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FIBONACCI AND LUCAS SEQUENCES AT NEGATIVE INDICES

SERPIL HALICI, ZEYNEP AKYUZ,

Abstract. This study investigate the Fibonacci and Lucas sequences at neg-
ative indices. In this paper we give the formulas of F−(nk+r) and L−(nk+r)

depending on whether the indices are odd or even. For this purpose we con-

sider a special matrix and we give various combinatorial identities related with
the Fibonacci and Lucas sequences by using the matrix method. Some of the

resulting identities are well known identities in the literature, but some of these

are new.

1. Introduction

Horadam sequences {Wn}n∈N, Wn = Wn(a, b; p, q), are defined as follows,

Wn = pWn−1 − qWn−2; W0 = a, W1 = b.

Where a, b, p and q are arbitrary complex numbers, with q ≥ 0. The sequences
{Wn}n∈N have several famous number sequences as special cases. For example, E.
Lucas investigated the special cases {Un} and {Vn} of this sequence such as

Un = Wn(0, 1; p, q), Vn = Wn(2, p; p, q).

Further and detailed knowledge can be found in the references [2, 5, 6, 9]. If α and
β are assumed distinct roots of the characteristic equation λ2 − pλ + q = 0, then
the terms Wn of this sequence can be computed by the Binet formula.

Wn = (Aαn −Bβn)/(α− β),

where A = b − aβ, B = b − aα. Note that the Binet formula of the Horadam
sequence at negative indices can be given as

W−n =
pW−n+1 −W−n+2

q
.
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From [1, 3, 4, 10, 11, 12] we know that the matrix M , M =

(
p −q
1 0

)
, is reduces

to the Fibonacci Q− matrix if p = 1 and q = −1.

In [1, 3], using the powers of the matrix M =

(
p −q
1 0

)
, we derived various

combinatorial identities involving the terms of the sequence {Wn}n∈N. Further-
more, we consider a special matrix A as follows[3],

A =

(
p2 − 2q p
−qp −2q

)
.

And for n ≥ 1, we calculated the power of it as follows.

An = (p2 − 4q)(n−1)/2
(

Vn+1 Vn
−qVn −qVn−1

)
; if n is odd number,

and

An = (p2 − 4q)n/2
(

Un+1 Un

−qUn −qUn−1

)
; if n is even number.

In [7, 8, 9] for any matrix B =

(
a b
c d

)
, the authors investigated the nth power

of this matrix B;

Bn =

(
yn − dyn−1 byn−1
cyn−1 yn − ayn−1

)
,

where

yn =

bn2 c∑
i=0

(
n− i
i

)
Tn−2i(−D)i.

Note that T and D are the trace and determinant of the matrix B, respectively.

In this study, we derive various identities involving the generalized Fibonacci and
Lucas sequences at negative index. For this purpose, we consider a new matrix E
as follows,

E =

(
3 −1
−1 2

)
.

Now, using the powers of the matrix E we will give the following theorem.

Theorem 1.1. For integers n, we have the following matrices.

En = 5(n−1)/2
(
L−(n+1) L−n
L−n L−(n−1)

)
; if n is odd number
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and

En = 5n/2
(
F−(n+1) F−n
F−n F−(n−1)

)
; if n is even number,

where Fn = Wn(0, 1; 1, 1) and Ln = Wn(2, 1; 1, 1)

Proof. We use induction on n. First, we consider even numbers n. For n = 0, the
claim is obvious. We suppose that it is true for n = k and k is even number, then
by using the equations, L−n = (−1)nLn and F−n = (−1)n+1Fn we get

Ek+1 = 5k/2
(
L−(k+2) L−(k+1)

L−(k+1) L−k

)
.

When n = k is an odd number if we use the identities L−n = (−1)n and Ln−1 +
Ln+1 = 5Fn, then we obtain

Ek+1 = EkE = 5(k+1)/2

(
F−(k+2) F−(k+1)

F−(k+1) F−k

)
.

So, using the equations, L−n = (−1)nLn and Fn−1 + Fn+1 = Ln, we have

En = 5n/2
(
F−(n+1) F−n
F−n F−(n−1)

)
.

In a similar way, for odd number n

En = 5(n−1)/2
(
L−(n+1) L−n
L−n L−(n−1)

)
can be written. Thus, the proof is completed. �

Consequently, by the aid of the matrix E we can get the following equations.

det(En) = 5n, Fn =
αn − βn

α− β
, n ≥ 0

and

Fn−1Fn+1 − F 2
n = (−1)n, Ln−1Ln+1 − L2

n = 5(−1)n−1.

Thus, the various identities are well known in the literature and involving the terms
of Fibonacci and Lucas numbers at negative indices can be easily obtain by the ma-
trix E.

In the following theorem, we give the binomial expansion of the Binet formula
for the golden ratio at negative indices.

Theorem 1.2. For n ≥ 1, we have

F−n =

bn−1
2 c∑

i=0

(
n− 1− i

i

)
5

n−2i−2
2 (−1)(i+1), if n is even number

and

L−n = 5−
n−1
2

bn−1
2 c∑

i=0

(
n− 1− i

i

)
5n−1−i(−1)(i+1), if n is odd number.
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Proof. From the following matrices Bn and En we can write

En =

(
yn − 2yn−1 −yn−1
−yn−1 yn − 3yn−1

)
,

where n is an even number and yn−1 =
∑bn−1

2 c
i=0

(
n− 1− i

i

)
5n−1−2i(−5)i.

If we equal the corresponding elements of the matrices En and Bn in the The-
orem 1.2, then we have

5
−n
2 F−n =

bn−1
2 c∑

i=0

(
n− 1− i

i

)
5

n−2−2i
2 (−5)i.

If we make necessary arrangements, then we get the following formula.

F−n =

bn−1
2 c∑

i=0

(
n− 1− i

i

)
5

n−2−2i
2 (−1)i.

A similar proof can be written down for the odd numbers n. �

Note that, for n = 5 we can write

L−5 = 5−2
2∑

i=0

(
4− i
i

)
54−i(−1)i+1 = −11.

Theorem 1.3. For all integers n and k ≥ 1, we have the following combinatorial
identities,

i) F−nk = F−nL
k−1
n

b k−1
2 c∑

i=0

(
k − 1− i

i

)
L−2in (−1)i, n and k are even numbers.

ii) L−nk = 5−
1−k
2 L−n

b k−1
2 c∑

i=0

(
k − 1− i

i

)
5−iF k−1−2i

n (−1)i, n and k are odd numbers.

Proof. When n is even number, if we calculate the kth power of the matrices En,
then

Enk =

(
yk − 5

n
2 F−(n−1)yk−1 5

n
2 F−nyk−1

5
n
2 F−nyk−1 yk − 5

n
2 F−(n+1)yk−1

)
,

where

yk−1 =

b k−1
2 c∑

i=0

(
k − 1− i

i

)
(5

n
2 Ln)k−1−2i((−5)n)i.

On the other hand, we know that

Enk = 5
nk
2

(
F−(nk+1) F−nk
F−nk F−(nk−1)

)
, nk is even number.

So, if we equal reciprocal elements of these matrices, we have

5
nk
2 F−n = 5

n
2 F−nyk−1.
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Thus, we can get

F−nk = F−nL
k−1
n

b k−1
2 c∑

i=0

(
k − 1− i

i

)
L−2in (−1)i.

Note that, for n = 2, k = 4 we get

F−8 = F−2L
3
2

1∑
i=0

(
3− i
i

)
L−2i2 (−1)i = −21.

When n and k numbers are odd, the proof can be seen alike for even numbers. �

In addition using the multiplication matrix, for m and n even numbers, we can
get the following equations.

F−(m+n) = F−(m+1)F−n + F−mF−(n−1), m and n even,

and

F−(m−n) = 5
nk
2 F−(m−1)F−n − F−mF−(n−1), m and n even.

Lemma 1.1. For n, r integers we have

i) F−(n−r) = F−nF−(r−1) − F−(n−1)F−r, r and n even,

ii) 5F−(n−r) = L−nL−(r−1) − L−(n−1)L−r, r and n even,

iii) L−(n−r) = L−nF−(r−1) − L−(n−1)F−r, r even and n odd,

iv) L−(n−r) = F−nL−(r−1) − F−(n−1)L−r, r odd and n even.

Proof. From the powers of the matrices E and B the proof can be easily seen. �

Theorem 1.4. For all integers n, r and k ≥ 1 we have the following equations.

i) F−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
Lk−2i
n (−1)i(F−r+

k − 2i

k − i
F−(n−r)

Ln
), n, k and r even,

ii) F−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
5

k−1−2i
2 F k−2i

n (−1)i(L−r+
k − 2i

k − i
F−(n−r)

Fn
), n, k and r odd.

Proof. If n, k, r are even numbers, then nk + r is also even number. So, using
Theorem 1.2

(1.1) E
nk+r

= 5
nk+r

2

(
F−(nk+r+1) F−(nk+r)

F−(nk+r) F−(nk+r−1)

)
can be written. On the other hand,

(1.2) (E
n
)
k
E

r
= 5

r
2

(
yk − 5

n
2 F−(n−1)yk−1 5

n
2 F−nyk−1

5
n
2 F−nyk−1 yk − 5

n
2 F−(n+1)yk−1

)(
F−(r+1) F−r

F−r F−(r−1)

)
can be written.
So, if we equal the reciprocal elements of matrices in the equations (1.1) and (1.2),
then we get

5
nk+r

2 F−(nk+r) = 5
r
2F−r(yk − 5

n
2 F−(n−1)yk−1) + 5

r
2F−(r−1)5

n
2 F−nyk−1.
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Since, T = 5
n
2 Ln, D = 5n, yk =

∑b k2 c
i=0

(
k − i
i

)
T k−2i(−D)i, n even number

5
nk+r

2 F−(nk+r) = (

b k2 c∑
i=0

(
k − i
i

)
T k−2i(−D)i)(5

r
2F−r + 5

n+r
2 F−(n−r)

k − 2i

k − i
T−1)

and

5
nk+r

2 F−(nk+r) = (

b k2 c∑
i=0

(
k − i
i

)
5

nk+r
2 (−1)iLk−2i

n )(F−r +
k − 2i

k − i
F−(n−r)

Ln
).

can be written.
Thus, the proof of i) is completed. In case ii) the proof can be seen in a similar
way. �

If we want to give an example, then for n = 4, k = 2, r = 6 we get

F−14 = (

1∑
i=0

(
2− i
i

)
L2−2i
4 (−1)i)(F−6 +

2− 2i

2− i
F2

L4
) = −377.

And, for n = 5, k = 3, r = 7 we get F−22 = −17711.

Theorem 1.5. For k ≥ 1, the odd numbers n, k and even number r we have

i) L−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
5

k−2i+1
2 F k−2i

n (−1)i(F−r +
k − 2i

k − i
L−(n−r)

5Fn
).

And when n, k are even numbers and r is odd number we have

ii) L−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
Lk−2i
n (−1)i(L−r +

k − 2i

k − i
L−(n−r)

Ln
).

Now, we will give the following theorems without proof.

Theorem 1.6. For k ≥ 1, we have

i) F−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
5

k−2i
2 F k−2i

n (−1)i(F−r+
k − 2i

k − i
L−(n−r)

5Fn
), n odd, k and r even,

ii) F−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
Lk−2i
n (−1)i(F−r+

k − 2i

k − i
F−(n−r)

Ln
), n, r even, k odd.

Theorem 1.7. For k ≥ 1, the odd numbers n, r and number even k we have

i) L−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
5

k−2i
2 F k−2i

n (−1)i(L−r +
k − 2i

k − i
F−(n−r)

Fn
).

And when n is even number and k, r are odd numbers we have

ii) L−(nk+r) =

b k2 c∑
i=0

(
k − i
i

)
Lk−2i
n (−1)i(L−r +

k − 2i

k − i
L−(n−r)

Ln
).
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Thus, we derive various identities for the Fibonacci and Lucas sequences at neg-
ative index.
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