

#### DIBYENDU BANERJEE AND NILKANTA MONDAL

ABSTRACT. In this paper, we study some growth properties of generalized iterated entire functions to generalize some earlier results.

## 1. INTRODUCTION AND DEFINITIONS

If f and g be two transcendental entire functions defined in the open complex plane  $\mathbb{C}$ , then Clunie [4] proved that  $\lim_{r\to\infty} \frac{T(r,f\circ g)}{T(r,f)} = \infty$  and  $\lim_{r\to\infty} \frac{T(r,f\circ g)}{T(r,g)} = \infty$ . In [10] Singh proved some comparative growth properties of  $\log T(r,f\circ g)$  and T(r, f) and raised the problem of investigating the comparative growth properties of log  $T(r, f \circ g)$  and T(r, g). After this several authors {see [3], [7] etc.,} made close investigation on comparative growth of  $\log T(r, f \circ q)$  and T(r, q) by imposing certain restrictions on orders of f and q. In the present paper, we study such growth properties for generalized iterated entire functions.

**Definition 1.1.** Let f be a meromorphic function and T(r, f) be its Nevanlinna's characteristic function. Then the numbers  $\rho(f)$ ,  $\lambda(f)$  defined by

 $\rho(f) = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}$ and  $\lambda(f) = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}$  are respectively called order and lower order of f.

**Definition 1.2.** ([3]) Let f be a meromorphic function. Then the numbers  $\rho_p(f)$ ,  $\lambda_p(f)$  defined by

$$\rho_p(f) = \limsup_{r \to \infty} \frac{\log^{[p]} T(r,f)}{\log r}$$

and  $\lambda_p(f) = \liminf_{r \to \infty} \frac{\log^{[p]} T(r,f)}{\log r}$ , where p = 1, 2, 3, ...are respectively called p-th order and p-th lower order of f.

For p = 1, the above definition coincides with the classical definition of order and lower order.

<sup>2010</sup> Mathematics Subject Classification. 30D35.

Key words and phrases. Entire function, Generalized iteration, Growth.

If f is entire one can easily verify that 
$$\begin{split} \rho_p(f) &= \limsup_{r \to \infty} \frac{\log^{[p+1]} M(r,f)}{\log r} \\ \text{and} \quad \lambda_p(f) &= \liminf_{r \to \infty} \frac{\log^{[p+1]} M(r,f)}{\log r}, \text{ where } p = 1, 2, 3, \dots \end{split}$$

**Definition 1.3.** ([3]) Let f be a meromorphic function. Then the numbers  $\overline{\rho}_n(f)$ ,  $\overline{\lambda}_{p}(f)$  defined by

$$\overline{\rho}_p(f) = \limsup_{r \to \infty} \frac{\log^{[p+1]} T(r,f)}{\log r}$$

and  $\overline{\lambda}_p(f) = \liminf_{r \to \infty} \frac{\log^{[p+1]} T(r,f)}{\log r}$ , where p = 1, 2, 3, ...are respectively called pth hyper order and pth hyper lower order of f.

If f is entire one can easily verify that  $\overline{\rho}_p(f) = \limsup_{r \to \infty} \frac{\log^{[p+2]} M(r,f)}{\log r}$ and  $\overline{\lambda}_p(f) = \liminf_{r \to \infty} \frac{\log^{[p+2]} M(r,f)}{\log r}$ , where  $p = 1, 2, 3, \dots$ 

**Definition 1.4.** ([3]) Let f be a meromorphic function of order zero. Then the numbers  $\rho_p^*(f)$  and  $\lambda_p^*(f)$  are defined as follows

$$\begin{split} \rho_p^*(f) &= \limsup_{r \to \infty} \frac{\log^{[p]} T(r,f)}{\log^{[2]} r} \\ \text{nd} \quad \lambda_p^*(f) &= \liminf_{r \to \infty} \frac{\log^{[p]} T(r,f)}{\log^{[2]} r}, \text{ where } p = 1, 2, 3, \dots \quad . \end{split}$$

**Definition 1.5.** ([7]) A function  $\lambda_f(r)$  is called a lower proximate order of a meromorphic function f if

i)  $\lambda_f(r)$  is non negative and continuous for  $r \ge r_0$  say;

ii)  $\lambda_f(r)$  is differentiable for  $r \ge r_0$  except possibly at isolated points at which  $\lambda'_{f}(r-0)$  and  $\lambda'_{f}(r+0)$  exist;

iii) 
$$\lim \lambda_f(r) = \lambda(f) < \infty$$
;

- $\begin{array}{l} \text{in} & \prod_{r \to \infty} \lambda_f(r) = \lambda(f) < \infty \ , \\ \text{iv} & \lim_{r \to \infty} r \lambda_f'(r) \log r = 0 \ ; \ \text{and} \\ \text{v} & \lim_{r \to \infty} \inf_{r \to \infty} \frac{T(r, f)}{r^{\lambda_f(r)}} = 1. \end{array}$

ar

**Definition 1.6.** A real valued function  $\varphi(r)$  is said to have the property  $P_1$  if

- i)  $\varphi(r)$  is non negative and continuous for  $r \ge r_0$  say;
- ii)  $\varphi(r)$  is strictly increasing and  $\varphi(r) \to \infty$  as  $r \to \infty$ ;
- iii)  $\log \varphi(r) \leq \delta \varphi(\frac{r}{4})$  holds for every  $\delta > 0$  and for all sufficiently large values of r.

Remark 1.1. If  $\varphi(r)$  satisfies the property  $P_1$  then it is clear that  $\log^{[p]}\varphi(r) \leq \delta\varphi(\frac{r}{4})$ holds for every  $p \ge 1$ .

**Definition 1.7.** ([1]) Let f and g be two non-constant entire functions and  $\alpha$  be any real number satisfying  $0 < \alpha \leq 1$ . Then the generalized iteration of f with respect to q is defined as follows:

$$f_{1,g}(z) = (1 - \alpha)z + \alpha f(z)$$
  

$$f_{2,g}(z) = (1 - \alpha)g_{1,f}(z) + \alpha f(g_{1,f}(z))$$
  

$$f_{3,g}(z) = (1 - \alpha)g_{2,f}(z) + \alpha f(g_{2,f}(z))$$

**Definition 1.8.** ([3]) Let *a* be a complex number, finite or infinite. The Valiron deficiency  $\delta(a, f)$  of *a* with respect to a meromorphic function *f* is defined as:

$$\delta(a, f) = 1 - \liminf_{r \to \infty} \frac{N(r, a; f)}{T(r, f)}$$
$$= \limsup_{r \to \infty} \frac{m(r, a; f)}{T(r, f)}.$$

We do not explain the standard notations and definitions of the theory of entire and meromorphic functions as those are available in [5] and [11]. Throughout we assume f, g etc., are non-constant entire functions such that maximum modulus functions of f, g and all of their generalized iterated functions satisfy property  $P_1$ .

### 2. LEMMAS

In this section we present some lemmas which will be needed in the sequel.

**Lemma 2.1.** ([5]) If f(z) be regular in  $|z| \leq R$ , then for  $0 \leq r < R$   $T(r, f) \leq \log^+ M(r, f) \leq \frac{R+r}{R-r}T(R, f)$ . In particular, if f be non-constant entire, then for all large values of r $T(r, f) \leq \log M(r, f) \leq 3T(2r, f)$ .

**Lemma 2.2.** ([7]) Let f be a meromorphic function. Then for  $\delta > 0$  the function  $r^{\lambda(f)+\delta-\lambda_f(r)}$  is an increasing function of r.

**Lemma 2.3.** ([8]) Let f be an entire function of finite lower order. If there exist entire functions  $a_i(i = 1, 2, 3, ...m; m \le \infty)$  satisfying  $T(r, a_i) = o\{T(r, f)\}$  and  $\sum_{i=1}^m \delta(a_i, f) = 1$  then  $\lim_{r \to \infty} \frac{T(r, f)}{\log M(r, f)} = \frac{1}{\pi}.$ 

**Lemma 2.4.** ([2]) If f is meromorphic and g is entire then for all large values of r

 $T(r, f \circ g) \leq (1 + o(1)) \frac{T(r,g)}{\log M(r,g)} T(M(r,g), f).$ Since g is entire so using Lemma 2.1, we have  $T(r, f \circ g) \leq (1 + o(1)) T(M(r,g), f).$  **Lemma 2.5.** ([9]) Let f and g be transcendental entire functions with  $\rho(g) < \infty$ ,  $\eta$  be a constant satisfying  $0 < \eta < 1$  and  $\delta$  be a positive number. Then  $T(r, f \circ g) + O(1) \ge N(r, 0; f \circ g)$ 

$$\geq (\log \frac{1}{\eta}) [\frac{N(M((\eta r)^{\frac{1}{1+\delta}},g),0;f)}{\log(M((\eta r)^{\frac{1}{1+\delta}},g)-O(1))} - O(1)]$$

as  $r \to \infty$  through all values.

**Lemma 2.6.** Let f and g be two non-constant entire functions. Then  $M(r, f \circ g) \leq M(M(r, g), f)$  holds for all large values of r.

**Lemma 2.7.** ([3]) For a meromorphic function f of finite lower order, lower proximate order exists.

#### 3. MAIN THEOREMS

In this section, we present the main results of this paper.

**Theorem 3.1.** Let f(z) and g(z) be two entire functions such that  $\lambda_p(f)$  and  $\rho_p(g)$  are finite and  $\lambda_p(g) > 0$ . Then for even n

are finite and  $\lambda_p(g) > 0$ . Then for even n  $i) \qquad \liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,g)} \le 3\rho_p(f)2^{\lambda(g)}$  $ii) \qquad \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,g)} \ge \frac{\lambda_p(f)}{2.4^{(n-1)\lambda(g)}}.$ 

Proof. If  $\lambda(g) = \infty$ , then (i) and (ii) are obvious. So we suppose that  $\lambda(g) < \infty$ . If  $\rho_p(f) = \infty$  then (i) is obvious. So we suppose that  $\rho_p(f) < \infty$ . Since f and g are non-constants so

 $M(r, f) \ge \mu r$  and  $M(r, g) \ge \mu r$  for some  $0 < \mu < 1$ . (3.1)Now by Lemma 2.1 we get for all large values of r and arbitrary  $\epsilon > 0$  $T(r, f_{n,g}) \le \log M(r, f_{n,g})$  $= \log M(r, g_{n-1,f}) + \alpha f(g_{n-1,f})$ = log  $M(r, (1 - \alpha)g_{n-1,f} + \alpha f(g_{n-1,f}))$  $\leq \log\{(1 - \alpha)\frac{1}{\mu}M(M(r, g_{n-1,f}), f) + \frac{1}{\mu}\alpha M(M(r, g_{n-1,f}), f)\},$ using (3.1) and Lemma 2.6 (3.2)  $= \log M(M(r, g_{n-1,f}), f) + O(1)$ or,  $\log^{[p]} T(r, f_{n,g}) \le \log^{[p+1]} M(M(r, g_{n-1,f}), f) + O(1)$  $< (\rho_p(f) + \epsilon) \log M(r, g_{n-1,f}) + O(1)$ or,  $\log^{[2p]} T(r, f_{n,g}) < \log^{[p]} \log M(r, g_{n-1,f}) + O(1)$  $< \log^{[p]} \{ \log M(M(r, f_{n-2,q}), g) \} + O(1),$ using (3.2) $< (\rho_p(g) + \epsilon) \log M(r, f_{n-2,g}) + O(1).$ So,  $\log^{[3p]} T(r, f_{n,g}) < (\rho_p(f) + \epsilon) \log M(r, g_{n-3,f}) + O(1)$ . Proceeding similarly after some steps we get  $\log^{[(n-2)p]} T(r, f_{n,g}) < (\rho_p(g) + \epsilon) \log M(r, f_{2,g}) + O(1).$ So,  $\log^{[(n-1)p]} T(r, f_{n,g}) < (\rho_p(f) + \epsilon) \log M(r, g_{1,f}) + O(1)$  $= (\rho_p(f) + \epsilon) \log M(r, (1 - \alpha)z + \alpha g(z)) + O(1)$  $\leq (\rho_p(f) + \epsilon) \{ \log M(r, z) + \log M(r, g) \} + O(1)$  $= (\rho_n(f) + \epsilon) \{ \log r + \log M(r, g) \} + O(1).$ (3.3)

On the other hand, since  $\liminf_{r\to\infty} \frac{T(r,g)}{r^{\lambda_g(r)}} = 1$ , we get for a sequence of values of r tending to infinity

 $\begin{array}{l} (3.4) \qquad T(r,g) < (1+\epsilon)r^{\lambda g(r)} \\ \text{and for all large of values of } r, \\ (3.5) \qquad T(r,g) > (1-\epsilon)r^{\lambda g(r)}. \\ \text{Therefore, for all large values of } r, \text{ we get from } (3.3) \text{ and } (3.5) \\ \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{T(r,g)} < \frac{(\rho_p(f)+\epsilon)\{\log r+\log M(r,g)\}+O(1)}{(1-\epsilon)r^{\lambda g(r)}} \\ = \frac{(\rho_p(f)+\epsilon)\log M(r,g)}{(1-\epsilon)r^{\lambda g(r)}} + o(1) \qquad [\text{since } \lim_{r\to\infty}\lambda_g(r) = \lambda(g) > 0] \\ \leq \frac{(\rho_p(f)+\epsilon)3T(2r,g)}{(1-\epsilon)r^{\lambda g(r)}} + o(1). \end{array}$ 

Therefore we get from (3.4) for a sequence of values of r tending to infinity  $\log^{[(n-1)p]} T(r,f_{n,g}) < \frac{3(\rho_p(f)+\epsilon)(1+\epsilon)(2r)^{\lambda(g)+\delta}}{1+\epsilon} + o(1)$ 

$$\frac{T(r,g)}{T(r,g)} \geq \frac{(1-\epsilon)(2r)^{\lambda(g)+\delta-\lambda g(2r)}r^{\lambda(g(r)}+O(1)}{(1-\epsilon)} \\
= \frac{3(\rho_p(f)+\epsilon)(1+\epsilon)}{(1-\epsilon)} 2^{\lambda(g)+\delta} \frac{r^{\lambda(g)+\delta-\lambda g(r)}}{(2r)^{\lambda(g)+\delta-\lambda g(2r)}} + o(1) \\
\leq \frac{3(\rho_p(f)+\epsilon)(1+\epsilon)}{(1-\epsilon)} 2^{\lambda(g)+\delta} + o(1)$$

because  $r^{\lambda(g)+\delta-\lambda_g(r)}$  is an increasing function of r. Since  $\epsilon > 0$  and  $\delta > 0$  are arbitrary we get

 $\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,g)} \leq 3\rho_p(f) 2^{\lambda(g)} \text{ and (i) is proved.}$ 

If  $\lambda_p(f) = 0$ , then (ii) is obvious. So we suppose that  $\lambda_p(f) > 0$ . Then we have for all large values of r

$$T(r, f_{n,g}) = T(r, (1 - \alpha)g_{n-1,f} + \alpha f(g_{n-1,f}))$$

$$\geq T(r, \alpha f(g_{n-1,f})) - T(r, (1 - \alpha)g_{n-1,f}) + O(1)$$

$$\geq T(r, f(g_{n-1,f})) - T(r, g_{n-1,f}) + O(1) \quad \text{[for } \alpha \neq 1\text{]}$$

$$> \frac{1}{3} \exp^{[p-1]} \{ \frac{1}{9} M(\frac{r}{4}, g_{n-1,f}) \}^{\lambda_p(f)-\epsilon} - T(r, g_{n-1,f}) + O(1),$$
see [10], page 100}
or,  $\log^{[p]} T(r, f_{n,g}) > \log \{ \frac{1}{9} M(\frac{r}{4}, g_{n-1,f}) \}^{\lambda_p(f)-\epsilon} - \log^{[p]} T(r, g_{n-1,f}) + O(1)$ 

$$\geq (\lambda_p(f) - \epsilon) \log M(\frac{r}{4}, g_{n-1,f}) - \frac{1}{2} (\lambda_p(f) - \epsilon) \log M(\frac{r}{4}, g_{n-1,f}) + O(1),$$
using property  $P_1$  and Lemma 2.1
(3.6)
$$= \frac{1}{2} (\lambda_p(f) - \epsilon) \log M(\frac{r}{4}, g_{n-1,f}) + O(1)$$

$$\begin{array}{l} \text{or, } \log^{[2p]} T(r,f_{n,g}) > \log^{[p]} \{ \log M(\frac{r}{4},g_{n-1,f}) \} + O(1) \\ & \geq \log^{[p]} T(\frac{r}{4},g_{n-1,f}) + O(1), \quad \text{ using Lemma 2.1} \\ & > \frac{1}{2} (\lambda_p(g) - \epsilon) \log M(\frac{r}{4^2},f_{n-2,g}) + O(1). \quad \text{ using (3.6)} \end{array}$$

$$\begin{array}{l} \text{Proceeding similarly after some steps we get} \\ (3.7) \quad \log^{[(n-2)p]} T(r,f_{n,g}) > \frac{1}{2} (\lambda_p(g) - \epsilon) \log M(\frac{r}{4^{n-2}},f_{2,g}) + O(1). \\ \text{So, } \log^{[(n-1)p]} T(r,f_{n,g}) > \frac{1}{2} (\lambda_p(f) - \epsilon) \log M(\frac{r}{4^{n-1}},g_{1,f}) + O(1) \\ & = \frac{1}{2} (\lambda_p(f) - \epsilon) \log M(\frac{r}{4^{n-1}},g_{1,f}) + O(1) \\ (3.8) \qquad \geq \frac{1}{2} (\lambda_p(f) - \epsilon) \{ \log M(\frac{r}{4^{n-1}},g) - \log M(\frac{r}{4^{n-1}},z) \} + O(1) \\ (3.9) \qquad \geq \frac{1}{2} (\lambda_p(f) - \epsilon) \{ \log M(\frac{r}{4^{n-1}},g) - \log M(\frac{r}{4^{n-1}},z) \} + O(1). \\ \end{array}$$

$$\begin{array}{l} \text{From (3.4), (3.5) and (3.9) we get for a sequence of values of r tending to infinity} \\ \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,g)} > \frac{\frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{4^{n-1}},g) - \log \frac{r}{4^{n-1}} \} + O(1). \\ \end{array}$$

$$\begin{array}{l} \text{From (3.4), (3.5) and (3.9) we get for a sequence of values of r tending to infinity} \\ \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{(1+\epsilon)r^{\lambda g(r)}} > \frac{\frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{4^{n-1}},g) - \log \frac{r}{4^{n-1}} \} + O(1) \\ \end{array}$$

$$\begin{array}{l} \text{fince } \lim_{r \to \infty} \lambda_g(r) = \lambda(g) > 0 \} \\ > \frac{\frac{1}{2} (\lambda_p(f) - \epsilon) (1 - \epsilon) (\frac{r}{4^{n-1}},g)}{(1+\epsilon)r^{\lambda g(r)}} + o(1) \end{array}$$

$$=\frac{\frac{1}{2}(\lambda_p(f)-\epsilon)(1-\epsilon)}{(1+\epsilon)}(\frac{1}{4^{n-1}})^{\lambda(g)+\delta}\frac{r^{\lambda(g)+\delta-\lambda_g(r)}}{(\frac{r}{4^{n-1}})^{\lambda(g)+\delta-\lambda_g(\frac{r}{4^{n-1}})}}+o(1)$$

$$\geq\frac{\frac{1}{2}(\lambda_p(f)-\epsilon)(1-\epsilon)}{(1+\epsilon)4^{(n-1)(\lambda(g)+\delta)}}+o(1)$$

because  $r^{\lambda(g)+\delta-\lambda_g(r)}$  is ultimately an increasing function of r. Since  $\epsilon > 0$  and  $\delta > 0$  are arbitrary, so we have from above that  $\limsup_{r \to \infty} \frac{\log^{\lfloor (n-1)p \rfloor} T(r, f_{n,g})}{T(r,g)} \geq \frac{\lambda_p(f)}{2.4^{(n-1)\lambda(g)}}$  and (ii) is proved.

**Theorem 3.2.** Let f(z) and g(z) be two entire functions such that  $\lambda_p(g)$  and  $\rho_p(f)$  are finite and  $\lambda_p(f) > 0$ . Then for odd n

$$i) \qquad \liminf_{r \to \infty} \frac{\log^{\lfloor (n-1)p \rfloor} T(r, f_{n,g})}{T(r, f)} \le 3\rho_p(g) 2^{\lambda(f)}$$
$$ii) \qquad \limsup_{r \to \infty} \frac{\log^{\lfloor (n-1)p \rfloor} T(r, f_{n,g})}{T(r, f)} \ge \frac{\lambda_p(g)}{2.4^{(n-1)\lambda(f)}}$$

**Theorem 3.3.** Let f(z) and g(z) be two entire functions such that  $\lambda_p(g) > 0$ . Also suppose that there exist entire functions  $a_i(i = 1, 2, 3, ..., m; m \le \infty)$  such that  $T(r, a_i) = o\{T(r, g)\}$  as  $r \to \infty(i = 1, 2, 3, ..., m)$  and  $\sum_{i=1}^m \delta(a_i, g) = 1$ . Then for even n $\limsup_{r \to \infty} \frac{\log^{\lfloor (n-1)p \rfloor} T(r, f_{n,g})}{T(r, g)} \ge \frac{\pi \lambda_p(f)}{2.4^{(n-1)\lambda(g)}}.$ 

Proof. If  $\lambda(g) = \infty$  or  $\lambda_p(f) = 0$ , then the theorem is obvious. So we suppose that  $\lambda(g) < \infty$  and  $\lambda_p(f) > 0$ .

that  $\lambda(g) < \infty$  and  $\lambda_p(f) > 0$ . For  $0 < \epsilon < \min\{\lambda_p(f), \lambda_p(g), 1\}$  we get from (3.8)  $\log^{[(n-1)p]} T(r, f_{n,g}) > \frac{1}{2}(\lambda_p(f) - \epsilon)\{\log M(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}}\} + O(1)$ Therefore,  $\frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} > \frac{\frac{1}{2}(\lambda_p(f) - \epsilon)\{\log M(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}}\} + O(1)}{T(r,g)}$   $= \frac{\frac{1}{2}(\lambda_p(f) - \epsilon)\log M(\frac{r}{4^{n-1}}, g)}{T(r,g)} + o(1)$  $= \frac{1}{2}(\lambda_p(f) - \epsilon)\frac{\log M(\frac{r}{4^{n-1}}, g)}{T(\frac{r}{4^{n-1}}, g)} \frac{T(\frac{r}{4^{n-1}}, g)}{T(r,g)} + o(1).$ 

But from (3.4) and (3.5) we get for a sequence of values of r tending to infinity and for  $\delta > 0$ 

$$\frac{T(\frac{r}{4n-1},g)}{T(r,g)} > \frac{(1-\epsilon)}{(1+\epsilon)} \frac{(\frac{r}{4n-1})^{\lambda(g)+\delta}}{(\frac{r}{4n-1})^{\lambda(g)+\delta-\lambda_g(\frac{r}{4n-1})}} \frac{1}{r^{\lambda_g(r)}}$$
$$\geq \frac{(1-\epsilon)}{(1+\epsilon)} \frac{1}{(4^{n-1})^{\lambda(g)+\delta}}$$

because  $r^{\lambda(g)+\delta-\lambda_g(r)}$  is an increasing function of r. Since  $\epsilon(>0)$  and  $\delta(>0)$  are arbitrary, so we have from Lemma 2.3 and above

that  $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(r,g)} \ge \frac{\pi \frac{1}{2} \lambda_p(f)}{4^{(n-1)\lambda(g)}}$   $= \frac{\pi \lambda_p(f)}{2.4^{(n-1)\lambda(g)}}$ 

**Theorem 3.4.** Let f(z) and g(z) be two entire functions such that  $\lambda_p(f) > 0$ . Also suppose that there exist entire functions  $a_i(i = 1, 2, 3, ..., m; m \le \infty)$  such that  $T(r, a_i) = o\{T(r, f)\}$  as  $r \to \infty$  (i = 1, 2, 3, ..., m) and  $\sum_{i=1}^m \delta(a_i, f) = 1$ . Then for odd n

$$\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(r,f)} \ge \frac{\pi \lambda_p(g)}{2.4^{(n-1)\lambda(f)}}.$$

**Theorem 3.5.** Let f(z) be an entire function and g(z) be a transcendental entire function such that  $\rho_p(f)$ ,  $\lambda(g)$  and  $\rho_p(g)$  are finite. Also suppose that there exist  $\begin{array}{l} \text{function such that } p_p(f), \ A(g) \ \text{and } p_p(g) \ \text{are finite. Also suppose that there exist}\\ \text{entire functions } a_i(i=1,2,3,...,m;m\leq\infty) \ \text{such that } T(r,a_i) = o\{T(r,g)\} \ \text{as}\\ r \to \infty(i=1,2,3,...,m) \ \text{and} \ \sum_{i=1}^m \delta(a_i,g) = 1. \ \text{Then for even } n\\ \liminf_{r\to\infty} \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{T(2^{n-2}r,g)} \leq \pi \lambda_p(f). \end{array}$ 

Proof. We have for all large values of 
$$r$$
  
 $T(r, f_{n,g}) = T(r, (1 - \alpha)g_{n-1,f} + \alpha f(g_{n-1,f}))$   
 $\leq T(r, g_{n-1,f}) + T(r, f(g_{n-1,f})) + O(1)$   
 $\leq T(r, g_{n-1,f}) + (1 + o(1))T(M(r, g_{n-1,f}), f) + O(1)$ , using Lemma 2.4  
or,  $\log^{[p]} T(r, f_{n,g}) \leq \log^{[p]} T(r, g_{n-1,f}) + \log^{[p]} T(M(r, g_{n-1,f}), f) + O(1)$   
 $< \log^{[p]} T(r, g_{n-1,f}) + (\rho_p(f) + \epsilon) \log M(r, g_{n-1,f}) + O(1)$   
 $\leq T(2r, g_{n-1,f}) + (\rho_p(f) + \epsilon) \log M(r, g_{n-1,f}) + O(1)$ , using Lemma 2.1  
(3.10)  $= \{3(\rho_p(f) + \epsilon) + 1\}T(2r, g_{n-1,f}) + O(1)$   
or,  $\log^{[2p]} T(r, f_{n,g}) < \log^{[p]} T(2r, g_{n-1,f}) + O(1)$   
 $< \{3(\rho_p(g) + \epsilon) + 1\}T(2^2r, f_{n-2,g}) + O(1)$ , using (3.10)  
or,  $\log^{[3p]} T(r, f_{n,g}) < \log^{[p]} T(2^{2r}, f_{n-2,g}) + O(1)$ .  
Proceeding similarly after some steps we get  
 $\log^{[(n-1)p]} T(r, f_{n,g}) < \log^{[p]} T(2^{n-2}r, f_{2,g}) + O(1)$   
 $= \log^{[p]} T(2^{n-2}r, (1 - \alpha)g_{1,f} + \alpha f(g_{1,f})) + O(1)$   
 $\leq \log^{[p]} T(2^{n-2}r, g_{1,f}) + \log^{[p]} T(2^{n-2}r, f_{2,f}), f) + O(1)$   
(3.11)  $\leq \log^{[p]} T(2^{n-2}r, g_{1,f}) + \log^{[p]} T(M(2^{n-2}r, g_{1,f}), f) + O(1)$ .  
Therefore, for a sequence of values of  $r$  tending to infinity  
 $\log^{[(n-1)p]} T(r, f_{n,g}) < \log^{[p]} T(2^{n-2}r) + O(1)$ 

herefore, for a sequence of values of r tending to infinity  $\begin{bmatrix} (n-1)n \end{bmatrix} T \begin{pmatrix} r \\ r \end{pmatrix} = \begin{bmatrix} n \end{bmatrix} T \begin{pmatrix} n-2 \\ r \end{pmatrix} + \begin{pmatrix} r \\ r \end{pmatrix} = \begin{pmatrix} r \\ r \end{pmatrix} + \begin{pmatrix} r \\$ 

$$\begin{split} \log^{[(n-1)p]} T(r,f_{n,g}) &< \log^{[p]} T(2^{n-2}r,g_{1,f}) + (\lambda_p(f) + \epsilon) \log M(2^{n-2}r,g_{1,f}) + O(1) \\ &= \log^{[p]} T(2^{n-2}r,(1-\alpha)z + \alpha g) + (\lambda_p(f) + \epsilon) \\ &\quad \times \log M(2^{n-2}r,(1-\alpha)z + \alpha g) + O(1) \\ &\leq \log^{[p]} T(2^{n-2}r,z) + \log^{[p]} T(2^{n-2}r,g) + (\lambda_p(f) + \epsilon) \{\log M(2^{n-2}r,z) \\ &\quad + \log M(2^{n-2}r,g)\} + O(1) \\ &\leq \log^{[p+1]}(2^{n-2}r) + \log^{[p]} T(2^{n-2}r,g) + (\lambda_p(f) + \epsilon) \{\log(2^{n-2}r) \\ &\quad + \log M(2^{n-2}r,g)\} + O(1). \end{split}$$
Therefore, 
$$\frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(2^{n-2}r,g)} < \frac{\log^{[p]} T(2^{n-2}r,g) + (\lambda_p(f) + \epsilon) \log M(2^{n-2}r,g) + O(1)}{T(2^{n-2}r,g)} \\ &= (\lambda_p(f) + \epsilon) \frac{\log M(2^{n-2}r,g)}{T(2^{n-2}r,g)} + o(1). \end{split}$$
Since  $\epsilon(>0)$  is arbitrary, we get using Lemma 2.3 that 
$$\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(2^{n-2}r,g)} \leq \pi \lambda_p(f). \end{split}$$

Remark 3.1. Under the hypothesis of Theorem 3.5 we have also  $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{T(2^{n-2}r,g)} \leq \pi \rho_p(f).$ 

**Theorem 3.6.** Let f(z) be a transcendental entire function and g(z) be an entire function such that  $\rho_p(f)$ ,  $\lambda(f)$  and  $\rho_p(g)$  are finite. Also suppose that there exist entire functions  $a_i(i = 1, 2, 3, ..., m; m \leq \infty)$  satisfying  $T(r, a_i) = o(T(r, f))$  as  $r \to \infty$  (i = 1, 2, 3, ..., m) and  $\sum_{i=1}^{m} \delta(a_i, f) = 1$ . Then for odd n  $\liminf_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(2^{n-2}r, f)} \le \pi \lambda_p(g).$ 

Remark 3.2. Under the hypothesis of Theorem 3.6 we have also  $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{T(2^{n-2}r, f)} \le \pi \rho_p(g).$ 

**Theorem 3.7.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(f) \leq \lambda_p(f)$ 
$$\begin{split} \rho_p(f) &< \infty \text{ and } 0 < \lambda_p(g) \leq \rho_p(g) < \infty. \text{ Then for even } n \\ \frac{\overline{\lambda}_p(g)}{\rho_p(g)} &\leq \liminf_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \leq \limsup_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \leq \frac{\overline{\rho}_p(g)}{\lambda_p(g)} \end{split}$$
for  $k = 0, 1, 2, \dots$ .

Proof. We have for all large values of r from (3.9)  $\log^{[(n-1)p]} T(r, f_{n,g}) > \frac{1}{2} (\lambda_p(f) - \epsilon) \{ T(\frac{r}{4^{n-1}}, g) - \log \frac{r}{4^{n-1}} \} + O(1)$ or,  $\log^{[np]} T(r, f_{n,q}) > \log^{[p]} T(\frac{r}{4n-1}, q) - \log^{[p+1]}(\frac{r}{4n-1}) + O(1)$ (3.12)or,  $\log^{[np+1]} T(r, f_{n,g}) > \log^{[p+1]} T(\frac{r}{4^{n-1}}, g) - \log^{[p+2]}(\frac{r}{4^{n-1}}) + O(1).$ (3.13)Since  $\limsup \frac{\log^{[p]} T(r, g^{(k)})}{\log r} = \rho_p(g)$  so for all large values of r we obtain  $\log^{[p]} T(r, g^{(k)}) < (\rho_p(g) + \epsilon) \log r.$ (3.14)Now from (3.13) and (3.14) $\frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^k)} > \frac{\log^{[p+1]} T(\frac{r}{4^{n-1}}, g) - \log^{[p+2]}(\frac{r}{4^{n-1}}) + O(1)}{(\rho_p(g) + \epsilon) \log r} \\ = \frac{1}{(\rho_p(g) + \epsilon)} \frac{\log^{[p+1]} T(\frac{r}{4^{n-1}}, g)}{\log(\frac{r}{4^{n-1}})} \frac{\log(\frac{r}{4^{n-1}})}{\log r} + O(1).$ Since  $\epsilon$  (> 0) was arbitrary, by Definition 1.3 (3.15)  $\frac{\overline{\lambda}_{p(g)}}{\rho_{p(g)}} \leq \liminf_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})}.$ From (3.3) for all large values of r and arbitrary  $\epsilon > 0$  $\log^{[(n-1)p]} T(r, f_{n,q}) < (\rho_p(f) + \epsilon) \{\log r + \log M(r,g)\} + O(1)$ or, b)  $\log^{[np]} T(r, f_{n,g}) < \log^{[p+1]} r + \log^{[p+1]} M(r,g) + O(1)$  $\log^{[np+1]} T(r, f_{n,g}) < \log^{[p+2]} r + \log^{[p+2]} M(r,g) + O(1).$ (3.16)or, Therefore,  $(3.17) \quad \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} < \frac{\log^{[p+2]} M(r,g)}{\log^{[p]} T(r, g^{(k)})} + o(1).$ Since  $\liminf_{r \to \infty} \frac{\log^{[p]} T(r, g^{(k)})}{\log r} = \lambda_p(g), \text{ it follows for all large values of } r$ 

 $\log^{[p]} T(r, g^{(k)}) > (\lambda_p(g) - \epsilon) \log r.$ (3.18)

Now from (3.17) and (3.18)

$$\frac{\log^{(p+1)} T(r, f_{n,g})}{\log^{(p)} T(r, g^{(k)})} < \frac{\log^{(p+2)} M(r,g)}{\log r.(\lambda_p(g) - \epsilon)} + o(1).$$

Since  $\epsilon (> 0)$  is arbitrary, we have

(3.19) 
$$\limsup_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \leq \frac{\overline{\rho}_p(g)}{\lambda_p(g)}.$$
  
The theorem follows from (3.15) and (3.19).

**Theorem 3.8.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(f) \leq$ 
$$\begin{split} \rho_p(f) &< \infty \text{ and } 0 < \lambda_p(g) \le \rho_p(g) < \infty. \text{ Then for odd } n\\ \frac{\overline{\lambda}_p(f)}{\rho_p(f)} &\leq \liminf_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} \le \limsup_{r \to \infty} \frac{\log^{[np+1]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} \le \frac{\overline{\rho}_p(f)}{\lambda_p(f)} \end{split}$$
for  $k = 0, 1, 2, \dots$ .

**Theorem 3.9.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(f) \leq 1$ 
$$\begin{split} \rho_p(f) &< \infty, \ 0 < \lambda_p(g) \leq \rho_p(g) < \infty \ \text{and} \ \lambda(g) < \infty. \ \text{Then for even } n \\ \frac{\lambda_p(g)}{\rho_p(g)} &\leq \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} \leq 1 \leq \limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} \leq \frac{\rho_p(g)}{\lambda_p(g)}. \end{split}$$

Proof. From (3.12) we get for all large values of r

$$\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} > \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g) - \log^{[p+1]}(\frac{r}{4^{n-1}}) + O(1)}{\log^{[p]} T(r,g)}$$
$$= \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log(\frac{r}{4^{n-1}})} \frac{\log r - \log 4^{n-1}}{\log^{[p]} T(r,g)} + o(1)$$
$$(3.20) = \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log(\frac{r}{4^{n-1}})} \frac{\log r}{\log^{[p]} T(r,g)} + o(1).$$

Since  $\limsup_{r \to \infty} \frac{\log^{[p]} T(r,g)}{\log r} = \rho_p(g)$ , for all large values of r, we obtain

(3.21) $\log^{[p]} T(r,g) < (\rho_p(g) + \epsilon) \log r.$ 

Since  $\epsilon(>0)$  is arbitrary, we get from (3.20) and (3.21) (3.22)  $\frac{\lambda_p(g)}{\rho_p(g)} \le \liminf_{r \to \infty} \frac{\log^{\lceil np \rceil} T(r, f_{n,g})}{\log^{\lceil p \rceil} T(r,g)}.$ From (3.16) we get for all large values of r

 $\log^{[np]} T(r, f_{n,q}) < \log^{[p+1]} r + \log^{[p+1]} M(r, q) + O(1).$ (3.23)

Again from Lemma 2.1 and (3.4) we get for a sequence of values of r tending to infinity and for  $\delta > 0$ 

 $\log M(r,g) < 3(1+\epsilon)(2r)^{\lambda_g(2r)}$ 

$$= 3(1+\epsilon) \frac{(2r)^{\lambda(g)+\delta}}{(2r)^{\lambda(g)+\delta-\lambda_g(2r)}}$$
  
=  $3(1+\epsilon)2^{\lambda(g)+\delta} \frac{r^{\lambda(g)+\delta-\lambda_g(r)}}{(2r)^{\lambda(g)+\delta-\lambda_g(2r)}} r^{\lambda_g(r)}$   
 $\leq 3(1+\epsilon)2^{\lambda(g)+\delta} r^{\lambda_g(r)}$ 

because  $r^{\lambda(g)+\delta-\lambda_g(r)}$  is an increasing function of r.

Using (3.5) we get for a sequence of values of r tending to infinity  $\log M(r,g) < \frac{3(1+\epsilon)}{1-\epsilon} 2^{\lambda(g)+\delta} T(r,g).$ 

Therefore,  $\log^{[p+1]} M(r, g) < \log^{[p]} T(r, g) + O(1).$ So, from (3.23) we get for a sequence of values of r tending to infinity  $\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} < 1 + o(1).$ So,  $\log^{[np]} T(r, f_{r-1})$ rF

(3.24) 
$$\lim_{r \to \infty} \inf_{\substack{r \to \infty \\ \log^{[p]} T(r,g)}} \frac{\log^{-|T(r,f_{n,g})}}{\log^{[p]} T(r,g)} \le 1.$$
  
Also from (3.16) we get for all large values of  $\frac{\log^{[n_p]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} < \frac{\log^{[p+1]} r + \log^{[p+1]} M(r,g) + O(1)}{\log^{[p]} T(r,g)}$ 

(3.25) 
$$\begin{aligned} &= \frac{\log^{[p+1]} M(r,g)}{\log^{[p]} T(r,g)} + o(1) \\ &= \frac{\log^{[p+1]} M(r,g)}{\log r} \frac{\log r}{\log^{[p]} T(r,g)} + o(1). \end{aligned}$$

Since  $\liminf_{r\to\infty} \frac{\log^{[p]} T(r,g)}{\log r} = \lambda_p(g)$ , it follows for all large values of r  $\begin{array}{ll} (3.26) & \log^{[p]} T(r,g) > (\lambda_p(g) - \epsilon) \log r.\\ \text{Since } \epsilon(>0) \text{ is arbitrary, we get from } (3.25) \text{ and } (3.26) \end{array}$  $\limsup_{r \to \infty} \frac{\log^{\lceil np \rceil} T(r, f_{n,g})}{\log^{\lceil p \rceil} T(r,g)} \le \frac{\rho_p(g)}{\lambda_p(g)}$ (3.27)From (3.12) we get for all large values of r  $\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} > \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g) - \log^{[p+1]}(\frac{r}{4^{n-1}}) + O(1)}{\log^{[p]} T(r,g)}$ (3.28)  $= \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log^{[p]} T(r,g)} + o(1).$ Now from (3.5) we get for all large values of r $T(\frac{r}{4^{n-1}},g) > (1-\epsilon)(\frac{r}{4^{n-1}})^{\lambda_g(\frac{r}{4^{n-1}})}$ 
$$\begin{split} \Gamma\left(\frac{1}{4^{n-1}},g\right) &> (1-\epsilon)(\frac{1}{4^{n-1}})^{-\frac{1}{4}} \\ &= (1-\epsilon)(\frac{1}{4^{n-1}})^{\lambda_g+\delta} \frac{r^{\lambda(g)+\delta-\lambda_g(r)}}{(\frac{r}{4^{n-1}})^{\lambda(g)+\delta-\lambda_g(\frac{r}{4^{n-1}})}} r^{\lambda_g(r)} \\ &\geq (1-\epsilon)(\frac{1}{4^{n-1}})^{\lambda_g+\delta} r^{\lambda_g(r)} \\ \text{because } r^{\lambda(g)+\delta-\lambda_g(r)} \text{ is an increasing function of } r. \end{split}$$

So, by (3.4) we get for a sequence of values of r tending to infinity  $T(\frac{r}{4^{n-1}},g) > (1-\epsilon)(\frac{1}{4^{n-1}})^{\lambda(g)+\delta} \cdot \frac{T(r,g)}{1+\epsilon}$ So,  $(3.29) \qquad \log^{[p]} T(\frac{r}{4^{n-1}},g) > \log^{[p]} T(r,g) + O(1).$ Therefore by (3.28) and (3.29) we get for a sequence of values of r tending to infinity  $\frac{\log^{[np]} T(r,f_{n,g})}{\log^{[p]} T(r,g)} > \frac{\log^{[p]} T(r,g)}{\log^{[p]} T(r,g)} + o(1).$ Hence,  $\limsup \sup \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r,g)} \ge 1.$ (3.30)

The theorem follows from (3.22), (3.24), (3.27) and (3.30).

*Remark* 3.3. If in addition to the condition of Theorem 3.9, we suppose that  $\rho_n(q) =$  $\lambda_p(g)$  then for even n $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} = 1.$ 

Remark 3.4. The conditions  $\lambda_p(f) > 0$  or  $\rho_p(f) < \infty$  cannot be omitted in Theorem 3.9 and Remark 3.3 which are evident from the following examples.

**Example 3.1.** Let f(z) = z,  $g(z) = \exp z$ , p = 1 and  $\alpha = 1$ .

Then  $\rho_p(f) = \lambda_p(f) = 0, \ 0 < 1 = \rho_p(g) = \lambda_p(g) < \infty$  and  $f_{n,q}(z) = \exp^{[\frac{n}{2}]} z$  for even n. Now,  $\log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{[\frac{n}{2}]} z)$   $\leq \log^{[n]} (\log M(r, \exp^{[\frac{n}{2}]} z))$   $= \log^{[\frac{n}{2}+1]} r.$ Therefore,  $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} = 0.$ 

**Example 3.2.** Let  $f(z) = \exp^{[2]} z$ ,  $g(z) = \exp z$ , p = 1 and  $\alpha = 1$ .

Then  $\rho_p(f) = \lambda_p(f) = \infty$ ,  $\rho_p(g) = \lambda_p(g) = 1$  and  $f_{n,g}(z) = exp^{[\frac{3n}{2}]}z$  for even n. Now,  $\log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{[\frac{3n}{2}]}z)$   $\geq \log^{[n]}(\frac{1}{3}\log M(\frac{r}{2}, \exp^{[\frac{3n}{2}]}z))$   $= \exp^{[\frac{n}{2}-1]}(\frac{r}{2}) + O(1).$ Therefore,  $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r,g)} = \infty.$ 

**Theorem 3.10.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(f) \le \rho_p(f) < \infty$ ,  $0 < \lambda_p(g) \le \rho_p(g) < \infty$  and  $\lambda(f) < \infty$ . Then for odd n $\frac{\lambda_p(f)}{\rho_p(f)} \le \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} \le 1 \le \limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} \le \frac{\rho_p(f)}{\lambda_p(f)}.$ 

Remark 3.5. If in addition to the condition of Theorem 3.10, we suppose that  $\rho_p(f) = \lambda_p(f)$  then for odd n $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} = 1.$ 

Remark 3.6. Similarly the conditions  $\lambda_p(g) > 0$  or  $\rho_p(g) < \infty$  cannot be omitted in Theorem 3.10 and Remark 3.5, which are evident from the following examples.

Example 3.3. Let  $f(z) = \exp z$ , g(z) = z, p = 1 and  $\alpha = 1$ . Then  $\rho_p(g) = \lambda_p(g) = 0$ ,  $0 < 1 = \rho_p(f) = \lambda_p(f) < \infty$  and  $f_{n,g}(z) = \exp^{\left[\frac{n+1}{2}\right]} z$ for odd n. Now,  $\log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{\left[\frac{n+1}{2}\right]} z)$   $\leq \log^{[n]} (\log M(r, \exp^{\left[\frac{n+1}{2}\right]} z))$   $= \log^{\left[\frac{n+1}{2}\right]} r$ . Therefore,  $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f)} = 0$ .

**Example 3.4.** Let  $f(z) = \exp z$ ,  $g(z) = \exp^{[2]} z$ , p = 1 and  $\alpha = 1$ .

Then  $\rho_p(f) = \lambda_p(f) = 1$ ,  $\rho_p(g) = \lambda_p(g) = \infty$  and  $f_{n,g}(z) = \exp^{[1 + \frac{3(n-1)}{2}]} z = \exp^{[\frac{3n-1}{2}]} z$  for odd n.

Now,  $\log^{[np]} T(r, f_{n,g}) = \log^{[n]} T(r, \exp^{[\frac{3n-1}{2}]} z)$   $\geq \log^{[n]}(\frac{1}{3}\log M(\frac{r}{2}, \exp^{[\frac{3n-1}{2}]} z))$   $= \exp^{[\frac{n-3}{2}]}(\frac{r}{2}) + O(1).$ Therefore,  $\lim_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g)} = \infty.$ 

 $\begin{array}{l} \textbf{Theorem 3.11. Let } f(z) \ and \ g(z) \ be \ two \ entire \ functions \ such \ that \ 0 < \lambda_p(f) \leq \\ \rho_p(f) < \infty \ and \ 0 < \lambda_p(g) \leq \rho_p(g) < \infty. \ Then \ for \ even \ n \\ \frac{\lambda_p(g)}{\rho_p(f)} \leq \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} \leq \limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} \leq \frac{\rho_p(g)}{\lambda_p(f)} \\ for \ k = 0, 1, 2, 3, \dots \end{array}$ 

Proof. From (3.12) we get for all large values of r $\log^{[np]} T(r, f_{n-q})$ ,  $\log^{[p]} T(\frac{r}{rn-1}, g) - \log^{[p+1]}(\frac{r}{rn-1}) + O(1)$ 

$$\frac{\log^{(r)} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} > \frac{\log^{(r)} T(q_{4n-1}, g^{(r)}) \log^{(r)} Q_{4n-1}(r, g^{(k)})}{\log^{[p]} T(r, f^{(k)})}$$

$$(3.31) = \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log(\frac{r}{4^{n-1}})} \cdot \frac{\log r - \log 4^{n-1}}{\log^{[p]} T(r,f^{(k)})} + o(1)$$
$$= \frac{\log^{[p]} T(\frac{r}{4^{n-1}},g)}{\log(\frac{r}{4^{n-1}})} \cdot \frac{\log r}{\log^{[p]} T(r,f^{(k)})} + o(1).$$

Since  $\limsup_{r \to \infty} \frac{\log^{[p]} T(r, f^{(k)})}{\log r} = \rho_p(f)$ , so for all large values of r

 $\log^{[p]} T(r, f^{(k)}) < (\rho_p(f) + \epsilon) \log r.$ (3.32)From (3.31) and (3.32)

 $\frac{\log^{[np]}T(r,f_{n,g})}{\log^{[p]}T(r,f^{(k)})} > \frac{\lambda_p(g)-\epsilon}{\rho_p(f)+\epsilon} + o(1).$ Since  $\epsilon(>0)$  is arbitrary  $\frac{\lambda_p(g)}{\rho_p(f)} \le \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})}.$ (3.33)Also from (3.16) for all large values of r $\begin{aligned} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} &\leq \frac{\log^{[p+1]} r + \log^{[p+1]} M(r,g) + O(1)}{\log^{[p]} T(r, f^{(k)})} \\ (3.34) &= \frac{\log^{[p+1]} M(r,g)}{\log r} \frac{\log r}{\log^{[p]} T(r, f^{(k)})} + o(1). \end{aligned}$ Since  $\liminf_{r \to \infty} \frac{\log^{[p]} T(r, f^{(k)})}{\log r} &= \lambda_p(f), \text{ it follows for all large values of } r \end{aligned}$  $\log^{[p]} T(r, f^{(k)}) > (\lambda_p(f) - \epsilon) \log r.$ (3.35)Since  $\epsilon(>0)$  is arbitrary, we get from (3.34) and (3.35)  $\limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, f^{(k)})} \le \frac{\rho_p(g)}{\lambda_p(f)}.$ (3.36)The theorem follows from (3.33) and (3.36).

**Theorem 3.12.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(f) \le \rho_p(f) < \infty$  and  $0 < \lambda_p(g) \le \rho_p(g) < \infty$ . Then for odd n  $\frac{\lambda_p(f)}{\rho_p(g)} \le \liminf_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \le \limsup_{r \to \infty} \frac{\log^{[np]} T(r, f_{n,g})}{\log^{[p]} T(r, g^{(k)})} \le \frac{\rho_p(f)}{\lambda_p(g)}$ for  $k = 0, 1, 2, 3, \dots$ .

**Theorem 3.13.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(f) \leq 1$ 
$$\begin{split} \rho_p(f) &< \infty \ and \ \rho_p(g) < \infty. \ Then \\ \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r), f^{(k)})} = 0 \quad for \ k = 0, 1, 2, 3, \dots \ . \end{split}$$

 $r \rightarrow \infty$ 

Proof. First suppose that n is even. Suppose  $0 < \epsilon < \lambda_p(f)$ . From (3.11) we have for all large values of r $\log^{[(n-1)p]} T(r, f_{n,g}) < \log^{[p]} T(2^{n-2}r, g_{1,f}) + \log^{[p]} T(M(2^{n-2}r, g_{1,f}), f) + O(1)$  $< \log^{[p]} T(2^{n-2}r, g_{1,f}) + (\rho_p(f) + \epsilon) \log M(2^{n-2}r, g_{1,f}) + O(1)$  $= \log^{[p]} T(2^{n-2}r, (1-\alpha)z + \alpha g) + (\rho_p(f) + \epsilon) \\ \times \log M(2^{n-2}r, (1-\alpha)z + \alpha g) + O(1)$  $\leq \log^{[p]} T(2^{n-2}r, z) + \log^{[p]} T(2^{n-2}r, g) + (\rho_p(f) + \epsilon) \{ \log M(2^{n-2}r, z) + \log M(2^{n-2}r, g) \} + O(1)$  $<\log^{[p+1]}(2^{n-2}r) + (\rho_p(g) + \epsilon)\log(2^{n-2}r) + (\rho_p(f) + \epsilon)\log(2^{n-2}r)$ (3.37) $+(\rho_p(f)+\epsilon)\exp^{[p-1]}(2^{n-2}r)^{\rho_p(g)+\epsilon}+O(1).$ 

On the other hand we get for all large values of r

$$\begin{split} &\frac{\log^{[p]}T(r,f^{(k)})}{\log r} > \lambda_p(f) - \epsilon \\ &\text{or, } \log^{[p-1]}T(r,f^{(k)}) > r^{\lambda_p(f)-\epsilon}. \\ &\text{Therefore,} \\ &(3.38) \quad \log^{[p-1]}T(\exp^{[p]}(2^{n-2}r),f^{(k)}) > (\exp^{[p]}(2^{n-2}r))^{\lambda_p(f)-\epsilon}. \\ &\text{From (3.37) and (3.38) we have for all large values of } r \\ &\frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[p-1]}T(\exp^{[p]}(2^{n-2}r),f^{(k)})} < \frac{(\rho_p(f)+\epsilon)exp^{[p-1]}(2^{n-2}r)^{\rho_p(g)+\epsilon}}{(\exp^{[p]}(2^{n-2}r))^{\lambda_p(f)-\epsilon}} + o(1). \\ &\text{and hence, } \limsup_{r \to \infty} \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[(n-1)p]}T(\exp^{[p]}(2^{n-2}r),f^{(k)})} = 0 \\ &\text{and thence, } \lim_{r \to \infty} \sup_{r \to \infty} \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[(n-1)p]}T(\exp^{[p]}(2^{n-2}r),f^{(k)})} = 0 \\ &\text{and thence, } \lim_{r \to \infty} \sup_{r \to \infty} \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[(n-1)p]}T(exp^{[p]}(2^{n-2}r),f^{(k)})} = 0 \\ &\text{and thence, } \lim_{r \to \infty} \sup_{r \to \infty} \frac{\log^{[(n-1)p]}T(r,f_{n,g})}{\log^{[(n-1)p]}T(r,f_{n,g})} < \log^{[(p+1]}(2^{n-2}r) + (\rho_p(f)+\epsilon)\log(2^{n-2}r) + (\rho_p(g)+\epsilon)\log(2^{n-2}r) \\ &\quad + (\rho_p(g)+\epsilon)\exp^{[p-1]}(2^{n-2}r)^{\rho_p(f)+\epsilon} + O(1) \\ &\text{and consequently the theorem follows immediately.} \end{split}$$

Remark 3.7. The condition  $\rho_p(g) < \infty$  cannot be omitted in Theorem 3.13 which is evident from the following example.

$$\begin{split} \textbf{Example 3.5. Let } f(z) &= \exp z, \, g(z) = \exp^{[3]} z, \, p = 1 \text{ and } \alpha = 1. \\ \text{Then } \rho_p(f) &= \lambda_p(f) = 1, \, \rho_p(g) = \infty \text{ and} \\ f_{n,g}(z) &= \exp^{[2n]} z \text{ when } n \text{ is even.} \\ &= \exp^{[2n-1]} z \text{ when } n \text{ is odd.} \\ \text{Therefore for even } n \\ &\log^{[(n-1)p]} T(r, f_{n,g}) = \log^{[n-1]} T(r, \exp^{[2n]} z) \\ &\geq \log^{[n-1]} [\frac{1}{3} \log M(\frac{r}{2}, \exp^{[2n]} z)] \\ &= \exp^{[n]}(\frac{r}{2}) + O(1), \\ \text{and for odd } n \\ &\log^{[(n-1)p]} T(r, f_{n,g}) = \log^{[n-1]} T(r, \exp^{[2n-1]} z) \\ &\geq \log^{[n-1]} [\frac{1}{3} \log M(\frac{r}{2}, \exp^{[2n-1]} z)] \\ &= \exp^{[n-1]}(\frac{r}{2}) + O(1). \\ \text{Also, } \log^{[p-1]} T(\exp^{[p]}(2^{n-2}r), f^{(k)}) = T(\exp(2^{n-2}r), f^{(k)}) \\ &= \frac{\exp(2^{n-2}r)}{\pi}. \\ \text{Thus it follows that for any } n \geq 2 \\ \limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[(p-1]} T(\exp^{[p]}(2^{n-2}r), f^{(k)})} = \infty. \end{split}$$

**Theorem 3.14.** Let f(z) and g(z) be two entire functions such that  $0 < \lambda_p(g) \le \rho_p(g) < \infty$  and  $\rho_p(f) < \infty$ . Then  $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r), g^{(k)})} = 0 \quad \text{for } k = 0, 1, 2, 3, \dots$ 

Remark 3.8. The condition  $\rho_p(f) < \infty$  cannot be omitted in Theorem 3.14 which is evident from the following example.

**Example 3.6.** Let  $f(z) = \exp^{[3]} z$ ,  $g(z) = \exp z$ , p = 1 and  $\alpha = 1$ . Then  $\rho_p(g) = \lambda_p(g) = 1$ ,  $\rho_p(f) = \infty$  and  $f_{n,g}(z) = \exp^{[2n]} z$  when n is even.

$$\begin{split} &= \exp^{[2n+1]} z \quad \text{when } n \text{ is odd.} \\ &\text{Therefore as in Example 3.5 we get for even } n \\ &\log^{[(n-1)p]} T(r,f_{n,g}) \geq \exp^{[n]}(\frac{r}{2}) + O(1), \\ &\text{and for odd } n \\ &\log^{[(n-1)p]} T(r,f_{n,g}) \geq \exp^{[n+1]}(\frac{r}{2}) + O(1). \\ &\text{Also, } \log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),g^{(k)}) = \frac{\exp(2^{n-2}r)}{\pi}. \\ &\text{Thus it follows that for any } n \geq 2 \\ &\lim_{r \to \infty} \sup \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p-1]} T(\exp^{[p]}(2^{n-2}r),g^{(k)})} = \infty. \end{split}$$

**Theorem 3.15.** Let f(z) and g(z) be two transcendental entire functions such that (i)  $0 < \lambda_p(g) \le \rho_p(g) \le \rho(g) < \infty$ ; (ii)  $\lambda_p(f) > 0$ ; and (iii)  $\delta(0; f) < 1$ . Then for any real number A and for even n  $\limsup_{r \to \infty} \frac{\log^{\lfloor (n-1)p \rfloor} T(r, f_{n,g})}{\log^{\lfloor p \rfloor} T(r^A, g^{(k)})} = \infty \text{ for } k = 0, 1, 2, 3, \dots$ 

Proof. We suppose that A > 0, because otherwise the theorem is obvious. From (3.7) we get for all large values of r

$$\log^{[(n-2)p]} T(r, f_{n,g}) > \frac{1}{2} (\lambda_p(g) - \epsilon) \log M(\frac{r}{4^{n-2}}, f_{2,g}) + O(1) = \frac{1}{2} (\lambda_p(g) - \epsilon) \log M(\frac{r}{4^{n-2}}, (1 - \alpha)g_{1,f} + \alpha f(g_{1,f})) + O(1) \geq \frac{1}{2} (\lambda_p(g) - \epsilon) \{ \log M(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log M(\frac{r}{4^{n-2}}, g_{1,f}) \} + O(1) \geq \frac{1}{2} (\lambda_p(g) - \epsilon) \{ T(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log M(\frac{r}{4^{n-2}}, g_{1,f}) \} + O(1) \text{or,} (3.39) \quad \log^{[(n-1)p]} T(r, f_{n,g}) \geq \log^{[p]} T(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log^{[p+1]} M(\frac{r}{4^{n-2}}, g_{1,f}) \}$$

(3.39) 
$$\log^{[(n-1)p]} T(r, f_{n,g}) \ge \log^{[p]} T(\frac{r}{4^{n-2}}, f(g_{1,f})) - \log^{[p+1]} M(\frac{r}{4^{n-2}}, g_{1,f}) + O(1).$$

For given  $\epsilon(0 < \epsilon < 1 - \delta(0; f))$ 

 $N(r,0;f) > (1 - \delta(0;f) - \epsilon)T(r,f)$  for all sufficiently large values of r. So, from Lemma 2.5, for all sufficiently large values of r

$$T(\frac{r}{4^{n-2}}, f(g_{1,f})) + O(1) \ge (\log \frac{1}{\eta}) [\frac{(1-\delta(0;f)-\epsilon)T\{M((\eta r)^{\frac{1}{1+\gamma}}, g_{1,f}), f\}}{\log M((\eta r)^{\frac{1}{1+\gamma}}, g_{1,f}) - O(1)} - O(1)]$$
  
or,  $\log^{[p]} T(\frac{r}{4^{n-2}}, f(g_{1,f})) \ge \log^{[p]} T(M((\eta r)^{\frac{1}{1+\gamma}}, g_{1,f}), f) - \log^{[p+1]} M((\eta r)^{\frac{1}{1+\gamma}}, g_{1,f}) + O(1)$ 

$$\begin{array}{ll} (3.40) &= \log^{[p]} T(M((\eta r)^{\frac{1}{1+\gamma}},g_{1,f}),f) + O(\log r).\\ \text{Again } \log^{[p+1]} M(\frac{r}{4^{n-2}},g_{1,f}) = \log^{[p+1]} M(\frac{r}{4^{n-2}},(1-\alpha)z+\alpha g)\\ &\geq \log^{[p+1]} M(\frac{r}{4^{n-2}},g) - \log^{[p+1]} M(\frac{r}{4^{n-2}},z)\\ &> (\lambda_p(g)-\epsilon)\log(\frac{r}{4^{n-2}}) - \log^{[p+1]}\frac{r}{4^{n-2}}\\ (3.41) &= O(\log r).\\ \text{Therefore from } (3.39), (3.40) \text{ and } (3.41) \text{ for all sufficiently large values of } r\\ \log^{[(n-1)p]} T(r,f_{n,g}) > \log^{[p]} T(M((\eta r)^{\frac{1}{1+\gamma}},g_{1,f}),f) + O(\log r)\\ &> (\lambda_p(f)-\epsilon)\log M((\eta r)^{\frac{1}{1+\gamma}},g_{1,f}) + O(\log r)\\ &= (\lambda_p(f)-\epsilon)\log M((\eta r)^{\frac{1}{1+\gamma}},g_{1-2}) + O(\log r)\\ &\geq (\lambda_p(f)-\epsilon)(\log M((\eta r)^{\frac{1}{1+\gamma}},g_{1-2}) + O(\log r))\\ &\geq (\lambda_p(f)-\epsilon)(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}) + O(\log r) \\ &\leq (\lambda_p(f)-\epsilon)(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}) + O(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}) \\ &\leq (\lambda_p(f)-\epsilon)(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}) + O(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}) \\ &\leq (\lambda_p(f)-\epsilon)(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}}) \\ \\ &\leq (\lambda_p(f)-\epsilon)(\log P^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}})$$

(3.42) 
$$= (\lambda_p(f) - \epsilon) \exp^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}(\lambda_p(g) - \epsilon)} + O(\log r).$$

Also,

 $\log^{[p]} T(r^A, g^{(k)}) < A(\rho_p(g) + \epsilon) \log r$ (3.43)

for all sufficiently large values of r.

So from (3.42) and (3.43) for all sufficiently large values of r

$$\frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p]} T(r^A,g^{(k)})} > \frac{O(\log r)}{A(\rho_p(g)+\epsilon)\log r} + \frac{(\lambda_p(f)-\epsilon)\exp^{[p-1]}(\eta r)^{\frac{1}{1+\gamma}(\lambda_p(g)-\epsilon)}}{A(\rho_p(g)+\epsilon)\log r}$$
  
Therefore, 
$$\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log^{[p]} T(r^A,g^{(k)})} = \infty.$$

**Theorem 3.16.** Let f(z) and g(z) be two transcendental entire functions such that (i)  $0 < \lambda_p(f) \le \rho_p(f) \le \rho(f) < \infty$ ; (ii)  $\lambda_p(g) > 0$ ; and (iii)  $\delta(0; g) < 1$ . Then for any real number A and for odd n  $\limsup_{r \to \infty} \frac{\log^{[(n-1)p]} T(r, f_{n,g})}{\log^{[p]} T(r^A, f^{(k)})} = \infty \quad \text{for } k = 0, 1, 2, 3, \dots$  $r \rightarrow \infty$ 

**Theorem 3.17.** Let f(z) and g(z) be two entire functions such that  $\rho_p(f) = 0$ ,  $\rho_p^*(f) < \infty$  and  $\rho(g) < \infty$ . Then for even  $n, \rho_{(n-1)p}(f_{n,g}) < \infty$ .

Proof. To prove the theorem we first prove that  $\rho_p(g_{1,f}) < \infty$  for any  $p \ge 1$ . We have  $g_{1,f}(z) = (1 - \alpha)z + \alpha g(z)$ ,  $\rho(z) = 0$  and  $\rho(g) < \infty$ . So,  $\rho(g_{1,f}) \le \max\{\rho(z), \rho(g)\}.$ Therefore,  $\rho(g_{1,f}) < \infty$ . Again  $\rho_p(g_{1,f}) \le \rho(g_{1,f}) < \infty$ . From (3.11) for all large values of r  $\frac{\log^{[(n-1)p]} T(r,f_{n,g})}{\log r} \le \frac{\log^{[p]} T(2^{n-2}r,g_{1,f})}{\log r} + \frac{\log^{[p]} T(M(2^{n-2}r,g_{1,f}),f)}{\log r} + o(1)$   $= \frac{\log^{[p]} T(2^{n-2}r,g_{1,f})}{\log(2^{n-2}r)} \frac{\log 2^{n-2} + \log r}{\log r} + \frac{\log^{[p]} T(M(2^{n-2}r,g_{1,f}),f)}{\log\log M(2^{n-2}r,g_{1,f})}$   $\times \frac{\log\log M(2^{n-2}r,g_{1,f})}{\log r} + o(1)$ 

Therefore,  $\rho_{(n-1)p}(f_{n,g}) < \infty$ .

**Theorem 3.18.** Let f(z) and g(z) be two entire functions such that  $\rho_p(g) = 0$ ,  $\rho_p^*(g) < \infty$  and  $\rho(f) < \infty$ . Then for odd  $n, \rho_{(n-1)p}(f_{n,g}) < \infty$ .

#### References

- [1] Banerjee, D. and Mondal, N., Maximum modulus and maximum term of generalized iterated entire functions, Bulletin of the Allahabad Mathematical Society, Vol.27, No.1 (2012), 117-131.
- [2] Bergweiler, W., On the Nevanlinna characteristic of a composite function, Complex variables, Vol.10 (1988), 225-236.
- [3] Bhoosnurmath, S. S. and Prabhaiah, V. S., On the generalized growth properties of composite entire and meromorphic functions, Journal of Indian Acad Math., Vol.29, No.2 (2007), 343-369.
- Clunie, J., The composition of entire and meromorphic functions, Mathematical Essays ded-[4]icated to Macintyre, Ohio Univ. Press (1970), 75-92.
- [5] Hayman, W. K., Meromorphic functions, Oxford University Press, 1964.

- [6] Lahiri, B. K. and Banerjee, D., Relative fix points of entire functions, J. Indian Acad. Math., Vol.19, No.1 (1997), 87-97.
- [7] Lahiri, I. and Dutta, S.K., On the growth of composite entire and meromorphic functions, Indian J. pure appl. Math., Vol.35, No.4 (2004), 525-543.
- [8] Lin, Q. and Dai, C., On a conjecture of shah concerning small functions, Kexue Tongbao, Vol.31(1986), 220-224.
- [9] Nino, K. and Suita, N., Growth of a composite function of entire functions, Kodai Math. J., Vol.3(1980), 374-379.
- [10] Singh, A. P., Growth of composite entire functions, Kodai Math. J., Vol. 8 (1985), 99-102.
- [11] Valron, G., Lectures on the general theory of integral functions, Chelsea Publishing Company, (1949).

BALLAVPUR R.G.S.VIDYAPITH, BALLAVPUR, RANIGANJ, WEST BENGAL, INDIA E-mail address: nilkanta1986@gmail.com