A new class of Hardy spaces in the plane

Muhammed Ali Alan^{*} and Nihat Gökhan Göğüş^{† ‡§}

Abstract

We introduce new spaces that are extensions of the Hardy spaces and prove a removable singularity result for holomorphic functions within these spaces. Additionally we provide non-trivial examples.

Keywords: Hardy space, Removable singularity. 2000 AMS Classification: Primary 30H10, Secondary 30J99 AMS

Received: 01.08.2016 Accepted: 10.12.2016 Doi: 10.15672/HJMS.20174622759

1. Introduction

This paper deals with a construction of a holomorphic function space on an arbitrary open connected subset of the complex plane \mathbb{C} . In this paper we suggest a method of constructing a function space W^p in any arbitrary domain. The definition of the norm on W^p makes use of growth information of the function locally in the domain. We show that W^p is Banach when $p \ge 1$ and prove a removable singularity theorem. This generalizes the result of M. Parreau in [8]. In the definition of W^p we make use of the recently studied Poletsky-Stessin-Hardy (PSH) spaces. These spaces were introduced in several complex variables context in [9] and recently studied in planar domains in [1] and for the disk in the papers [10] and [11].

In general, PSH norm depends on the choice of the subharmonic exhaustion function which exists only when the domain is regular with respect to the classical Dirichlet problem. Our motivation for such a construction comes from the question that which subspaces of the classical Hardy space H^p can be obtained as a Poletsky-Stessin-Hardy space. For example the subspace zH^p of H^p is not a Poletsky-Stessin-Hardy space because if the function z belongs to this space, then so does the constant function 1. However we show in section 4 that $B(z)H^p$ can be viewed as a W^p space when B is a finite Blaschke product.

^{*}Syracuse University, Syracuse, NY 13244, USA, Email: malan@syr.edu

[†]Sabanci University, Tuzla , Istanbul 34956 TURKEY, Email: nggogus@sabanciuniv.edu [‡]Corresponding Author.

[§]This work was supported by a TUBITAK grant project 113F301.

2. Poletsky-Stessin-Hardy spaces

A function $u \leq 0$ on a bounded open set $G \subset \mathbb{C}$ is called an exhaustion on G if the set

$$B_{c,u} := \{ z \in G : u(z) < c \}$$

is relatively compact in G for any c < 0. We denote the class of harmonic functions and subharmonic functions on a domain G by har(G) and sh(G), respectively. It is known that there is a subharmonic exhaustion function on G if and only if G is regular with respect to the classical Dirichlet problem. Let us denote the class of continuous subharmonic exhaustion functions on a domain G by $\mathcal{E}(G)$. If u is an exhaustion and c < 0 is a number, we set

$$u_c := \max\{u, c\}, \quad S_{c,u} := \{z \in G : u(z) = c\}$$

Since u_c is a continuous subharmonic function the measure Δu_c is well-defined. Following Demailly [2] we define

$$\mu_{c,u} := \Delta u_c - \chi_{G \setminus B_{c,u}} \Delta u,$$

where χ_{ω} is the characteristic function of a set $\omega \subset G$. We shall call these measures as Demailly measures.

If u is a negative subharmonic exhaustion function on G, then the Demailly-Lelong-Jensen formula takes the form

(2.1)
$$\int_{S_{c,u}} v \, d\mu_{c,u} = \int_{B_{c,u}} (v\Delta u - u\Delta v) + c \int_{B_{c,u}} \Delta v,$$

where $\mu_{c,u}$ is the Demailly measure which is supported in the level sets $S_{c,u}$ of u and $v \in sh(G)$. This formula is the one variable version of the result which was proved by Demailly [2]. Let us recall that by [2] if $\int_G \Delta u < \infty$, then the measures $\mu_{c,u}$ converge as $c \to 0$ weak-* to a measure μ_u supported in the boundary ∂G .

Let $u \in sh(G)$ be an exhaustion function which is continuous with values in $\mathbb{R} \cup \{-\infty\}$. Following [9] we set

$$sh_u(G) := sh_u := \left\{ v \in sh(G) : v \ge 0, \sup_{c < 0} \int_{S_{c,u}} v \, d\mu_{c,u} < \infty \right\},$$

and

$$H_{u}^{p}(G) := H_{u}^{p} := \{ f \in hol(G) : |f|^{p} \in sh_{u} \}$$

for every p > 0. We write

(2.2)
$$||v||_{u} := \sup_{c < 0} \int_{S_{c,u}} v \, d\mu_{c,u} = \int_{G} (v\Delta u - u\Delta v)$$

for the norm of a nonnegative function $v \in sh(G)$ and set

(2.3)
$$||f||_{u,p} := \sup_{c<0} \left(\int_{S_{c,u}} |f|^p \, d\mu_{c,u} \right)^{1/p}$$

for the norm of a holomorphic function f on G. Let us write $||f||_u$ when p = 1. It is known in view of [9, Theorem 4.1] that H_u^p is a Banach space when $p \ge 1$. It is clear that the function 1 belongs to H_u^p if and only if the Demailly measure μ_u has finite mass. If G is a regular bounded domain in \mathbb{C} and $w \in G$, then we have the Green function $v(z) = g_G(z, w)$ which is a subharmonic exhaustion function for G.

The following result is obtained in [1].

560

2.1. Theorem. Let G be a bounded domain and $u \in \mathcal{E}(G)$. Let p > 0. The following statements are equivalent:

i. $f \in H^p_u(G)$.

ii. There exists a least harmonic function h in G which belongs to the class sh_u so that $|f|^p \leq h$ on G. Furthermore,

$$||f||_{u,p}^p = \int_G h\Delta u = ||h||_u.$$

Now let G be a bounded domain with C^1 boundary or a bounded simply connected domain with rectifiable boundary. Let $u \in \mathcal{E}(G)$ and $p \geq 1$ (p > 0 if G is simply connected). Then the space $H^p_u(G)$ (thinking of boundary values) is a closed subspace of the weighted space $L^p(V_u d\sigma)$ on the boundary ∂G , where (see [1]) $d\sigma$ is the usual Lebesgue measure on ∂G and

$$V_u(\zeta) = \int_G P_G(z,\zeta) \Delta u(z), \quad \zeta \in \partial G$$

is the balayage of the positive measure Δu to the boundary ∂G . Then $V_u(\zeta) = \frac{\partial u}{\partial \mathbf{n}}(\zeta)$ is the directional derivative of u in the normal direction at a point $\zeta \in \partial G$ (see [4] and [11]). The next results are restatements from [9] and they establish basic observations on the classes of Hardy spaces.

2.2. Proposition. [9, Corollary 3.2] Let v be a continuous subharmonic exhaustion function on a bounded regular domain G and let v(z) = g(z, w) be the Green function. Then $sh_u^p(G) \subset sh_v^p(G)$ and there is a constant c such that $\|\varphi\|_v \leq c \|\varphi\|_u$ for every nonnegative subharmonic function φ on G.

2.3. Proposition. [9, Corollary 3.2] Let u and v be continuous subharmonic exhaustion functions on G and let K be a compact set in G such that $bv(z) \leq u(z)$ for some constant b > 0 and all $z \in G \setminus K$. Then $sh_v \subset sh_u$ and $\|\varphi\|_u \leq b \|\varphi\|_v$ for every $\varphi \in sh_v$.

The following result is basically contained in the proof of [9, Theorem 3.6] taking n = 1.

2.4. Proposition. Let v be a continuous subharmonic exhaustion function on $G, K \subset G$ be compact and $V \subset \subset G$ be an open set containing K. Suppose that there exists a constant s > 0 so that $v(z) \leq sg_G(z, w)$ for every $w \in K$ and $z \in G \setminus \overline{V}$. Then

$$\varphi(w) \le \frac{s}{2\pi} \|\varphi\|_v, \quad w \in K$$

for every nonnegative $\varphi \in sh(G)$.

3. Hardy spaces in arbitrary open sets

In this section we propose a way to define weighted Hardy spaces in arbitrary planar domains. For Hardy spaces in multiply connected domains we refer to [3]. Let us set the notation first. Let Ω be a domain, $E \subset \Omega$ be a compact polar subset and let Ω_j be a sequence of regular domains so that $\Omega_j \subset \Omega$ and the union of all Ω_j is the open set $\Omega \setminus E$. Also for each j let $u_j \in \mathcal{E}(\Omega_j)$, that is, u_j is a subharmonic exhaustion function for Ω_j . We define the class W^p of holomorphic functions on Ω as follows:

$$W^p := \{ f \in hol(\Omega) : \sup_j \|f\|_{u_j, p} < \infty \}$$

Let us define

$$||f||_{W^p} := \sup_{i} ||f||_{u_j,p}$$

for any $f \in W^p$. We will write $W^p[u_j, \Omega, E]$ if we wish to emphasize the sequence of functions u_j used in the definition or the underlying domain Ω and the polar set E. Before showing that $(W^p, |||_{W^p})$ is a Banach space we need the following removable singularity theorem for bounded holomorphic functions due to Lelong.

3.1. Theorem. [7, p.35], [5, p. 107] Let E be a relatively closed pluri-polar set and let f be holomorphic in $\Omega \setminus E$. Suppose that f is bounded on $\Omega \setminus E$. Then f has a unique holomorphic extension to the whole of Ω .

We prove an auxiliary result.

3.2. Theorem. Let f_n be a holomorphic function on a domain Ω and E be a compact polar set in Ω . Suppose that f_n converges uniformly to a function f on compact subsets of $\Omega \setminus E$. Then the function f can be extended to a holomorphic function on Ω .

Proof. Let Γ be a bounded open region in Ω with piecewise smooth boundary γ so that $E \subset \Gamma \subset \overline{\Gamma} \subset \Omega$. Since $|f_n|$ converges uniformly to |f| on γ , we see that $\sup_n |f_n|$ is uniformly bounded on γ , that is, there exists a number M so that $|f_n| \leq M$ on γ for every n. We write $P_{\Gamma}\varphi$ for the Poisson integral of a continuous function φ on γ . Then

$$|f_n(z)| \le P_{\Gamma} |f_n|(z) \le M$$

for every n for every $z \in \Gamma$. Therefore $|f(z)| \leq M$ for every $z \in \Gamma \setminus E$. By Theorem 3.1 f has a holomorphic extension to Γ . Since f is already holomorphic outside of Γ we conclude that f can be extended to a holomorphic function on Ω .

We can now prove that $(W^p, || ||_{W^p})$ is Banach.

3.3. Theorem. $(W^p, ||||_{W^p})$ is a Banach space for $p \ge 1$.

Proof. If $||f||_{W^p} = 0$, then $||f||_{u_j,p} = 0$, that is why f = 0 in Ω_j for every j. Hence f = 0 on $\Omega \setminus E$, and since E is polar, f = 0 on Ω . The other properties of norm can be easily checked for $||f||_{W^p}$. So let us prove that it is complete. Take a Cauchy sequence $\{f_n\}$ from W^p . This implies first that the sequence of holomorphic functions $\{f_n\}$ is Cauchy in $H^p_{u_j}$ for every j. We conclude that f_n converges uniformly to a function f on every compact subset of Ω_j for each j, hence on every compact subset of $\Omega \setminus E$. By Theorem 3.2 f extends to a holomorphic function to the whole of Ω .

To prove that $f \in W^p$ we will now show that $||f_n - f||_{W^p}$ converges to zero. Given $\varepsilon > 0$ there exists an integer $N \ge 1$ so that

$$\sup \|f_n - f_m\|_{u_j, p} < \varepsilon$$

whenever $n, m \ge N$. This gives that

$$||f_n - f||_{W^p} = \sup_{i=1}^{\infty} ||f_n - f||_{u_j, p} \le \varepsilon$$

for every $n \ge N$. Therefore $||f_n - f||_{W^p}$ converges to zero and $f \in W^p$.

It is known that a polar set is a removable singularity for the classical Hardy spaces in the plane (see [6] and [8]). The next result can be considered as a removable singularity theorem for the W^p spaces. There by $W^p[u_j, \Omega, E]|_{\Omega \setminus E}$ we denote the class of restrictions of the functions from $W^p[u_j, \Omega, E]$ to $\Omega \setminus E$.

3.4. Theorem. Let $\overline{\Omega}_j \subset \Omega_{j+1}$, $E \subset \Omega$ be a compact polar set for every j and let p > 0. If there exists an open set $U \subset \Omega \setminus E$ so that $\sup_j u_j(z) \leq \ell < 0$ for every $z \in U$, then

$$W^p[u_j, \Omega, E]|_{\Omega \setminus E} = W^p[u_j, \Omega \setminus E, \emptyset].$$

562

Proof. The inclusion $W^p[u_j, \Omega, E]|_{\Omega \setminus E} \subset W^p[u_j, \Omega \setminus E, \emptyset]$ is immediate from the definitions. To prove the reverse inclusion we claim that if f belongs to the space $W^p[u_j, \Omega \setminus E, \emptyset]$ then f extends to a holomorphic function to the whole set Ω . Since $f \in H^p_{u_j}(\Omega_j)$, according to Theorem 2.1 we see that the function $h_j := P_{\Omega_j}(|f|^p)$ has the properties that $h_j \in har \cap sh_{u_j}(\Omega_j)$ and that $|f|^p \leq h_j$ on Ω_j . Then $h_j \leq h_{j+1}$, and thanks to the Harnack theorem the limit $h = \lim h_j$ is a harmonic function on $\Omega \setminus E$ unless $h = \infty$ identically everywhere. Let $z_0 \in U$ and r > 0 so that $\{z : |z - z_0| \leq r\} \subset U$. We claim that $h(z_0) < \infty$. There exists a constant s > 0 so that $\ell < sg_\Omega(z, z_0) \leq sg_{\Omega_j}(z, z_0)$ for every $z \in \Omega_j$ with $|z - z_0| = r, j \geq 1$. Harmonicity of the Green's function $g_{\Omega_j}(z, z_0)$ on $\Omega_j \setminus \{z : |z - z_0| \leq r\}$ for every $j \geq 1$. By Theorem 2.1 and Proposition 2.4 we see that

$$\frac{2\pi}{s}h_j(z_0) \le \|h_j\|_{p,u_j} = \|f\|_{p,u_j} \le \|f\|_{W^p[u_j,\Omega\setminus E,\emptyset]} < \infty$$

for every $j \ge 1$. This proves that $h(z_0) < \infty$. Hence $h \in har(\Omega \setminus E)$ and satisfies $|f|^p \le h$. Now this means f belongs to the Hardy class of functions mentioned in [8]. By [8, Theorem A] f admits a unique holomorphic extension to Ω and therefore $f \in W^p[u_j, \Omega, E]$. This completes the proof. \Box

4. Examples

In view of [9, Proposition 3.5] $H^p_u \subset H^p$ when u is a subharmonic exhaustion on the disk. It is our purpose to construct examples of subsets of the classical Hardy space H^p on the disk which can be described using the Hardy spaces of the form W^p . The next examples are of this sort. In the next example we construct a family of exhaustion functions inside the unit disk to describe the space of functions in H^p which are zero at 0.

4.1. Example. For any 0 < R < 1 let Γ_R denote the annulus

$$\Gamma_R := \{ z \in \mathbb{C} : R < |z| < 1 \}.$$

If t > 0, define a subharmonic exhaustion function u_t in Γ_R by

$$u(z) := u_t(z) := u_{t,R}(z) := \max\left\{t \log\left(\frac{R}{|z|}\right), \log|z|\right\}.$$

Some properties of u_t are listed below.

- (1) $u_t(z) = 0$, if |z| = 1 or |z| = R.
- (2) We solve $t \log \left(\frac{R}{|z|}\right) = \log |z|$ to get $|z| = R^{t/t+1}$ and hence

$$u_t(z) = \begin{cases} t \log\left(\frac{R}{|z|}\right) & \text{if } R < |z| \le R^{t/t+1}; \\ \log |z|, & \text{if } R^{t/t+1} < |z| < 1. \end{cases}$$

(3) We compute the measure μ_u of u.

$$V_u(e^{i\theta}) = \frac{\partial u}{\partial \mathbf{n}}|_{z=e^{i\theta}} = 1$$

and

$$V_u(Re^{i\theta}) = \frac{\partial u}{\partial \mathbf{n}}|_{z=Re^{i\theta}} = t/R$$

for every $\theta \in [0, 2\pi]$. Hence, for any positive measurable function φ on $\partial \Gamma_R$ we have

$$\int_{\partial \Gamma_R} \varphi d\mu_u = \frac{t}{2\pi R} \int_0^{2\pi} \varphi(Re^{i\theta}) d\theta + \frac{1}{2\pi} \int_0^{2\pi} \varphi(e^{i\theta}) d\theta.$$

Now we are ready to state the main purpose of this example.

4.2. Theorem. Let H^p be the classical Hardy space in the unit disc for p > 0 and $k \ge 1$ be an integer. Let (R_n) be any sequence of numbers converging to 0 so that $0 < R_n < 1$. Take α so that $1 - kp \le \alpha < 1 - kp + p$. Then we have

 $z^k H^p = W^p[u_{R_n^\alpha, R_n}, \mathbb{D}, \{0\}]$

and two spaces have equivalent norms.

Proof. Let $W^p = W^p[u_{R_n^{\alpha},R_n}, \mathbb{D}, \{0\}]$. If $h \in z^k H^p$, we will show that $h \in W^p$. Let $h = z^k f$, where $f \in H^p$. Then

$$\begin{aligned} \|z^{k}f\|_{W^{p}}^{p} &= \sup_{n} \|z^{k}f\|_{u_{R_{n,p}^{\alpha}}}^{p} \\ &= \sup_{n} \left(\frac{R_{n}^{\alpha+kp-1}}{2\pi} \int_{0}^{2\pi} |f(R_{n}e^{i\theta})|^{p} d\theta + \frac{1}{2\pi} \int_{0}^{2\pi} |f(e^{i\theta})|^{p} d\theta\right) \\ &\leq \sup_{n} (R_{n}^{\alpha+kp-1} + 1) \|f\|_{H^{p}}^{p} \leq 2\|f\|_{H^{p}}^{p} < \infty. \end{aligned}$$

Hence $h \in W^p$ and $z^k H^p \subset W^p$.

Conversely, let $h \in W^p$. By the definition of the norm of W^p (by item (3) above for instance) it is clear that $||h||_{H^p} \leq ||h||_{W^p}$ for every $h \in W^p$, that is, $W^p \subset H^p$. We will show that $h \in z^k H^p$. Suppose on the contrary that $h(z) = z^m f(z)$, where $0 \leq m \leq k-1$, $f \in H^p$ and |f(0)| > 0. Then

$$\|h\|_{W^{p}} \geq \sup_{n} \frac{R_{n}^{\alpha+(k-1)p-1}}{2\pi} \int_{0}^{2\pi} |f(R_{n}e^{i\theta})|^{p} d\theta$$

$$\geq \sup_{n} R_{n}^{\alpha+(k-1)p-1} |f(0)|^{p} = \infty.$$

The contradiction shows that $h(z) = z^k f(z)$ for some $f \in H^p$. Hence $W^p = z^k H^p$. \Box

Finally we can do the previous construction for finite Blaschke products.

4.3. Theorem. Let a_1, \dots, a_N be distinct points in \mathbb{D} and let

$$B(z) := \prod_{j=1}^{N} \left(\frac{z - a_j}{1 - \overline{a}_j z} \right)^{k_j}$$

where $k_j \geq 1$ are integers. Let p > 0. Then there exists a sequence $\{\Omega_n\} \subset \mathbb{D}$ of N + 1-connected domains and functions $u_n \in \mathcal{E}(\Omega_n)$ so that

$$B(z)H^p = W^p[u_n, \mathbb{D}]$$

and two spaces have equivalent norms.

Proof. Choose R > 0 small enough so that the circles

$$C_j = \left\{ z : \left| \frac{z - a_j}{1 - \overline{a}_j z} \right|^{k_j} = R \right\},\,$$

 $j = 1, \dots, N$, are pairwise disjoint. Let Ω_R be the N+1-connected domain with boundary $\partial \mathbb{D} \cup \bigcup_{j=1}^N C_j$. For each j choose α_j so that $-k_j p \leq \alpha_j < -k_j p + p$. Let ψ_R be the function defined on $\partial \mathbb{D}$ by 1, on C_j by R^{α} . Then ψ_R is lower semicontinuous on Ω_R , $\psi_R \geq t_R > 0$ for some constant $t = t_R$ and by [4, Theorem 2.1] there exists a subharmonic exhaustion $u_R \in \mathcal{E}(\Omega_R)$ so that $\partial u_R/\partial \mathbf{n} = \psi_R$ on $\partial \Omega_R$.

564

Now let $0 < R_n < R$ be numbers decreasing to 0 and consider the space $W^p = W^p[u_{R_n}, \mathbb{D}]$. If $h = Bf \in B(z)H^p$, then

$$||Bf||_{W^p}^p = \sup_{n} \left(\sum_{j=1}^{N} R_n^{\alpha_j + k_j p} \int_{C_j} |f(\zeta)|^p d\sigma_j + \frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^p d\theta \right)$$

$$\leq \sup_{n} \left(\sum_{j=1}^{N} R_n^{\alpha_j + k_j p} + 1 \right) ||f||_{H^p}^p \leq (N+1) ||f||_{H^p}^p < \infty.$$

Hence $h \in W^p$ and $BH^p \subset W^p$.

Conversely, let $h \in W^p$. By the definition of the norm of W^p it is clear that $||h||_{H^p} \leq ||h||_{W^p}$ for every $h \in W^p$, that is, $W^p \subset H^p$. We will show that $h \in BH^p$. Suppose on the contrary that the multiplicity m_j of zero of h(z) at a_j is strictly less than k_j , that is $0 \leq m_j \leq k_j - 1$ for some j. Then $h(z) = \left(\frac{z-a_j}{1-\overline{a_j}z}\right)^{m_j} f(z)$ for a function $f \in H^p$ with $|f(a_j)| > 0$ and therefore,

$$|h||_{W^p} \geq \sup_n R_n^{\alpha_j + (k_j - 1)p} \int_{C_j} |f(\zeta)|^p d\sigma_j$$

$$\geq C \sup_n R_n^{\alpha_j + (k_j - 1)p} |f(a_j)|^p = \infty.$$

The contradiction shows that h(z) = B(z)f(z) for some $f \in H^p$. Hence $W^p = B(z)H^p$.

References

- Alan, M. A. and Göğüş, N. G. Poletsky-Stessin-Hardy spaces in the plane, Complex Anal. Oper. Theory 8 (2014), no. 5, 975-990.
- [2] Demailly, J. P. Mesure de Monge-Ampère et mesures plurisousharmonique, Math. Z. 194 (1987), 519-564.
- [3] Duren, P. L. Theory of H^p spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London 1970.
- [4] Göğüş, N. G. Structure of weighted Hardy spaces in the plane, Filomat 30, (2016) no. 2, 473-482.
- [5] Jarnicki, P. and Pflug, P. Extension of Holomorphic Functions, De Gruyter Expositions in Mathematics 34
- [6] Järvi, P. Removable singularities for H^p-functions, Proc. Amer. Math. Soc. 86 (1982), 596-598.
- [7] Lelong, P. Fonctions plurisousharmoniques et formes differentielles positives, Gordon and Breach, New York, 1968.
- [8] Parreau, M. Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103-197.
- [9] Poletsky, E. A. and Stessin, M. I. Hardy and Bergman spaces on hyperconvex domains and their composition operators, Indiana Univ. Math. J. 57 (2008), no. 5, 2153-2201.
- [10] Şahin, S., Poletsky-Stessin Hardy spaces on domains bounded by an analytic Jordan curve in C, Complex Var. Elliptic Equ. 60 (2015), no. 8, 1114–1132
- [11] Shrestha, K. R. Weighted Hardy spaces on the unit disk, Complex Anal. Oper. Theory 9 (2015), no. 6, 1377-1389.