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A new class of Hardy spaces in the plane

Muhammed Ali Alan∗ and Nihat Gökhan Gö§ü³† ‡�

Abstract

We introduce new spaces that are extensions of the Hardy spaces and
prove a removable singularity result for holomorphic functions within
these spaces. Additionally we provide non-trivial examples.
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1. Introduction

This paper deals with a construction of a holomorphic function space on an arbitrary
open connected subset of the complex plane C. In this paper we suggest a method of
constructing a function spaceW p in any arbitrary domain. The de�nition of the norm on
W p makes use of growth information of the function locally in the domain. We show that
W p is Banach when p ≥ 1 and prove a removable singularity theorem. This generalizes
the result of M. Parreau in [8]. In the de�nition of W p we make use of the recently
studied Poletsky-Stessin-Hardy (PSH) spaces. These spaces were introduced in several
complex variables context in [9] and recently studied in planar domains in [1] and for the
disk in the papers [10] and [11].

In general, PSH norm depends on the choice of the subharmonic exhaustion function
which exists only when the domain is regular with respect to the classical Dirichlet
problem. Our motivation for such a construction comes from the question that which
subspaces of the classical Hardy space Hp can be obtained as a Poletsky-Stessin-Hardy
space. For example the subspace zHp of Hp is not a Poletsky-Stessin-Hardy space
because if the function z belongs to this space, then so does the constant function 1.
However we show in section 4 that B(z)Hp can be viewed as a W p space when B is a
�nite Blaschke product.
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2. Poletsky-Stessin-Hardy spaces

A function u ≤ 0 on a bounded open set G ⊂ C is called an exhaustion on G if the set

Bc,u := {z ∈ G : u(z) < c}

is relatively compact in G for any c < 0. We denote the class of harmonic functions
and subharmonic functions on a domain G by har(G) and sh(G), respectively. It is
known that there is a subharmonic exhaustion function on G if and only if G is regular
with respect to the classical Dirichlet problem. Let us denote the class of continuous
subharmonic exhaustion functions on a domain G by E(G). If u is an exhaustion and
c < 0 is a number, we set

uc := max{u, c}, Sc,u := {z ∈ G : u(z) = c}.

Since uc is a continuous subharmonic function the measure ∆uc is well-de�ned. Following
Demailly [2] we de�ne

µc,u := ∆uc − χG\Bc,u∆u,

where χω is the characteristic function of a set ω ⊂ G. We shall call these measures as
Demailly measures.

If u is a negative subharmonic exhaustion function on G, then the Demailly-Lelong-
Jensen formula takes the form

(2.1)

∫
Sc,u

v dµc,u =

∫
Bc,u

(v∆u− u∆v) + c

∫
Bc,u

∆v,

where µc,u is the Demailly measure which is supported in the level sets Sc,u of u and
v ∈ sh(G). This formula is the one variable version of the result which was proved by
Demailly [2]. Let us recall that by [2] if

∫
G

∆u <∞, then the measures µc,u converge as
c→ 0 weak-∗ to a measure µu supported in the boundary ∂G.

Let u ∈ sh(G) be an exhaustion function which is continuous with values in R∪{−∞}.
Following [9] we set

shu(G) := shu :=

{
v ∈ sh(G) : v ≥ 0, sup

c<0

∫
Sc,u

v dµc,u <∞

}
,

and

Hp
u(G) := Hp

u := {f ∈ hol(G) : |f |p ∈ shu}

for every p > 0. We write

‖v‖u := sup
c<0

∫
Sc,u

v dµc,u =

∫
G

(v∆u− u∆v)(2.2)

for the norm of a nonnegative function v ∈ sh(G) and set

‖f‖u,p := sup
c<0

(∫
Sc,u

|f |p dµc,u

)1/p

(2.3)

for the norm of a holomorphic function f on G. Let us write ‖f‖u when p = 1. It is
known in view of [9, Theorem 4.1] that Hp

u is a Banach space when p ≥ 1. It is clear
that the function 1 belongs to Hp

u if and only if the Demailly measure µu has �nite mass.
If G is a regular bounded domain in C and w ∈ G, then we have the Green function
v(z) = gG(z, w) which is a subharmonic exhaustion function for G.

The following result is obtained in [1].
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2.1. Theorem. Let G be a bounded domain and u ∈ E(G). Let p > 0. The following
statements are equivalent:

i. f ∈ Hp
u(G).

ii. There exists a least harmonic function h in G which belongs to the class shu so
that |f |p ≤ h on G. Furthermore,

‖f‖pu,p =

∫
G

h∆u = ‖h‖u.

Now let G be a bounded domain with C1 boundary or a bounded simply connected
domain with recti�able boundary. Let u ∈ E(G) and p ≥ 1 (p > 0 if G is simply
connected). Then the space Hp

u(G) (thinking of boundary values) is a closed subspace
of the weighted space Lp(Vudσ) on the boundary ∂G, where (see [1]) dσ is the usual
Lebesgue measure on ∂G and

Vu(ζ) =

∫
G

PG(z, ζ)∆u(z), ζ ∈ ∂G

is the balayage of the positive measure ∆u to the boundary ∂G. Then Vu(ζ) = ∂u
∂n

(ζ)
is the directional derivative of u in the normal direction at a point ζ ∈ ∂G (see [4] and
[11]). The next results are restatements from [9] and they establish basic observations
on the classes of Hardy spaces.

2.2. Proposition. [9, Corollary 3.2] Let v be a continuous subharmonic exhaustion
function on a bounded regular domain G and let v(z) = g(z, w) be the Green function.
Then shpu(G) ⊂ shpv(G) and there is a constant c such that ‖ϕ‖v ≤ c‖ϕ‖u for every
nonnegative subharmonic function ϕ on G.

2.3. Proposition. [9, Corollary 3.2] Let u and v be continuous subharmonic exhaustion
functions on G and let K be a compact set in G such that bv(z) ≤ u(z) for some constant
b > 0 and all z ∈ G\K . Then shv ⊂ shu and ‖ϕ‖u ≤ b‖ϕ‖v for every ϕ ∈ shv.

The following result is basically contained in the proof of [9, Theorem 3.6] taking
n = 1.

2.4. Proposition. Let v be a continuous subharmonic exhaustion function on G, K ⊂ G
be compact and V ⊂⊂ G be an open set containing K. Suppose that there exists a
constant s > 0 so that v(z) ≤ sgG(z, w) for every w ∈ K and z ∈ G\V . Then

ϕ(w) ≤ s

2π
‖ϕ‖v, w ∈ K

for every nonnegative ϕ ∈ sh(G).

3. Hardy spaces in arbitrary open sets

In this section we propose a way to de�ne weighted Hardy spaces in arbitrary planar
domains. For Hardy spaces in multiply connected domains we refer to [3]. Let us set the
notation �rst. Let Ω be a domain, E ⊂ Ω be a compact polar subset and let Ωj be a
sequence of regular domains so that Ωj ⊂ Ω and the union of all Ωj is the open set Ω\E.
Also for each j let uj ∈ E(Ωj), that is, uj is a subharmonic exhaustion function for Ωj .
We de�ne the class W p of holomorphic functions on Ω as follows:

W p := {f ∈ hol(Ω) : sup
j
‖f‖uj ,p <∞}.

Let us de�ne

‖f‖Wp := sup
j
‖f‖uj ,p
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for any f ∈ W p. We will write W p[uj ,Ω, E] if we wish to emphasize the sequence of
functions uj used in the de�nition or the underlying domain Ω and the polar set E. Before
showing that (W p, ‖‖Wp) is a Banach space we need the following removable singularity
theorem for bounded holomorphic functions due to Lelong.

3.1. Theorem. [7, p.35], [5, p. 107] Let E be a relatively closed pluri-polar set and let
f be holomorphic in Ω\E. Suppose that f is bounded on Ω\E. Then f has a unique
holomorphic extension to the whole of Ω.

We prove an auxiliary result.

3.2. Theorem. Let fn be a holomorphic function on a domain Ω and E be a compact
polar set in Ω. Suppose that fn converges uniformly to a function f on compact subsets
of Ω\E. Then the function f can be extended to a holomorphic function on Ω.

Proof. Let Γ be a bounded open region in Ω with piecewise smooth boundary γ so that
E ⊂ Γ ⊂ Γ ⊂ Ω. Since |fn| converges uniformly to |f | on γ, we see that supn |fn| is
uniformly bounded on γ, that is, there exists a number M so that |fn| ≤ M on γ for
every n. We write PΓϕ for the Poisson integral of a continuous function ϕ on γ. Then

|fn(z)| ≤ PΓ|fn|(z) ≤M

for every n for every z ∈ Γ. Therefore |f(z)| ≤ M for every z ∈ Γ\E. By Theorem
3.1 f has a holomorphic extension to Γ. Since f is already holomorphic outside of Γ we
conclude that f can be extended to a holomorphic function on Ω. �

We can now prove that (W p, ‖‖Wp) is Banach.

3.3. Theorem. (W p, ‖‖Wp) is a Banach space for p ≥ 1.

Proof. If ‖f‖Wp = 0, then ‖f‖uj ,p = 0, that is why f = 0 in Ωj for every j. Hence f = 0
on Ω\E, and since E is polar, f = 0 on Ω. The other properties of norm can be easily
checked for ‖f‖Wp . So let us prove that it is complete. Take a Cauchy sequence {fn}
from W p. This implies �rst that the sequence of holomorphic functions {fn} is Cauchy
in Hp

uj for every j. We conclude that fn converges uniformly to a function f on every

compact subset of Ωj for each j, hence on every compact subset of Ω\E. By Theorem
3.2 f extends to a holomorphic function to the whole of Ω.

To prove that f ∈ W p we will now show that ‖fn − f‖Wp converges to zero. Given
ε > 0 there exists an integer N ≥ 1 so that

sup
j
‖fn − fm‖uj ,p < ε

whenever n, m ≥ N . This gives that

‖fn − f‖Wp = sup
j
‖fn − f‖uj ,p ≤ ε

for every n ≥ N . Therefore ‖fn − f‖Wp converges to zero and f ∈W p. �

It is known that a polar set is a removable singularity for the classical Hardy spaces in
the plane (see [6] and [8]). The next result can be considered as a removable singularity
theorem for theW p spaces. There byW p[uj ,Ω, E]|Ω\E we denote the class of restrictions
of the functions from W p[uj ,Ω, E] to Ω\E.

3.4. Theorem. Let Ωj ⊂ Ωj+1, E ⊂ Ω be a compact polar set for every j and let p > 0.
If there exists an open set U ⊂ Ω\E so that supj uj(z) ≤ ` < 0 for every z ∈ U , then

W p[uj ,Ω, E]|Ω\E = W p[uj ,Ω\E, ∅].
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Proof. The inclusion W p[uj ,Ω, E]|Ω\E ⊂ W p[uj ,Ω\E, ∅] is immediate from the de�ni-
tions. To prove the reverse inclusion we claim that if f belongs to the spaceW p[uj ,Ω\E, ∅],
then f extends to a holomorphic function to the whole set Ω. Since f ∈ Hp

uj (Ωj), ac-

cording to Theorem 2.1 we see that the function hj := PΩj (|f |p) has the properties that
hj ∈ har ∩ shuj (Ωj) and that |f |p ≤ hj on Ωj . Then hj ≤ hj+1, and thanks to the
Harnack theorem the limit h = limhj is a harmonic function on Ω\E unless h = ∞
identically everywhere. Let z0 ∈ U and r > 0 so that {z : |z − z0| ≤ r} ⊂ U . We claim
that h(z0) < ∞. There exists a constant s > 0 so that ` < sgΩ(z, z0) ≤ sgΩj (z, z0)
for every z ∈ Ωj with |z − z0| = r, j ≥ 1. Harmonicity of the Green's function
gΩj (z, z0) on Ωj\{z : |z − z0| ≤ r} implies that uj(z) ≤ ` < sgΩj (z, z0) for every
z ∈ Ωj\{z : |z − z0| ≤ r} for every j ≥ 1. By Theorem 2.1 and Proposition 2.4 we see
that

2π

s
hj(z0) ≤ ‖hj‖p,uj = ‖f‖p,uj ≤ ‖f‖Wp[uj ,Ω\E,∅] <∞

for every j ≥ 1. This proves that h(z0) < ∞. Hence h ∈ har(Ω\E) and satis�es
|f |p ≤ h. Now this means f belongs to the Hardy class of functions mentioned in
[8]. By [8, Theorem A] f admits a unique holomorphic extension to Ω and therefore
f ∈W p[uj ,Ω, E]. This completes the proof. �

4. Examples

In view of [9, Proposition 3.5] Hp
u ⊂ Hp when u is a subharmonic exhaustion on the

disk. It is our purpose to construct examples of subsets of the classical Hardy space
Hp on the disk which can be described using the Hardy spaces of the form W p. The
next examples are of this sort. In the next example we construct a family of exhaustion
functions inside the unit disk to descripe the space of functions in Hp which are zero at
0.

4.1. Example. For any 0 < R < 1 let ΓR denote the annulus

ΓR := {z ∈ C : R < |z| < 1}.
If t > 0, de�ne a subharmonic exhaustion function ut in ΓR by

u(z) := ut(z) := ut,R(z) := max

{
t log

(
R

|z|

)
, log |z|

}
.

Some properties of ut are listed below.

(1) ut(z) = 0, if |z| = 1 or |z| = R.

(2) We solve t log
(
R
|z|

)
= log |z| to get |z| = Rt/t+1 and hence

ut(z) =

{
t log

(
R
|z|

)
if R < |z| ≤ Rt/t+1;

log |z|, if Rt/t+1 < |z| < 1.

(3) We compute the measure µu of u.

Vu(eiθ) =
∂u

∂n
|z=eiθ = 1

and

Vu(Reiθ) =
∂u

∂n
|z=Reiθ = t/R

for every θ ∈ [0, 2π]. Hence, for any positive measurable function ϕ on ∂ΓR we
have∫
∂ΓR

ϕdµu =
t

2πR

∫ 2π

0

ϕ(Reiθ)dθ +
1

2π

∫ 2π

0

ϕ(eiθ)dθ.
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Now we are ready to state the main purpose of this example.

4.2. Theorem. Let Hp be the classical Hardy space in the unit disc for p > 0 and k ≥ 1
be an integer. Let (Rn) be any sequence of numbers converging to 0 so that 0 < Rn < 1.
Take α so that 1− kp ≤ α < 1− kp+ p. Then we have

zkHp = W p[uRαn ,Rn ,D, {0}]

and two spaces have equivalent norms.

Proof. Let W p = W p[uRαn ,Rn ,D, {0}]. If h ∈ zkHp, we will show that h ∈ W p. Let

h = zkf , where f ∈ Hp. Then

‖zkf‖pWp = sup
n
‖zkf‖puRαn,p

= sup
n

(
Rα+kp−1
n

2π

∫ 2π

0

|f(Rne
iθ)|pdθ +

1

2π

∫ 2π

0

|f(eiθ)|pdθ
)

≤ sup
n

(Rα+kp−1
n + 1)‖f‖pHp ≤ 2‖f‖pHp <∞.

Hence h ∈W p and zkHp ⊂W p.
Conversely, let h ∈ W p. By the de�nition of the norm of W p (by item (3) above for

instance) it is clear that ‖h‖Hp ≤ ‖h‖Wp for every h ∈ W p, that is, W p ⊂ Hp. We will
show that h ∈ zkHp. Suppose on the contrary that h(z) = zmf(z), where 0 ≤ m ≤ k−1,
f ∈ Hp and |f(0)| > 0. Then

‖h‖Wp ≥ sup
n

R
α+(k−1)p−1
n

2π

∫ 2π

0

|f(Rne
iθ)|pdθ

≥ sup
n
Rα+(k−1)p−1
n |f(0)|p =∞.

The contradiction shows that h(z) = zkf(z) for some f ∈ Hp. Hence W p = zkHp. �

Finally we can do the previous construction for �nite Blaschke products.

4.3. Theorem. Let a1, · · · , aN be distinct points in D and let

B(z) :=

N∏
j=1

(
z − aj
1− ajz

)kj
,

where kj ≥ 1 are integers. Let p > 0. Then there exists a sequence {Ωn} ⊂ D of
N + 1-connected domains and functions un ∈ E(Ωn) so that

B(z)Hp = W p[un,D]

and two spaces have equivalent norms.

Proof. Choose R > 0 small enough so that the circles

Cj =

{
z :

∣∣∣∣ z − aj1− ajz

∣∣∣∣kj = R

}
,

j = 1, · · · , N, are pairwise disjoint. Let ΩR be theN+1-connected domain with boundary
∂D∪∪Nj=1Cj . For each j choose αj so that −kjp ≤ αj < −kjp+p. Let ψR be the function
de�ned on ∂D by 1, on Cj by R

α. Then ψR is lower semicontinuous on ΩR, ψR ≥ tR > 0
for some constant t = tR and by [4, Theorem 2.1] there exists a subharmonic exhaustion
uR ∈ E(ΩR) so that ∂uR/∂n = ψR on ∂ΩR.
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Now let 0 < Rn < R be numbers decreasing to 0 and consider the space W p =
W p[uRn ,D]. If h = Bf ∈ B(z)Hp, then

‖Bf‖pWp = sup
n

(
N∑
j=1

R
αj+kjp
n

∫
Cj

|f(ζ)|pdσj +
1

2π

∫ 2π

0

|f(eiθ)|pdθ

)

≤ sup
n

(

N∑
j=1

R
αj+kjp
n + 1)‖f‖pHp ≤ (N + 1)‖f‖pHp <∞.

Hence h ∈W p and BHp ⊂W p.
Conversely, let h ∈W p. By the de�nition of the norm of W p it is clear that ‖h‖Hp ≤

‖h‖Wp for every h ∈ W p, that is, W p ⊂ Hp. We will show that h ∈ BHp. Suppose on
the contrary that the multiplicity mj of zero of h(z) at aj is strictly less than kj , that is

0 ≤ mj ≤ kj − 1 for some j. Then h(z) =
(
z−aj
1−ajz

)mj
f(z) for a function f ∈ Hp with

|f(aj)| > 0 and therefore,

‖h‖Wp ≥ sup
n
R
αj+(kj−1)p
n

∫
Cj

|f(ζ)|pdσj

≥ C sup
n
R
αj+(kj−1)p
n |f(aj)|p =∞.

The contradiction shows that h(z) = B(z)f(z) for some f ∈ Hp. Hence W p = B(z)Hp.
�
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