Chelsea Publishing Company,(1949).

DEPARTMENT OF MATHEMATICS,VISVA-BHARATI,SANTINIKETAN-731235,INDIA
E-mail address: dibyendu192@rediffmail.com
BALLAVPUR R.G.S.VIDYAPITH,BALLAVPUR, RANIGANJ,WEST BENGAL,INDIA
E-mail address: nilkanta1986@gmail.com

[^0]: 2010 Mathematics Subject Classification. 30D35.
 Key words and phrases. Entire function, Generalized iteration, Growth.

