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Abstract 

Using the true temperature distribution along the radial coordinate, closed-form formulas are offered for readers 

to study the thermo-mechanical behavior of variable thickness disks having both convergent and divergent 

hyperbolic thickness profiles made of conventional materials. Internal and external pressures, centrifugal forces 

and thermal loads due to the differences in prescribed surface temperatures are all considered with three boundary 

conditions: free-free (a circular annulus), fixed-free (a disk mounted on a rotating shaft at the inner surface), and 

fixed-fixed (a disk mounted on a rotating shaft at the inner surface and cased at the outer surface) boundary 

conditions. A parametric study is also conducted in almost real working environment in which the outer surface 

of the disk has considerably higher temperature rather than the inner surface. The thermomechanical linear elastic 

response of a hyperbolic mounted rotating disk subjected to the external pressure induced by blades is originally 

handled by those proposed formulas.  

Keywords: Variable thickness disk, nonuniform rotating disk, closed-form elasticity solution, exact solution, 

analytical solution, thermomechanical, thermal analysis.  

1. Introduction 

As a rotating machinery element, rotating disks may operate as a circular annulus or as a disk 

attaching a rotating shaft at its center. A rigid casing may exist at the outer surface of such a 

disk. Their thickness may vary along the radial direction linearly, hyperbolically, parabolically, 

exponentially or so on and so forth.  It may be made of any kind of traditional or advanced 

materials. Rotating disks may act in high temperature environments like turbine rotors, 

flywheels and gears and may be subjected to simultaneously external pressures due to the 

existence of the blades. In such cases, the thermo-mechanical analyses come into prominence 

in the design of such structures. It is obvious that the existence of closed-form formulas that 

can be directly used in the design stage in relation to the subject matter is to be of great 

convenience for engineers. 

Thermal-related analyses of uniform disks made of an isotropic and homogeneous materials 

have paid much attention than disks having varying section properties and made of advanced 
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composite materials [1-10].  From those, Güven and Altay [1] investigated the elastic–plastic 

stress distribution of a solid disk due to nonuniform heat source under external pressure. 

Kulkarni and Deshmukh [4] addressed the thermal stresses in a thick annular disk under steady 

temperature field. Nejad and Afshin [6] offered an analytical solution of transient thermoelastic 

behaviors of rotating pressurized disks subjected to arbitrary boundary and initial conditions. 

Kaur et al. [8] observed that thermal effect in the disk increase the value of circumferential 

stress at the internal surface and radial stresses at the external surface for compressible as 

compare to incompressible material. Based on a variational principle considering the radial 

displacement field as unknown, Nayak and Saha [9] evaluated the influence of thermo-

mechanical loading on stresses and deformation states in a rotating disk with varying 

thicknesses. They considered different disk geometries as well as temperature distribution 

profiles to calculate the limit angular speed of the disks under thermo-mechanical loading. 

Yıldırım [10] offered a consistent and an all-in-one analytical study for the determination of 

heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation 

and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk at 

specified constant surface temperatures and at a constant angular velocity. Yıldırım [10] 

included both the inner and outer pressures in the formulation of annular structures made of an 

isotropic and homogeneous linear elastic material. For disks, three different boundary 

conditions were taken into account to consider mechanical engineering applications in the study 

[10].  

Thermal-related analyses of uniform disks made of anisotropic materials [11-19] and 

functionally graded materials [20-28] are other investigation themes. Unfortunately, the number 

of studies on the thermal/thermal related analysis of variable thickness disks made of either 

functionally graded (FG) materials [29-42] or traditional materials [43-46] are not enough. In 

those studies, a variable-thickness disk is generally considered as a combination of multi-

layered uniform disks [29, 30-32, 34, 36, 40]. For example, Chiba [29] assumed the annular 

disk is to be a multilayered one with stepwise thickness variation, where each layer is assumed 

to have constant deterministic material properties. Bayat et al. [30] considered a rotating FG 

disk with either parabolic or hyperbolic thickness under a steady temperature field. The disk 

was assumed to be composed of sub-disks of uniform thicknesses. In another study, Bayat et 

al. [31] analyzed the thermoelastic bending of FGM rotating disks based on the first order shear 

deformation theory.  Bayat et al. [32] studied on a thermo elastic analysis for axisymmetric 

rotating disks made of temperature-dependent power-law FG material with variable thickness.  

It was assumed in Ref. [32] that the temperature field is to be uniformly distributed over the 

disk surface and varied in the radial direction. Bayat et al. [32] presented semi-analytical 

solutions for the displacement field for solid/annular disks under free-free and fixed-free 

boundary conditions. Bayat et al. [33] also offered exact elastic solutions for axisymmetric 

variable-thickness hollow rotating disks with heat source made of functionally power-law-

graded (FG) materials under free-free and fixed-free boundary conditions. They showed that 

the temperature distribution in a hyperbolic disk is the smallest compared with other thickness 

profiles. A hyperbolic-convergent FG disk has smaller stresses because of thermal load 

compared with the uniform disk. Nie and Batra [35] studied axisymmetric stresses in a rotating 

disk made of a rubber-like material that was modeled as isotropic, linear thermoelastic, and 

incompressible. Damircheli and Azadi [36] carried out thermal and mechanical stress analyses 

of a rotating disk having either parabolically or hyperbolically varying thicknesses made of 

functionally graded material by using finite element method (FEM). By utilizing a 2D plane 

stress analysis and assuming a power form temperature distribution of over the disk with the 

higher temperature at the outer surface, Hassani et al. [37] obtained stress and strains of rotating 

disks with non-uniform thickness and material properties subjected to thermo-elastic loading 
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under different boundary conditions. They used semi-exact methods of Liao’s homotopy 

analysis method (HAM), Adomian’s decomposition method and He’s variational iteration 

method (VIM). Hassani et al. [37] compared the results of those three methods with Runge–

Kutta’s solutions. Tütüncü and Temel [38] studied numerically the thermoelastic analysis of 

FG rotating disks of variable thickness. Golmakani [39] scrutinized large deflection 

thermoelastic analysis of FG solid and hollow rotating axisymmetric disk with uniform and 

variable thickness subjected to thermo-mechanical loading. Kurşun and Topçu [40] handled the 

elastic stress analysis of a hollow disk with variable thickness made of FG materials under 

linearly increasing temperature distribution.  Mahdavi et al. [41] worked on the thermoplastic 

analysis of FG rotating hyperbolic disks by dividing the domain into some finite sub-domains 

in the radial direction, in which the properties were assumed to be constant. Recently, Jabbari 

et. al. [42] presented a thermoelastic analysis of rotating disks with different thickness profiles 

made of power-graded and exponential-graded materials subjected to internal pressure. They 

verified the results with finite element method. 

As stated above, there are also relatively less study on the thermal-related analyses of isotropic 

and homogeneous disks with varying thickness. By using hyper-geometric differential equation 

in terms of radial displacement, Vivio and Vullo [43] and Vullo and Vivio [44] introduced an 

analytical procedure for evaluation of elastic stresses and strains in rotating conical disks and 

in non-linear variable thickness rotating disks made of an isotropic and homogeneous material, 

either solid or annular, subjected to thermal loads. In the presence of the linear thermal gradient, 

Garg et al. [45] analyzed the steady state creep in a rotating disk having linearly varying 

thickness and made of composite containing silicon carbide particles (SiC) in a matrix of pure 

aluminium.  Çetin et al. [46] studied analytically an elastic stress analysis of annular isotropic 

and homogeneous bi-material hyperbolic disks subjected to the mechanical and thermo-

mechanical loads. 

As can be seen from the literature survey mentioned above, the realm of the thermal-related 

analyses of such disks having varying thicknesses needs further works.  

In the present study, the exact distribution of the temperature along the radial coordinate in a 

hyperbolic disk is, first, obtained analytically based on the solution of Fourier heat-conduction 

differential equation under thermal boundary conditions defined by specified surface 

temperatures. This closed-form solution for temperature distribution is, then, substitute in the 

Navier equation obtained for the elasto-static response of such disks. Finally, Navier equations 

containing thermal effects are solved by applying mechanical boundary conditions. In the 

solution process of both the heat conduction and Navier equations, both of which are in the 

form of a second order differential equation with constant coefficients, a well-known Euler-

Cauchi technique is employed [47]. Those formulas are compared with those available in the 

open literature. 

2. Formulation of the Thermal Behavior of the Disk  

An accurate solution of the temperature field in the structure is a crucial first step to study the 

thermal-related analyses in an appropriate manner. The rate of the heat flux, q , in a solid object 

is proportional to the temperature gradient, 𝛁𝑇. The Fourier law governing the heat transfer by 

conduction is 

𝒒 = −𝑘𝛁𝑇 = −𝑘 𝑔𝑟𝑎𝑑(𝑇) 
 

(1) 
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where k  is the thermal conductivity. Temperature gradient is given in cylindrical coordinates,

),,( zr  , by 

𝛁𝑇 = 𝑔𝑟𝑎𝑑(𝑇) =
𝜕𝑇

𝜕𝑟
𝒆𝑟 +

1

𝑟

𝜕𝑇

𝜕𝜃
𝒆𝜃 +

𝜕𝑇

𝜕𝑧
𝒆𝑧 

 

(2) 

where ( zr eee ,,  ) are the unit vectors in cylindrical coordinates, r  is the radial coordinate,   is 

the circumferential coordinate. By using the first law of thermodynamics, Fourier heat 

conduction equation may be written as follows. 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
+ 𝑑𝑖𝑣(𝒒) = �̇�𝑔𝑒𝑛 

 

(3) 

where  is the density, and 𝑐𝑝 is the specific heat capacity, �̇�𝑔𝑒𝑛 is the heat generation per unit 

volume. Using Eq. (1) the following may be written for the divergence of the heat flux as 

𝑑𝑖𝑣(𝒒) = 𝛁. 𝒒 = −𝑘(𝛁. 𝛁𝑇) = −𝑘∆𝑇 = −𝑘∇2𝑇 

 

(4) 

By assuming that there is no heat generation in the structure, �̇�𝑔𝑒𝑛 = 0, and the steady state 

case (𝜕𝑇 𝜕𝑡⁄ = 0) exists, substitution of Eq. (4) into the heat conduction equation (3) gives the 

Laplacian of the temperature that is the divergence of the gradient of the temperature as follows 

𝑘∇2𝑇 = 𝑘 (
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
) +

1

𝑟2
𝜕2𝑇

𝜕𝜃2
+
𝜕2𝑇

𝜕𝑧2
) = 0 

 

(5) 

This is a differential equation governing steady state 3-D temperature distribution for both 

cylinders and discs having uniform thickness and constant thermal conductivity without heat 

generation. As observed from this equation and Eq. (1), both the temperature field and heat flux 

distribution will be the same for both cylinders and disks with uniform thickness. However, a 

disk with variable thickness offers different temperature and heat flux profiles than hollow 

cylinders and uniform disks even for a constant thermal conductivity. For axisymmetric 

problems (derivatives with respect to 𝜃 and 𝑧 are all zero) of a variable thickness disk, Eq. (5) 

takes the form of    

𝑘

𝑟ℎ(𝑟)

𝑑

𝑑𝑟
(𝑟ℎ(𝑟)

𝑑𝑇(𝑟)

𝑑𝑟
)=0 

 

(6) 

It can be concluded from the above that the temperature field is to be the same for all materials 

exhibiting both isotropy and homogeneity properties as in the traditional materials although the 

material type is to be of important in the heat flux calculations. For any thickness profile, ℎ(𝑟), 
defined by a differentiable function, Eq. (6) may also be written as 

𝑑2𝑇(𝑟)

𝑑𝑟2
+ (

1

𝑟
+

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟)

)
𝑑𝑇(𝑟)

𝑑𝑟
= 0 

 

 

(7) 

Now, consider a hyperbolic disc profile defined by  

ℎ(𝑟) = ℎ𝑜 (
𝑟

𝑎
)
𝑚

 

 

(8) 

https://en.wikipedia.org/wiki/Divergence
https://en.wikipedia.org/wiki/Gradient
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where 𝑎 denotes the inner radius of the disk, 𝑚  is the profile parameter, and ℎ𝑜 is the reference 

thickness (Fig. 1). While  𝑚 > 0 defines divergent hyperbolic profiles, 𝑚 < 0 identifies 

convergent ones. Uniform thickness disks are characterized by 𝑚 = 0 (Fig. 1). 

 
Convergent disc (m<0) 

 
Divergent disc (m>0) 

 
Uniform disc (m=0) 

 

Fig. 1. 3-D view of convergent/divergent hyperbolic and uniform disc profiles 

Substitution of Eq. (8) into Eq. (7) gives  

𝑑2𝑇(𝑟)

𝑑𝑟2
+
(1 +𝑚)

𝑟

𝑑𝑇(𝑟)

𝑑𝑟
=0 

 

(9) 

This is an Euler-Cauchy type differential equation with constant coefficients. Solution of Eq. 

(9) is given by [47] 

21
21)(


rCrCrT   

 

(10) 

where 1  and 2  are the distinct characteristic real roots of the differential equation while 1C  

and 2C  are integration constants. All types of thermal boundary conditions such as Dirichlet’s, 

Neumann’s, Robin’s and mixed boundary conditions may be applied to determine the 

integration constants of the physical problem. In the present study the first kind boundary 

conditions (Dirichlet) are to be considered.   

aTaT )( ,    bTbT )(  
 

(11) 

In the above, aT and bT are the inner surface and outer surface temperatures, respectively. 

Considering Eq. (10) together with Eq. (11), a closed form solution for the temperature 

distribution in a hyperbolic disk along the radial coordinate is obtained as follows 
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𝑇(𝑟)(ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑖𝑐) = 𝑟−𝑚 (
𝑎𝑚𝑏𝑚(𝑇𝑏 − 𝑇𝑎)

𝑎𝑚 − 𝑏𝑚
) + (

𝑎𝑚𝑇𝑎 − 𝑏
𝑚𝑇𝑏

𝑎𝑚 − 𝑏𝑚
) = 𝑟−𝑚𝜓1 + 𝜓2 

 

(12) 

As seen from Eq. (12), temperature distribution in a hyperbolic disk becomes indefinite when 

the uniform thickness is concerned with 𝑚 = 0. In this case either a numerical value very close 

to zero but not exactly equal to zero such as 𝑚 = 0.000000000001 may be used directly in 

Eq. (12) or Eq. (9) is resolved for 𝑚 = 0 under the same boundary conditions [11] to get the 

following 

𝑇(𝑟)(𝑢𝑛𝑖𝑓𝑜𝑟𝑚) = (
𝑙𝑛𝑎𝑇𝑏 − 𝑇𝑎𝑙𝑛𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
) + (

𝑇𝑎 − 𝑇𝑏
𝑙𝑛𝑎 − 𝑙𝑛𝑏

) 𝑙𝑛𝑟 = ∅2 + ∅1𝑙𝑛𝑟 

 

(13) 

3. Formulation of the Thermo-mechanical Behavior of the Disk  

Under small deformations and a state of axisymmetric plane stress assumptions for thin plates, 

field equations of a variable thickness rotating disk made of a traditional material in polar 

coordinates (𝑟, 𝜃) are reduced to  

𝜀𝑟(𝑟) =
𝑑𝑢𝑟(𝑟)

𝑟
,      𝜀𝜃(𝑟) =

𝑢𝑟(𝑟)

𝑟
 

 

𝜎𝑟(𝑟) =
𝐸

(1 − 𝜈2)
𝜀𝑟(𝑟) +

𝐸𝜈

(1 − 𝜈2)
𝜀𝜃(𝑟) −

𝐸(1 + 𝜈)

(1 − 𝜈2)
𝛼T 

 

𝜎𝜃(𝑟) =
𝐸𝜈

(1 − 𝜈2)
𝜀𝑟(𝑟) +

𝐸

(1 − 𝜈2)
𝜀𝜃(𝑟) −

𝐸(1 + 𝜈)

(1 − 𝜈2)
𝛼T 

 
 

𝑑

𝑑𝑟
(𝑟ℎ(𝑟)𝜎𝑟(𝑟)) − ℎ(𝑟)𝜎𝜃(𝑟) = −𝜌ℎ(𝑟)𝜔

2𝑟2  

 

(14a) 

 

 

(14b) 

 

 

(14c) 

 

 

(14d) 

 

where 𝑢𝑟(𝑟) is the radial displacement, 𝜀𝑟(𝑟) and  𝜀𝜃(𝑟) are the radial and circumferential 

strains, respectively; 𝜎r(𝑟) is the radial stress, 𝜎𝜃(𝑟)is the hoop stress, 𝜔 is a constant angular 

velocity, 𝜌 is the material density, 𝐸 is Young’s modulus, 𝛼 is  is the coefficient of expansion 

of the disc material and 𝜈 is Poisson’s ratio. 

Equations (14a) are called the strain-displacement relations, Eqs. (14b) and (14c) are referred 

to as linear elastic stress-strain relations, and finally Eq. (14d) is the equilibrium equation under 

the centrifugal forces. Navier equation which is in the form of a second order differential 

equation with variable coefficients is derived from the field equations given in Eq. (14) as 

follows 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟2
+(

1

𝑟
+

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟)

)  
𝑑𝑢𝑟(𝑟)

𝑑𝑟
 

+(−
1

𝑟2
+
𝜈

𝑟

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟)

)𝑢𝑟(𝑟)= −
(1 − 𝜈2)

𝐸
𝜌𝜔2𝑟 − 𝛼(1 + 𝜈)

𝑑𝑇(𝑟)

𝑑𝑟
 

 

 

 

 

(15) 
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By using Eqs. (8) and (12), Eq. (15) may be written for a hyperbolic disk as follows 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟2
+ 
(1 + 𝑚)

𝑟

𝑑𝑢𝑟(𝑟)

𝑑𝑟
+
(−1 +𝑚𝜈)

𝑟2
𝑢𝑟(r)= −

(1 − 𝜈2)

𝐸
𝜌𝜔2𝑟 + 𝑟−(1+𝑚)Δ 

 

(16) 

where 

Δ = −𝑚α(1 + 𝜈)𝜓1 
 

(17) 

For a uniform thickness disk, Eq. (15) is rewritten by considering Eq. (13) as follows [10] 

𝑑2𝑢𝑟(𝑟)

𝑑𝑟2
+ 
1

𝑟

𝑑𝑢𝑟(𝑟)

𝑑𝑟
−
1

𝑟2
𝑢𝑟(r)= −

(1 − 𝜈2)

𝐸
𝜌𝜔2𝑟 + 𝛼(1 + 𝜈)

∅1
𝑟

 

 

(18) 

4. Closed-form Solutions of Navier Equations  

The closed-form solutions of both Eqs. (16) and (18) under each mechanical boundary 

conditions presented in Table 1 are to be given in this section. Those formulas may be used by 

recalling that the superposition principle holds. 

𝑢𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = 𝑢𝑟(𝑟)

(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) + 𝑢𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) + 𝑢𝑟(𝑟)

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) 

𝜎𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = 𝜎𝑟(𝑟)

(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) + 𝜎𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) + 𝜎𝑟(𝑟)

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) 

𝜎𝜃(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = 𝜎𝜃(𝑟)

(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) + 𝜎𝜃(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) + 𝜎𝜃(𝑟)

(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) 

 

 

 

 

(19) 

The equivalent von-Mises stresses by an axisymmetric plane stress assumption may be 

computed by 

𝜎𝑒𝑞(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙) = (√𝜎𝑟(𝑟)

2 + 𝜎𝜃(𝑟)
2 − 𝜎𝑟(𝑟)𝜎𝜃(𝑟))

(𝑇ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙)
 

 

(20) 

 

Table 1. Mechanical boundary conditions  

Free-Free 

(circular annulus) 

Fixed-Free 

(mounted disk) 

Fixed-Fixed 

(mounted and cased disk) 

 

 
   

𝜎𝑟(𝑎) = −𝑝𝑎 

𝜎𝑟(𝑏) = −𝑝𝑏 

𝑢𝑟(𝑎) = 0 

𝜎𝑟(𝑏) = −𝑝𝑏 

𝑢𝑟(𝑎) = 0 

𝑢𝑟(𝑏) = 0 
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4.1. Under Mechanical Pressure Loads 

Elastic fields in a hyperbolic disk subjected to both the internal and external pressures (𝜔 = 0,
𝛼 = 0) are found under free-free conditions as  

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

=

{
 

 

−

2(𝜈2 − 1)𝑝𝑎𝑎
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷) (

𝑏𝛷(𝑚 − 2𝜈 − 𝛷)

−𝑟𝛷(𝑚 − 2𝜈 + 𝛷)
)

𝐸(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

                                              +

{
 

 

−

2(𝜈2 − 1)𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷) (

𝑎𝛷(−𝑚 + 2𝜈 + 𝛷)

+𝑟𝛷(𝑚 − 2𝜈 + 𝛷)
)

𝐸(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

 

 

 

(21a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑝𝑎𝑎
1
2
(𝑚+𝛷+2)(𝑏𝛷 − 𝑟𝛷)𝑟

1
2
(−𝑚−𝛷−2)

𝑎𝛷 − 𝑏𝛷
} 

                                                                  +{
𝑝𝑏(𝑎

𝛷 − 𝑟𝛷)𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2)

𝑏𝛷 − 𝑎𝛷
} 

 

 

 

 

(21b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

=

{
 

 𝑝𝑎𝑎
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑏𝛷(𝑚 − 2𝜈 − 𝛷)(𝜈(𝑚 + 𝛷) − 2)

+𝑟𝛷(𝑚 − 2𝜈 + 𝛷)(−𝑚𝜈 + 𝜈𝛷 + 2)
)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 − 𝛷)(𝑚 − 2𝜈 + 𝛷)

}
 

 

 

                                     +

{
 

 𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑎𝛷(𝑚 − 2𝜈 − 𝛷)(𝜈(𝑚 + 𝛷) − 2)

+𝑟𝛷(𝑚 − 2𝜈 + 𝛷)(−𝑚𝜈 + 𝜈𝛷 + 2)
)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

 

 

(21c) 

under fixed-free conditions as 

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {−

2(𝜈2 − 1)𝑝𝑏(𝑎
𝛷 − 𝑟𝛷)𝑏

1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷)

𝐸(𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷))
} 

 

 

(22a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

=

{
 

 

−

𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑎𝛷(𝑚 − 2𝜈 + 𝛷)

+𝑟𝛷(−𝑚+ 2𝜈 + 𝛷)
)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

(22b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) =

{
 

 

−

𝑝𝑏𝑏
1
2
(𝑚+𝛷+2)𝑟

1
2
(−𝑚−𝛷−2) (

𝑎𝛷(𝜈(𝑚 + 𝛷) − 2)

+𝑟𝛷(−𝑚𝜈 + 𝜈𝛷 + 2)
)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)

}
 

 

 

 

 

(22c) 

In Eqs. (21) and (22) 

𝛷 = √4 +𝑚2 − 4𝑚𝜈 

 

(23) 
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Equation (21) is a special application of formulas derived for functionally graded disks in Ref. 

[48]. Homogeneous solutions of Eq. (18) for free-free disks are (𝜔 = 0, 𝛼 = 0) 

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

= {−
𝑎2𝑝𝑎(𝑏

2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
} + {

𝑏2𝑝𝑏(𝑎
2(𝜈 + 1) − (𝜈 − 1)𝑟2)

𝐸𝑟(𝑎2 − 𝑏2)
} 

 

 

 

(24a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

= {
𝑎2𝑝𝑎(𝑏

2 − 𝑟2)

𝑟2(𝑎2 − 𝑏2)
} + {

𝑏2(𝑎2 − 𝑟2)𝑝𝑏
𝑟2(𝑏2 − 𝑎2)

} 

 

(24b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒)

= −{
𝑎2𝑝𝑎(𝑏

2 + 𝑟2)

𝑟2(𝑎2 − 𝑏2)
} + {

𝑏2(𝑎2 + 𝑟2)𝑝𝑏
𝑟2(𝑎2 − 𝑏2)

} 

 

(24c) 

Closed-form solutions in Eq. (24) overlaps with Roark’s formulas [49]. For a uniform mounted 

disk subjected to the only external pressure, solutions become 

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑏2(𝜈2 − 1)𝑝𝑏(𝑎 − 𝑟)(𝑎 + 𝑟)

𝐸𝑟(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
} 

 

(25a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑏2𝑝𝑏((𝜈 + 1)𝑟
2 − 𝑎2(𝜈 − 1))

𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
} 

 

(25b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒) = {

𝑏2𝑝𝑏(𝑎
2(𝜈 − 1) + (𝜈 + 1)𝑟2)

𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
} 

 

(25c) 

To the best of the author’s knowledge, Eqs. (22) and (25) are offered for the first time in the 

present study. These equations may be directly used to better simulate aero-disks subjected to 

blade pressures.  

4.2. Under Mechanical Centrifugal Forces 

If a disk is assumed to only rotate about an axis passing through its centroid at a constant angular 

velocity, the general solution of Eq. (16) is to be  

𝑢𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) = 𝑟

1
2
(−𝑚−𝛷)(𝐵1 + 𝐵2𝑟

𝛷) + 𝑟3𝛺 

 

(26a) 

𝜎𝑟(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

1

2
(

𝐸

1 − 𝜈2
) 𝑟

1
2
(−2−𝑚−𝛷)(

−𝐵1(𝑚 − 2𝜈 + 𝛷)

+𝐵2𝑟
𝛷(−𝑚 + 2𝜈 + 𝛷)

+2𝑟
1
2
(6+𝑚+𝛷)(3 + 𝜈)𝛺

) 

 

 

(26b) 

𝜎𝜃(𝑟)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

1

2
(

𝐸

1 − 𝜈2
) 𝑟

1
2
(−2−𝑚−𝛷)(

𝐵2𝑟
𝛷(2 − 𝑚𝜈 + 𝜈𝛷)

−𝐵1(−2 + 𝜈(𝑚 + 𝛷))

+2𝑟
1
2
(6+𝑚+𝛷)(1 + 3𝜈)𝛺

) 

 

 

(26c) 

where 

𝛷 = √4 +𝑚2 − 4𝑚𝜈 ,              𝛺 =
(−1 + 𝜈2)𝜌𝜔2

𝐸(8 +𝑚(3 + 𝜈))
 

 

(27) 
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and 

𝐵1
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒) =

2(𝜈 + 3)𝛺𝑎𝛷𝑏
1
2
(𝑚+𝛷+6) − 2(𝜈 + 3)𝛺𝑏𝛷𝑎

1
2
(𝑚+𝛷+6)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)
 

𝐵2
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)

=
2(𝜈 + 3)𝛺 (𝑎

1
2
(𝑚+𝛷+6) − 𝑏

1
2
(𝑚+𝛷+6))

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 − 𝛷)
 

 

 

 

(28a) 

𝐵1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)

=
𝛺𝑏𝛷𝑎

1
2
(𝑚+𝛷+6)(𝑚 − 2𝜈 − 𝛷) + 2(𝜈 + 3)𝛺𝑎𝛷𝑏

1
2
(𝑚+𝛷+6)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚+ 2𝜈 + 𝛷)
 

𝐵2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒) = −

𝛺(𝑎
1
2
(𝑚+𝛷+6)(𝑚 − 2𝜈 + 𝛷) + 2(𝜈 + 3)𝑏

1
2
(𝑚+𝛷+6))

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚+ 2𝜈 + 𝛷)
 

 

 

 

(28b) 

𝐵1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

=
𝛺 (𝑏𝛷𝑎

1
2
(𝑚+𝛷+6) − 𝑎𝛷𝑏

1
2
(𝑚+𝛷+6))

𝑎𝛷 − 𝑏𝛷
 

𝐵2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

= −
𝛺 (𝑎

1
2
(𝑚+𝛷+6) − 𝑏

1
2
(𝑚+𝛷+6))

𝑎𝛷 − 𝑏𝛷
 

 

 

 

(28c) 

Solutions (26) is a special case of the formulas in Refs. [50-51]. If a uniform rotating disk is 

concerned, solutions turn to be [10, 49] 

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=
𝜌𝜔2(𝑎2(𝜈 + 3)(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2) − (𝜈 − 1)𝑟2(𝑏2(𝜈 + 3) − (𝜈 + 1)𝑟2))

8𝐸𝑟
 

 

 

(29a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

(𝜈 + 3)𝜌𝜔2(𝑎2 − 𝑟2)(𝑟2 − 𝑏2)

8𝑟2
 

 

(29b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

𝜌𝜔2(𝑎2(𝜈 + 3)(𝑏2 + 𝑟2) + 𝑟2(𝑏2(𝜈 + 3) − (3𝜈 + 1)𝑟2))

8𝑟2
 

 

(29c) 

and  

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=

(𝜈2 − 1)𝜌𝜔2(𝑎 − 𝑟)(𝑎 + 𝑟) (
𝑎2(𝑏2(𝜈 + 1) − (𝜈 − 1)𝑟2)

+𝑏2((𝜈 + 1)𝑟2 − 𝑏2(𝜈 + 3))
)

8𝐸𝑟(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

 

(30a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

𝜌𝜔2(𝑟2 − 𝑏2)(

𝑎4(𝜈2 − 1)

−𝑎2(𝜈 − 1)(𝜈 + 3)(𝑏2 + 𝑟2)

+𝑏2(𝜈 + 1)(𝜈 + 3)𝑟2
)

8𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

(30b) 
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𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛) =

𝜌𝜔2 (

𝑎4(𝜈2 − 1)(𝑏2 + 𝑟2)

−𝑎2(𝜈 − 1)(𝑏4(𝜈 + 3) + (3𝜈 + 1)𝑟4)

−𝑏2(𝜈 + 1)𝑟2(𝑏2(𝜈 + 3) − (3𝜈 + 1)𝑟2)

)

8𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

(30c) 

and 

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=
(𝜈2 − 1)𝜌𝜔2(𝑟2 − 𝑎2)(𝑟2 − 𝑏2)

8𝐸𝑟
 

 

(31a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=

𝜌𝜔2 (
𝑎2((𝜈 + 1)𝑟2 − 𝑏2(𝜈 − 1))

+𝑟2(𝑏2(𝜈 + 1) − (𝜈 + 3)𝑟2)
)

8𝑟2
 

 

 

(31b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛)

=

𝜌𝜔2 (
𝑎2(𝑏2(𝜈 − 1) + (𝜈 + 1)𝑟2)

+𝑟2(𝑏2(𝜈 + 1) − (3𝜈 + 1)𝑟2)
)

8𝑟2
 

 

 

(31c) 

4.3. Under Thermal Loads 

If a disk is assumed to be subjected only thermal loads induced by temperature differences at 

the inner and outer surfaces, the homogeneous plus particular solutions of Eq. (16) are to be  

𝑢𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) = 𝑟−𝑚(𝑟

𝑚−𝛷
2 (𝐶1 + 𝐶2𝑟

𝛷) + 𝑟𝜒) 

 

(32a) 

𝜎𝑟(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) = −

1

2
(
𝐸𝐴

1 − 𝜈2
) 𝑟−1−𝑚−

𝛷
2

(

 
𝐶2𝑟

𝑚
2
+𝛷(𝑚 − 2𝜈 − 𝛷)

+𝐶1𝑟
𝑚 2⁄ (𝑚 − 2𝜈 + 𝛷)

+2𝑟1+
𝛷
2(−1 +𝑚 − 𝜈)𝜒)

 −
𝐸𝛼(𝑟−𝑚𝜓1 + 𝜓2)

1 − 𝜈
 

 

 

(32b) 

𝜎𝜃(𝑟)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

1

2
(

𝐸

1 − 𝜈2
) 𝑟−1−𝑚−

𝛷
2

(

 
𝐶2𝑟

𝑚
2
+𝛷(2 −𝑚𝜈 + 𝜈𝛷)

−𝐶1𝑟
𝑚 2⁄ (−2 + 𝜈(𝑚 + 𝛷))

−2𝑟1+
𝛷
2(−1 + (−1 +𝑚)𝜈)𝜒)

 

−
𝐸𝛼(𝑟−𝑚𝜓1 + 𝜓2)

1 − 𝜈
 

 

 

 

(32c) 

where 

𝜓1 =
𝑎𝑚𝑏𝑚(−𝑇𝑎 + 𝑇𝑏)

𝑎𝑚 − 𝑏𝑚
,     𝜓2 =

𝑎𝑚𝑇𝑎 − 𝑏
𝑚𝑇𝑏

𝑎𝑚 − 𝑏𝑚
 

𝛥 = −𝑚α(1 + 𝜈)𝜓1, 𝜒 =
𝛥

𝑚(−1 + 𝜈)
,      𝛷 = √4 + 𝑚2 − 4𝑚𝜈   

 

 

(33) 

and 
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𝐶1
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)

=

𝑎
𝛷−𝑚
2 𝑏

𝛷−𝑚
2 (

2𝑎𝑏
𝑚+𝛷
2 (α(𝜈 + 1)(𝜓2𝑎

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

−2𝑏𝑎
𝑚+𝛷
2 (α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 + 𝛷)
 

𝐶2
(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒)

=

𝑎−𝑚 2⁄ 𝑏−𝑚 2⁄ (
2𝑎𝑚 2⁄ 𝑏

𝛷
2
+1
(α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

−2𝑎
𝛷
2
+1𝑏𝑚 2⁄ (α(𝜈 + 1)(𝜓2𝑎

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))
)

(𝑎𝛷 − 𝑏𝛷)(𝑚 − 2𝜈 − 𝛷)
 

 

 

 

 

 

(34a) 

𝐶1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)

=

𝑎
𝛷−𝑚
2 𝑏

𝛷−𝑚
2 (

𝑎𝜒𝑏
𝑚+𝛷
2 (𝑚 − 2𝜈 − 𝛷)

−2𝑏𝑎
𝑚+𝛷
2 (α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))
)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)
 

𝐶2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒)

=

𝑎−𝑚 2⁄ 𝑏−𝑚 2⁄ (
2𝑎𝑚 2⁄ 𝑏

𝛷
2
+1(α(𝜈 + 1)(𝜓2𝑏

𝑚 + 𝜓1) + 𝜒(𝑚 − 𝜈 − 1))

−𝜒𝑎
𝛷
2
+1𝑏𝑚 2⁄ (𝑚 − 2𝜈 + 𝛷)

)

𝑎𝛷(𝑚 − 2𝜈 + 𝛷) + 𝑏𝛷(−𝑚 + 2𝜈 + 𝛷)
 

 

 

 

 

 

(34b) 

𝐶1
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

= −
𝜒𝑎𝛷𝑏

1
2
(−𝑚+𝛷+2) − 𝜒𝑏𝛷𝑎

1
2
(−𝑚+𝛷+2)

𝑎𝛷 − 𝑏𝛷
 

𝐶2
(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑)

=
𝜒(𝑏

1
2
(−𝑚+𝛷+2) − 𝑎

1
2
(−𝑚+𝛷+2))

𝑎𝛷 − 𝑏𝛷
 

 

 

 

(34c) 

Elastic fields in a uniform disk due to the thermal loads are obtained as 

𝑢𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

(

 
 
 
 

𝑎2(𝜈 + 1)𝑙𝑛𝑎(𝜗 − 2𝛼𝛹2) (
𝑏2(𝜈 + 1)

−(𝜈 − 1)𝑟2
)

−𝑏2(𝜈 + 1)𝑙𝑛𝑏 (
𝑎2(𝜈 + 1)

−(𝜈 − 1)𝑟2
) (𝜗 − 2𝛼𝛹2)

+(𝜈 − 1)𝑟2(𝑎 − 𝑏)(𝑎 + 𝑏) (
2𝛼(𝜈 + 1)𝛹1 − 𝜗

+𝜗(𝜈 + 1)𝑙𝑛𝑟
)
)

 
 
 
 

2(𝜈 − 1)(𝜈 + 1)𝑟(𝑎2 − 𝑏2)
 

 

 

 

 

 

 

(35a) 

𝜎𝑟(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) = −

𝐸(𝜗 − 2𝛼𝛹2)(

𝑏2(𝑟2 − 𝑎2)𝑙𝑛𝑏

+𝑎2𝑙𝑛𝑎(𝑏2 − 𝑟2)

+𝑟2(𝑎2 − 𝑏2)𝑙𝑛𝑟

)

2(𝜈 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

(35b) 

𝜎𝜃(𝑟)(𝐹𝑟𝑒𝑒−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝐸

(

 
 (𝜈 + 1)(𝜗 − 2𝛼𝛹2)(

𝑎2𝑙𝑛𝑎(𝑏2 + 𝑟2)

−𝑏2(𝑎2 + 𝑟2)𝑙𝑛𝑏

+𝑟2(𝑏2 − 𝑎2)𝑙𝑛𝑟

)

−𝜗(𝜈 − 1)𝑟2(𝑎2 − 𝑏2) )

 
 

2(𝜈2 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

 

(35c) 

and  
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𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄ )
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙)

=
(

 
𝑎2𝜗𝑙𝑛𝑎 (

𝑏2(𝜈 + 1)

−(𝜈 − 1)𝑟2
) − 𝜗𝑟2𝑙𝑛𝑟 (

𝑏2(𝜈 + 1)

−𝑎2(𝜈 − 1)
)

−𝑏2(𝑎2 − 𝑟2) (
−2𝛼(𝜈 + 1)𝛹1

+(𝜈 + 1)𝑙𝑛𝑏(𝜗 − 2𝛼𝛹2) + 𝜗
)
)

 

2𝑎2(𝜈 − 1)𝑟 − 2𝑏2(𝜈 + 1)𝑟
 

 

 

 

 

(36a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄  𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙)

=

𝐸

(

 
 
(𝜈 + 1)(𝜗 − 2𝛼𝛹2) (

𝑏2𝑙𝑛𝑏(𝑎2(𝜈 − 1) − (𝜈 + 1)𝑟2)

+𝑟2𝑙𝑛𝑟(𝑏2(𝜈 + 1) − 𝑎2(𝜈 − 1))
)

+𝑎2(𝜈 − 1)(𝑏2 − 𝑟2)(𝜗 − 2𝛼(𝜈 + 1)𝛹1)

−𝑎2𝜗(𝜈2 − 1)𝑙𝑛𝑎(𝑏2 − 𝑟2) )

 
 

2(𝜈2 − 1)𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

 

 

 

 

(36b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑟𝑒𝑒 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 ⁄ 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙)

=

𝐸

(

 
 

𝑎2(𝜈 − 1)(2𝛼(𝜈 + 1)𝛹1(𝑏
2 + 𝑟2) − 𝜗(𝑏2 + 𝜈𝑟2))

+(𝜈 + 1)(𝜗 − 2𝛼𝛹2) (
𝑟2𝑙𝑛𝑟(𝑏2(𝜈 + 1) − 𝑎2(𝜈 − 1))

−𝑏2𝑙𝑛𝑏(𝑎2(𝜈 − 1) + (𝜈 + 1)𝑟2)
)

+𝑎2𝜗(𝜈2 − 1)𝑙𝑛𝑎(𝑏2 + 𝑟2) + 𝑏2𝜗(𝜈2 − 1)𝑟2 )

 
 

2(𝜈2 − 1)𝑟2(𝑎2(𝜈 − 1) − 𝑏2(𝜈 + 1))
 

 

 

 

 

 

 

(36c) 

and  

𝑢𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚⁄  𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠)
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝜗(

𝑏2(𝑟2 − 𝑎2)𝑙𝑛𝑏

+𝑎2𝑙𝑛𝑎(𝑏2 − 𝑟2)

+𝑟2(𝑎2 − 𝑏2)𝑙𝑛𝑟

)

2𝑟(𝑎2 − 𝑏2)
 

 

 

 

(37a) 

𝜎𝑟(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝐸

(

 
 

𝑎2𝜗𝑙𝑛𝑎((𝜈 + 1)𝑟2 − 𝑏2(𝜈 − 1))

+𝑏2𝜗𝑙𝑛𝑏(𝑎2(𝜈 − 1) − (𝜈 + 1)𝑟2)

−𝑟2(𝑎2 − 𝑏2) (
−2𝛼(𝜈 + 1)𝛹1 + 𝜗

+(𝜈 + 1)𝑙𝑛𝑟(𝜗 − 2𝛼𝛹2)
)
)

 
 

2(𝜈2 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

 

(37b) 

𝜎𝜃(𝑟)(𝐹𝑖𝑥𝑒𝑑−𝐹𝑖𝑥𝑒𝑑 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠⁄ )
(𝑇ℎ𝑒𝑟𝑚𝑎𝑙) =

𝐸

(

 

𝑎2𝜗𝑙𝑛𝑎(𝑏2(𝜈 − 1) + (𝜈 + 1)𝑟2)

−𝑏2𝜗𝑙𝑛𝑏(𝑎2(𝜈 − 1) + (𝜈 + 1)𝑟2)

−𝑟2(𝑎2 − 𝑏2) (
−2𝛼(𝜈 + 1)𝛹1 + 𝜗𝜈

+(𝜈 + 1)𝑙𝑛𝑟(𝜗 − 2𝛼𝛹2)
)
)

 

2(𝜈2 − 1)𝑟2(𝑎2 − 𝑏2)
 

 

 

 

 

(37c) 

where 

𝛹1 =
𝑇𝑏𝑙𝑛𝑎 − 𝑇𝑎𝑙𝑛𝑏

𝑙𝑛𝑎 − 𝑙𝑛𝑏
,         𝛹2 =

𝑇𝑎 − 𝑇𝑏
𝑙𝑛𝑎 − 𝑙𝑛𝑏

 

𝜗 = 𝛼(1 + 𝜈)𝛹2 

 

 

(38) 
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5. Numerical Examples  

A disk made of a stainless steel (SUS304) is chosen with the following properties in numerical 

examples. 

𝑎 = 0.5 𝑚;  𝑏 = 1 𝑚;  𝜔 = 100 (𝑟𝑎𝑑 𝑠⁄ ) 

𝑝𝑎 = 60 (𝑀𝑃𝑎); 𝑝𝑏 = 30 (𝑀𝑃𝑎);  𝑇𝑏 = 100 ℃;  𝑇𝑎 = 20 ℃ 

𝐸 = 201.04 (𝐺𝑃𝑎);   𝜌 = 7800 (𝑘𝑔 𝑚3⁄ );   𝜈 = 0.3262 

𝛼 = 12.33 10−6 (1 𝐾⁄ );   𝑘 = 15.379 (𝑊/𝑚𝐾)  

Dimensionless elastic fields are defined as follows 

�̅�𝑟(r) =
𝐸

(1 − 𝜈2)𝜌𝜔2𝑏3 + (1 + 𝜈)𝛼𝐸𝑇𝑏𝑏 + 𝑏𝑝𝑜
𝑢𝑟(𝑟) 

σ̅𝑟(r) =
(1 − 𝜈)

(1 − 𝜈)𝜌𝜔2𝑏2 + 𝛼𝐸𝑇𝑏 + (1 − 𝜈)𝑝𝑜
σ𝑟(𝑟) 

σ̅𝜃(r) =
(1 − 𝜈)

(1 − 𝜈)𝜌𝜔2𝑏2 + 𝛼𝐸𝑇𝑏 + (1 − 𝜈)𝑝𝑜
𝜎𝜃(𝑟) 

 

 

 

 

 

(39) 

where 𝑝𝑜 = 𝑝𝑎 is used for both free-free and fixed-fixed boundary conditions while 𝑝𝑜 = 𝑝𝑏 

for fixed-free surfaces. 

As a first example, the radial temperature distribution in a hyperbolic disk is investigated 

regarding different profile parameters and aspect ratios defined by (𝑎/𝑏). Solutions are 

illustrated by Fig. 2. As can be seen from Fig. 2 that the differences in the temperature 

distributions in a hyperbolic disk become much obvious as the aspect ratios get smaller. A 

convergent disk profile having 𝑚 = −1  exhibits a linear temperature distribution while the 

other profile parameters offer different curves. The temperatures at the intermediate surfaces of 

a disk having divergent profiles decrease faster than convergent ones towards the inner surface 

and increase slowly towards the outer. It is not suitable the use of a linear temperature profile 

instead of the true one, except 𝑚 = −1, for even uniform disks as seen from Fig. 2.  

 

Fig. 2. Variation of the radial temperature distribution with the aspect ratios and profile parameters 
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As a second example, the radial variations of the elastic fields in a hyperbolic disk with the 

profile parameters are to be examined.  Solutions for three boundary conditions are 

demonstrated by Fig. 3 in a comparative manner. The numerical values of some equivalent 

stresses are presented in Table 2. 

 

 

Fig. 3. The radial variations of the elastic fields in a hyperbolic disk with the profile parameters 

As can be observed from Fig. 3 that, the curves are in accordance with the related boundary 

conditions. Observations from this figure are outlined below: 

i. The maximum radial displacement is located at the outer surface for free-free and fixed-

free boundary conditions while it is in the vicinity of the mid-surface for fixed-fixed 

hyperbolic disks. 

ii. The convergent profiles offer smaller radial displacements than divergent and uniform 

ones under free-free and fixed-free boundary conditions. The radial displacements in 

divergent hyperbolic disks are higher than even uniform profiles under free-free and 

fixed-free boundary conditions. 
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iii. The radial stress in free-free divergent hyperbolic disks is in compression at the vicinity 

of both the inner and outer surfaces while it is in tension at the vicinity of mid-surface. 

However, the radial stresses are all in compression in both uniform and convergent disks 

under free-free conditions. 

iv. The maximum radial stress is at the inner surface under both free-free and fixed-free 

conditions except for 𝑚 = −0.4 in free-free and fixed-fixed disks. 

v. Convergent disk profiles exhibit better response to the radial stress variation than both 

uniform and divergent ones for fixed-free disks.    

vi. Fixed-fixed disks have radial and hoop stresses which are completely in compression. 

Convergent disk profiles exhibit better response to the combined thermal and centrifugal 

loads than uniform and divergent ones under fixed-fixed boundary conditions. 

vii. When the variation of the hoop stresses are concerned, convergent profiles seem to be 

better than divergent ones under free-free and fixed-fixed boundaries. The converse is 

true for fixed-free hyperbolic disks. 

viii. For fixed-free disks, divergent profiles having higher parameter values in absolute 

present better hoop stress distribution. 

Table 2. Equivalent stresses in a hyperbolic disk 

 𝑚 

 -0.4 -0.3 -0.2 0 (1.× 10−11) 0.2 0.3 0.4 

 
Fixed-Fixed  (thermal + rotation) (𝑝𝑜 = 𝑝𝑎) 

 

0.5 0.916974 0.783478 0.785315 0.788975 0.792691 0.794532 0.796368 

0.6 0.980805 0.802161 0.803402 0.805805 0.808167 0.809306 0.810422 

0.7 1.02596 0.819335 0.820365 0.822386 0.824401 0.825389 0.826369 

0.8 1.06088 0.834924 0.835901 0.83786 0.839837 0.840827 0.84182 

0.9 1.08956 0.849215 0.85022 0.852247 0.854303 0.855335 0.856372 

1. 1.11416 0.862506 0.86359 0.865748 0.867921 0.868999 0.870072 

 
Fixed-Free  (thermal + rotation+ external pressure) (𝑝𝑜 = 𝑝𝑏) 

 

0.5 0.489025 0.510427 0.531227 0.593047 0.68397 0.740794 0.805348 

0.6 0.412551 0.413534 0.418865 0.440813 0.479528 0.505501 0.535931 

0.7 0.364721 0.356252 0.353188 0.35219 0.359343 0.366401 0.375932 

0.8 0.332283 0.319776 0.312241 0.298309 0.286529 0.281748 0.277884 

0.9 0.309015 0.295211 0.285512 0.265198 0.243728 0.232593 0.221237 

1. 0.291673 0.277947 0.267494 0.245311 0.221319 0.208593 0.195358 

 
Free-Free (thermal + rotation+ internal and external pressures) (𝑝𝑜 = 𝑝𝑎) 

 

0.5 0.337384 0.212439 0.0952687 0.162293 0.41535 0.545674 0.678143 

0.6 0.299193 0.200208 0.10746 0.0890103 0.285386 0.386576 0.48942 

0.7 0.274373 0.192891 0.11637 0.0435495 0.204567 0.287646 0.372081 

0.8 0.257063 0.188267 0.123151 0.0145655 0.149327 0.219918 0.291667 

0.9 0.244496 0.185281 0.128545 0.0161429 0.109388 0.170738 0.233149 

1. 0.235186 0.18336 0.133007 0.033027 0.0805358 0.134429 0.189562 
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ix. For free-free disks, convergent profiles having smaller parameter values in absolute 

offer better hoop stress variations than divergent ones. For this boundary condition, the 

uniform disks exhibit the best response to the circumferential stresses together with  

𝑚 = −0.2. 

x. As to the equivalent von-Misses stresses, fixed-free and fixed-fixed boundaries need 

convergent disks having higher parameter values in absolute while free-free disks 

require convergent disk having smaller parameter values. 

xi. Convergent profiles may exhibit almost uniform equivalent stresses under free-free 

boundary conditions. According to Fig. 3, 𝑚 = −0.2 is the best for the distribution of 

equivalent von-Misses stresses under free-free conditions. 

6. Conclusions 

Closed-form formulas were proposed for hyperbolic disks made of traditional materials under 

free-free, fixed-free, and fixed-fixed boundary conditions to obtain the exact thermo-

mechanical fields. Combined thermal loads, internal and external pressures, and centrifugal 

forces were considered as thermo-mechanical loads. Those formulas are to be very helpful tools 

in the pre-design stage of such disks.  

To the best of the author’s knowledge, formulas for the hyperbolic fixed-free disks subjected 

to the external pressure induced by the existence of the blades have been originally offered in 

the present study.  
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