

International Journal of

Applied Mathematics,

Electronics and Computers

Advanced Technology and Science

ISSN:2147-82282147-6799 www.atscience.org/IJAMEC Original Research Paper

This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52 | 47

Particle Swarm Optimization for Continuous Function Optimization

Problems

Muhlis OZDEMIR*1

Accepted : 08/09/2017 Published: 30/09/2017 DOI: 10.18100/ijamec.2017331879

Abstract In this paper, particle swarm optimization is proposed for finding the global minimum of continuous functions and tested on

benchmark problems. Particle swarm optimization applied on 21 benchmark test functions, and its solutions are compared to those former

proposed approaches: ant colony optimization, a heuristic random optimization, the discrete filled function algorithm, an adaptive random

search, dynamic random search technique and random selection walk technique. The implementation of the PSO on several test problems

is reported with satisfactory numerical results when compared to previously proposed heuristic techniques. PSO is proved to be successful

approach to solve continuous optimization problems.

Keywords: continuous function optimization, global minimum, heuristic techniques, particle swarm optimization

1. Introduction

The main goal of function optimization is to find a global solution

of an objective function throughout the iterations. The swarm

intelligent optimization algorithms are simulate the nature, mainly

animals. Particle swarm optimization(PSO) proposed in 1995 by

Eberhart and Kennedy and based on defining the social behaviours

of the living beings.[1]. In 2002, Clerc and Kennedy added

constriction coefficients and ameliorate the PSO much better[2].

Due to advancement of computer technologies in the computer

science area, continuous function optimizations have become

popular among the researchers. There are abundant test functions

used in the literature to measure the proposed algorithms’

performance by the scientists. Many heuristic methods and

techniques are proposed and applied for solving these continuous

functions like discrete filled function[3], dynamic random search

technique[4], ant colony optimization[5], a heuristic random

optimization[6], an adaptive random search technique[7], random

selection walk[8], fruit fly optimization[9], biogeography-based

optimization algorithm[10], flower pollination algorithm[11],

continuous action-set reinforcement learning automata model[12],

artificial bee colony algorithm[13], genetic algorithm[14]

respectively. PSO is proved to be successful approach to solve

continuous optimization problems. All the selected benchmark

problems are minimization problems in this work. In this paper

PSO applied on 21 benchmark test functions and were used to

compare with the results of ant colony optimization(ACO), a

heuristic random optimization(HRO), the discrete filled function

algorithm, an adaptive random search technique(ARSET),

dynamic random search technique(DRASET) and random

selection walk(RSW) technique. PSO scrutinizes reasonable

quality solutions much rapidly than other swarm based

evolutionary algorithms. In this paper PSO’s performance and

robustness are shown for the aforementioned techniques. The

author’s findings show that for 21 benchmark problems PSO’s

results are quite competitive. The rest of the paper organized as

follows; section two covers the information of proposed PSO

algorithm, function optimization problems are given in section

three and finally conclusion stated in section four.

2. The Proposed PSO Algorithm

The PSO became a very popular evolutionary algorithm and

successfully applied for a wide range of continuous optimization

functions. The algorithm exploits the solution space by improving

the trajectories as moving particles in multidimensional solution

space. Population of PSO consists of personal positions called

particles, denoted 𝑋𝑖
⃗⃗ ⃗. Each particle has velocities 𝑉𝑖⃗⃗ and a cost

function evaluated by using the particle’s position. Positions and

velocities are adjusted and cost function evaluated as the particle

moves at each time step(𝑴𝒊𝒏 𝒇(𝒙), 𝒙𝒏 = [𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … , 𝒙𝒏]). n

represents the number of decision variables. 𝒙𝒏 ∈ [𝑳𝑩,𝑼𝑩], 𝒏 =

𝟏, 𝟐,… , 𝒏. 𝑳𝑩 and 𝑼𝑩 are the lower and upper bounds for the

variable 𝒙𝒏 respectively. When the particle moves better position

than any found formerly, personal best positions explored so far

are stored in 𝑃𝑖
⃗⃗ . The difference between personal best position and

particle current position is added to velocity. Thus velocities are

used to move particles better coordinates.

𝑽𝒊𝒋(𝒕 + 𝟏) = 𝒘𝑽𝒊𝒋(𝒕) + 𝒄𝟏𝒓𝟏𝒋(𝒕)(𝑷𝒊𝒋(𝒕) − 𝑿𝒊𝒋(𝒕)) +

𝒄𝟐𝒓𝟐𝒋(𝒕)(𝒈𝒋(𝒕) − 𝑿𝒊𝒋(𝒕)) (1)

Velocity consists of inertia term, cognitive component and social

component as stated equation 2. Where w represents the inertia

weight, 𝒓𝟏𝒋 and 𝒓𝟐𝒋 are uniformly distributed random numbers

between the range of 0 and 1. 𝒄𝟏 and 𝒄𝟐 are constants, called

cognitive and social scaling parameters; 𝑽𝒊𝒋 the velocity of the

particle, 𝑷𝒊𝒋 the personal best fitness value of the particle and 𝒈𝒋

represents the best position and the global best in the whole

population.

1Istanbul University, School of Business, Department of Quantitative

Methods, Avcılar Campus 34320 Istanbul TURKEY

* Corresponding Author: Email: muhlisozdemir@istanbul.edu.tr

Orcid ID: http://orcid.org/0000-0002-4921-8209

mailto:muhlisozdemir@istanbul.edu.tr
http://orcid.org/0000-0002-4921-8209

This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52 | 48

𝑿𝒊𝒋(𝒕 + 𝟏) = 𝑿𝒊𝒋(𝒕) + 𝑽𝒊𝒋(𝒕 + 𝟏) (2)

Each particle represents a position and a potential solution of the

search space. As stated eq. 3 𝑿𝒊𝒋 represents the position of the

particle and is updated by the 𝑽𝒊𝒋(𝒕 + 𝟏) in eq. (2) throughout the

algorithm.

As stated before Clerc and Kennedy added constriction

coefficients in 2002[2], and therefore eq. 2 reorganized and used

in this work as follows;

𝑽𝒊𝒋(𝒕 + 𝟏) = 𝝌[𝑽𝒊𝒋(𝒕) + 𝝓𝟏(𝑷𝒊𝒋(𝒕) − 𝑿𝒊𝒋(𝒕)) + 𝝓𝟐(𝒈𝒋(𝒕) −

𝑿𝒊𝒋(𝒕))] (3)

𝝌 =
𝟐𝜿

|𝟐−𝝓−√𝝓𝟐−𝟒𝝓|
 (4)

Where

𝝓 = 𝝓𝟏 + 𝝓𝟐,

𝝓𝟏 = 𝒄𝟏𝒓𝟏,

𝝓𝟐 = 𝒄𝟐𝒓𝟐,

𝝓 ≥ 𝟒 𝒂𝒏𝒅 𝜿 ∈ [𝟎, 𝟏]

Thus

𝒘 = 𝝌, 𝒄𝟏 = 𝝌𝝓𝟏, 𝒄𝟐 = 𝝌𝝓𝟐

Eq. 2 can be used with these parameters stated above. PSO’s

Pseudocode as follows;

Step 1
Initialization
Do

Set n, LB, UB, 𝐼𝑡𝑒𝑟𝑚𝑎𝑥, 𝜙1 , 𝜙2, 𝜅 and 𝜒
Generate population(PS)
Assign each particle random positions
for i = 1 to population size

 if fitness(𝑋𝑖
⃗⃗ ⃗)<fitness(𝑃𝑖

⃗⃗)

 𝑃𝑖
⃗⃗ =𝑋𝑖

⃗⃗ ⃗

 g=min(𝑃𝑖
⃗⃗)

 end
Next i
Until termination criterion is met

Step 2
Do
for i=1 to 𝐼𝑡𝑒𝑟𝑚𝑎𝑥
 for j = 1 to to PS

 𝑉𝑖𝑗(𝑡 + 1) = 𝑤𝑉𝑖𝑗(𝑡) + 𝑐1𝑟1𝑗(𝑡)(𝑃𝑖𝑗(𝑡) − 𝑋𝑖𝑗(𝑡)) +

𝑐2𝑟2𝑗(𝑡)(𝑔𝑗(𝑡) − 𝑋𝑖𝑗(𝑡))

 𝑋𝑖𝑗(𝑡 + 1) = 𝑋𝑖𝑗(𝑡) + 𝑉𝑖𝑗(𝑡 + 1)

 if fitness(𝑋𝑖𝑗
⃗⃗⃗⃗ ⃗)<fitness(𝑃𝑖𝑗

⃗⃗⃗⃗)

 𝑃𝑖
⃗⃗ =𝑋𝑖

⃗⃗ ⃗

 𝒈𝒋=min((𝑃𝑖𝑗
⃗⃗⃗⃗)

 end
 Next j
Next i

Until termination criterion is met

3. Benchmark Function Optimization Problems

In this section, the author compare the presented PSO with

benchmark problems which have already been studied by

numerous researchers. The algorithm coded in Matlab and is run

Intel Core i7, 2.7 GHz with 16.00 GB Ram in macOS Sierra

operating system. All figures in this paper were generated by using

Matlab. The results are compared to those obtained from previous

studies, which include ARSET[7], ACO[5], HRO[6], RSW[8],

discrete filled function[3] and DRASET[4] algorithms. For the

detail of the compared techniques, the readers can refer [3-8].

Except PSO, all comparative results for the benchmark problems

are derived from CURA’s previous work[8]. Throughout the

iterations, performance of PSO for first 3 problems are shown in

figures. Also third and sixth problem objective functions are shown

in figures within the range [-10, 10].

3.1. Benchmark Problem 1

This function has one variable and two minima. The local

minimum is at x=0, furthermore function’s global minimum is at

x=3.

𝒇(𝒙) = {
𝒙𝟐, if 𝒙 ≤ 𝟏,

(𝒙 − 𝟑)𝟐 − 𝟑, if 𝒙 > 𝟏.
 (5)

Differ from the RSW and PSO, the initial point were set to 0.5 for

other three techniques. RSW were set the initial points 23.9342 and

14.0356. For this problem PSO’s 𝑳𝑩 and 𝑼𝑩 were set to -50 and

50. All results compared for the benchmark problem 1 are shown

in table 1.

Table 1: Results for the Problem 1

Algorithms x f(x) Epoch Number

HRO 3.000324 -2.9999998 1,000

ARSET 3 -3 1,000

ACO 3 -3 500

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 23.9342) 2.999581 -2.9999998 500

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 14.0356) 3 -3 1,000

PSO 3 -3 50

For instance PSO’s performance for Problem 1 throughout the

iterations is shown in figure 1.

Figure 1: Performance of PSO for Problem 1

3.2. Benchmark Problem 2

Second function has one variable and its minimum at x=0.

𝒇(𝒙) = {[𝒙 ∗ 𝒔𝒊𝒏 (
𝟏

𝒙
)]

𝟒
+ [𝒙 ∗ 𝒄𝒐𝒔 (

𝟏

𝒙
)]

𝟒
, if 𝒙 ≠ 𝟎,

𝟎, oterwise.
 (6)

This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52 | 49

ARSET and ACO were set the initial point to 1. All four techniques

have three different epoch number results. RSW were set the initial

points 40.1959, 45.287 and 29.9729. Also PSO was run for 1000,

3000, 5000 epoch numbers. The results are given in table 2.

Table 2: Results for the Problem 2

Algorithms x f(x) Epoch Number

ARSET 1.90E-06 6.58E-024 10,000

ACO 3.36E-10 8.16E-039 10,000

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 40.1959) -2.55E-74 1.47E-295 10,000

PSO 1.10E-53 1.11E-212 1,000

ARSET 4.39E-08 1.85E-30 30,000

ACO -1.57E-11 5.47E-44 30,000

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 45.287) 8.17E-82 0 30,000

PSO -5.34E-82 0 3,000

ARSET -2.53E-11 2.21E-43 50,000

ACO 7.79E-12 1.40E-45 50,000

RSW(𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 29.9729) -1.34E-81 0 50,000

PSO 3.91E-102 0 5,000

Also PSO’s performance for problem 2 shown in figure 2. It is

obvious that although selected epoch number 5,000, PSO achieved

its best solution throughout the iteration number approximately

1700.

Figure 2: PSO's performance for 5,000 epoch number

3.3. Benchmark Problem 3

Problem 3 is 8th degree polynomial and has two variables, shown

in eq. 7. The minimum point of this function x=3, y=3 and f(x,

y)=0.

𝒇(𝒙, 𝒚) =
(𝒙−𝟑)𝟖

𝟏+(𝒙−𝟑)𝟖
+

(𝒚−𝟑)𝟒

𝟏+(𝒚−𝟑)𝟒
 (7)

It is stated that ARSET, ACO and RSW were run for E=10,000,

30,000 and 50,000. ARSET and ACO both took the initial point

{0,0} and RSW was run for three different initial point for x and y

i.e. (𝑥 initial = 11.8192
𝑦 initial = −27.2218

), (
𝑥 initial = 43.0038

𝑦 initial = −41.6007
) and (

𝑥 initial = 25.5261
𝑦 initial = −25.8986

).

A visual for the objective function of benchmark problem 3 can be

seen in figure 3.

Figure 3: Visual for the Objective Function of Benchmark Problem 3

PSO was run for 1,000, 3,000 and 5,000 epoch numbers. The

results are given in table 3. Also PSO’s performance for problem

3 is shown in figure 4. It is obvious that although epoch number

were selected for 5,000, PSO achieved its best solution throughout

the iteration number approximately 450.

Figure 4: performance of PSO for problem 3

Table 3: Results for the Problem 3

Algorithms x y f(x, y) Epoch Number

ARSET 3.0157 2.9999 3.71E-15 10,000

ACO 3x2066E-09 3x2384E-09 2.62E-21 10,000

RSW(
𝑥 initial = 11.8192

𝑦 initial = −27.2218
) 2.9991 2.9999 4.17E-25 10,000

PSO 2.9993 2.9999 3.64E-26 1,000

ARSET 3.0072 3 7.32E-18 30,000

ACO 3 3 0 30,000

RSW(
𝑥 initial = 43.0038

𝑦 initial = −41.6007
) 3.0005 3 6.73E-27 30,000

PSO 3,0000 3 1.08E-84 3,000

ARSET 3.0015 3 5.04E-23 50,000

ACO 3 3 0 50,000

RSW(
𝑥 initial = 25.5261

𝑦 initial = −25.8986
) 2.9996 3 3.43E-28 50,000

PSO 3 3 0 5,000

This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52 | 50

3.4. Benchmark Problem 4

This benchmark problem is known as Rosenbrock’s Banana

Function in the literature. ARSET, ACO and PSO searched for the

minimum function value within the solution range [0, 6]. The

minimum of the function is at x=1, y=1 and f(x, y)=0.

𝒇(𝒙, 𝒚) = 𝟏𝟎𝟎(𝒙 − 𝒚𝟐)𝟐 + (𝟏 − 𝒙)𝟐 (8)

It is stated that ARSET was run for the initial point for [-1.9, 2].

Also RSW (
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 24.7355
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.3291

), (
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.3763
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 23.2853

) and (𝑥
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.8923
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 46.455

). PSO

initialized totally random points for this problem.

Table 4: Results for the Problem 4

Algorithms x y f(x, y) Epoch Number

ARSET 0.99401 0.997 3.58E-05 10,000

ACO 1.00021 1.00004 1.73E-06 10,000

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 24.7355
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.3291

) 0.99999 0.99999 2.27E-27 10,000

PSO 1 1 0 1,000

ARSET 1.0001 1.0001 2.03E-08 30,000

ACO 1 1 5.68E-12 30,000

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.3763
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 23.2853

) 1 1 5.21E-28 30,000

PSO 1 1 0 3,000

ARSET 1 1 4.02E-16 50,000

ACO 1 1 0 50,000

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 43.8923
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 46.455

) 1 1 1.97E-31 50,000

PSO 1 1 0 5,000

3.5. Benchmark Problem 5

Problem 5 is a different form of problem 4 as seen in eq. (9).

Youngjian and Yumei tested their algorithm on this function by

using discrete filled function algorithm[3].

𝒇(𝒙) = ∑ 𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)

𝟐
+ (𝟏 − 𝒙𝒊)

𝟐𝑵−𝟏
𝒊=𝟏 (9)

Youngjian and Yumei stated that they set the initial point for this

problem [5, 5], [-5, -5], 𝑥 ∈ [−5 − 5] 𝑎𝑛𝑑 𝑦 ∈ [5 5] , 𝑥 ∈

[5 5] 𝑎𝑛𝑑 𝑦 ∈ [−5 − 5]. This problem solved with PSO in the range

of [-5, 5]. Three different dimensional(N=10, 25 and 50) results for

RSW and PSO can be seen in Table 5.

Table 5: Results for the Problem 5

N RSW PSO

10 8,20E-04 1.14E-08

25 4,84E-03 5.17E-06

50 1,58E-02 1.78E-05

3.6. Benchmark Problem 6

Benchmark problem 6 is given in eq. (10) where the goal is to

minimize for the range of [-10, 10]. ACO, ARSET took initial

point x=9, y=9. RSW took three different initial point for x and y

as RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.2649

𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −31.5613
), RSW(

𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 49.8498
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 45.5905

) and

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −0.0093
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 48.8558

). PSO started in totally random points between

the range of [-50, 50].

𝒇(𝒙, 𝒚) =
𝒙

𝟏+|𝒚|
 (10)

A visual can be seen in figure 5 for the objective function of

benchmark problem 6. Also comperative results are given in the

table 6.

Figure 5: Visual for the Objective Function of Benchmark Problem 6

Table 6: Results for the Problem 6

Algorithms x y f(x, y) Epoch Number

ARSET -9.9968 3.46E-009 -9.9968 10,000

ACO -9.9989 2.01E-004 -9.9989 10,000

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 42.2649

𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −31.5613
) -9.773 3.42E-17 -9.773 10,000

PSO -9.999 -3.85E-17 -9.9999 1,000

ARSET -9.9996 -2.08E-018 -9.9996 30,000

ACO -9.9999 -6.05E-008 -9.9999 30,000

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 49.8498
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 45.5905

) -9.9016 6.52E-17 -9.9016 30,000

PSO -10 -6.82E-17 -9.9999 3,0000

ARSET -10 6.67E-008 -10 50,000

ACO -10 8.07E-011 -10 50,000

RSW(
𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = −0.0093
𝑦𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 48.8558

) -9.9996 -6.57E-17 -9.9996 50,000

PSO -10 0 -10 5,000

3.7. Benchmark Problems 7-21

Table 8 covers the information for functions, dimensions, variable

ranges and their theoretical bests of the benchmark problems.

Although problem 18, same as the problem 4 its parameters are

different. The proposed PSO algorithm’s results compared with the

DRASET and RSW. Results can be seen in table 7.

Table 7: Results for the Problems 7 - 21

No Epoch # RSW DRASET PSO

Theoretical

Best

7 2,501,000 0.00 0.00 0.00 0.00

8 2,501,000 -16.09172 -16.09172 -16.09172 -16.09172

9 2,502,000 0.998 0.998 0.998 0.998

10 2,501,000 0.39788735 0.39788737 0.3978873 0.3978873

11 2,502,000 -1.0316284 -1.0316284 -1.031628 -1.031628

12 2,503,000 3.00 3.00 3.00 3.00

13 2,502,500 -186.73091 -186.73091 -186.7309 -186.7309

14 25,015,000 8.01275646286 8.01275646263 8.01276 8.01276

15 25,050,000 1.28E-28 3.72E-12 3.37E-54 0.00

16 25,050,000 0.00 2.45E-16 1.03E-43 0.00

17 25,080,000 2.3558E-32 5.93E-12 1.86E-36 0.00

18 2,501,500 2.8399E-29 3.9053E-15 4.32E-47 0.00

19 2,506,000 1.0091 1.00 1.00 1.00

20 250,200 1.74415200558 1.74415200796 1.74 1.74

21 25,080,000 1.02E-11 8.17E-9 2.52E-23 0.00

This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52 | 51

Table 8: Benchmark Problems 7-21

Problem No Function Dimension

Variable

Range Theoretical Best

7 𝒇(𝒙,𝒚) = 𝒙𝟐 + 𝟐𝒚𝟐 − 𝟎. 𝟑 𝒄𝒐𝒔(𝟑𝝅𝒙) − 𝟎. 𝟒 𝒄𝒐𝒔(𝟒𝝅𝒚) + 𝟎. 𝟕 2 [-1,28 1,28] 0

8 𝒇(𝒙,𝒚) = [𝒄𝒐𝒔(𝟐𝝅𝒙) + 𝒄𝒐𝒔(𝟐.𝟓𝝅𝒙) − 𝟐. 𝟏] ∗ [𝟐. 𝟏 − 𝒄𝒐𝒔(𝟑𝝅𝒚) − 𝒄𝒐𝒔(𝟑. 𝟓𝝅𝒚)] 2 [-1 1] -16.09172

9

𝒇(𝒙𝟏, 𝒙𝟐) = [𝟎, 𝟎𝟎𝟐 + ∑ (𝒋 + ∑ (𝒙𝒊 − 𝒂𝒊𝒋)
𝟔𝟐

𝒊=𝟏)
−𝟏

𝟐𝟓
𝒋=𝟏]

−𝟏

𝒂 = |

−𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 𝟎 𝟏𝟔 𝟑𝟐
−𝟑𝟐 − 𝟑𝟐 − 𝟑𝟐 − 𝟑𝟐 − 𝟑𝟐 − 𝟏𝟔 − 𝟏𝟔 − 𝟏𝟔 − 𝟏𝟔 − 𝟏𝟔 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏𝟔 𝟏𝟔 𝟏𝟔 𝟏𝟔 𝟏𝟔 𝟑𝟐 𝟑𝟐 𝟑𝟐 𝟑𝟐 𝟑𝟐

|

2 [-65,536 65,536] 0.998

10 𝒇(𝒙,𝒚) = (𝒚 −
𝟓.𝟏

𝟒𝝅𝟐
𝒙𝟐 +

𝟓

𝝅
𝒙 − 𝟔)

𝟐

+ 𝟏𝟎(𝟏 −
𝟏

𝟖𝝅
) 𝒄𝒐𝒔(𝒙) + 𝟏𝟎 2

𝑥 ∈ [−5 10]
𝑦 ∈ [0 15]

0.3978873

11 𝒇(𝒙,𝒚) = (𝟒 − 𝟐. 𝟏𝒙𝟐 +
𝒙𝟒

𝟑
)𝒙𝟐 + 𝒙𝒚 + (𝟒𝒚𝟐 − 𝟒)𝒚𝟐 2

𝑥 ∈ [−3 3]
𝑦 ∈ [−2 2]

-1.0316285

12
𝒇(𝒙,𝒚) = [𝟏 + (𝒙 + 𝒚 + 𝟏)𝟐(𝟏𝟗 − 𝟏𝟒𝒙 + 𝟑𝒙𝟐 − 𝟏𝟒𝒚 + 𝟔𝒙𝒚 + 𝟑𝒚𝟐)] ∗
[𝟑𝟎 + (𝟐𝒙 − 𝟑𝒚)𝟐(𝟏𝟖 − 𝟑𝟐𝒙 + 𝟏𝟐𝒙𝟐 + 𝟒𝟖𝒚 − 𝟑𝟔𝒙𝒚 + 𝟐𝟕𝒚𝟐)]

2 [-5 5] 3

13 𝒇(𝒙,𝒚) = [∑ 𝒊 𝒄𝒐𝒔((𝒊 + 𝟏)𝒙 + 𝒊)𝟓
𝒊=𝟏] ∗ [∑ 𝒊 𝒄𝒐𝒔((𝒊 + 𝟏)𝒚 + 𝒊)𝟓

𝒊=𝟏] 2 [-10 10] -186.73091

14

𝒇(𝒙,𝒚, 𝒛) = ∑ (𝒙(𝒂𝒊)
𝒚(𝒃𝒊)

𝒛 − 𝒄𝒊)
𝟓
𝒊=𝟏

𝟐

𝑎 = |5 3 0.6 0.1 3|
𝑏 = |10 1 0.6 2 1.8|
𝑐 = |2.122 9.429 23.57 74.25 6.286|

3 [-∞ +∞] 8.01276

15
𝒇(𝒙) = 𝟏𝟎𝟎(𝒙𝟐 − 𝒙𝟏

𝟐)𝟐 + (𝟏 − 𝒙𝟏)
𝟐 + 𝟗𝟎(𝒙𝟒 − 𝒙𝟑

𝟐)𝟐 + (𝟏 − 𝒙𝟑)
𝟐 +

𝟏𝟎. 𝟏[(𝒙𝟐 − 𝟏)𝟐 + (𝒙𝟒 − 𝟏)𝟐] + 𝟏𝟗. 𝟖(𝒙𝟐 − 𝟏)(𝒙𝟒 − 𝟏)
4 [-10 10] 0

16 𝒇(𝒙) = ∑ [(𝒙𝒊
𝟐)

(𝒙𝒊
𝟐+𝟏)

+ (𝒙𝒊+𝟏
𝟐)

(𝒙𝒊
𝟐+𝟏)

]𝟏𝟗
𝒊=𝟏 20 [-1 4] 0

17
𝒇(𝒙) = (𝝅/𝟐𝟎)[𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒙𝟏) + ∑ ((𝒙𝒊 − 𝟏)𝟐(𝟏 + 𝟏𝟎𝒔𝒊𝒏𝟐(𝝅𝒙𝒊+𝟏))) +𝟏𝟗

𝒊=𝟏

(𝒙𝟐𝟎 − 𝟏)𝟐]
20 [-10 10] 0

18 𝒇(𝒙,𝒚) = 𝟏𝟎𝟎(𝒚 − 𝒙𝟐)𝟐 + (𝟏 − 𝒙)𝟐 2 [-10 10] 0

19 𝒇(𝒙,𝒚) = 𝒆𝒙𝒑{
𝟏

𝟐
(𝒙𝟐 + 𝒚𝟐 − 𝟐𝟓)𝟐} + 𝒔𝒊𝒏𝟒(𝟒𝒙 − 𝟑𝒚) +

𝟏

𝟐
(𝟐𝒙 + 𝒚 − 𝟏𝟎)𝟐 2 [-5 5] 1

20 𝒇(𝒙,𝒚) = [𝟏𝟐 + 𝒙𝟐 +
𝟏+𝒚𝟐

𝒙𝟐
+

𝒙𝟐𝒚𝟐+𝟏𝟎𝟎

(𝒙𝒚)𝟒
] ∗ 𝟎. 𝟏 2 [0 10] 1.74

21 𝒇(𝒙) = (𝒙𝟏 + 𝟏𝟎𝒙𝟐)
𝟐 + 𝟓(𝒙𝟑 − 𝒙𝟒)

𝟐 + (𝒙𝟐 − 𝟐𝒙𝟑)
𝟒 + 𝟏𝟎(𝒙𝟏 − 𝒙𝟒)

𝟒 4 [-5 5] 0

This journal is © Advanced Technology & Science IJAMEC, 2017, 5(3), 47–52 | 52

4. Conclusion

In this paper PSO’s performance and robustness are shown. For 21

benchmark problems PSO’s results are quite competitive. PSO

converges the theoretical best results with lesser epoch number for

first four problems and problem 6. In this work when table 8

examined, 2 problems were one dimensional, 13 problems were

two dimensional, 1 problem was three dimensional, two problems

were 4 dimensional and finally 2 problems were twenty

dimensional. Problem 5 were run for 10, 25 and 50 dimensional.

Due to problem 5, 16 and 17’s dimension toughness(N=10, 20, 25

and 50), PSO was run for with 100 and 200 particles and its

solutions are yet close to the global minimum for these dimensions.

14th problem’s solution space is within the range [-∞ +∞]. The

proposed PSO started within the range of [-inf inf]. For first four

problems and problem 6, PSO achieved best known results. For

problems 7-14, 19 and 20, PSO achieved theoretical bests. For

those 15-18 and 21 problems PSO obtained worse solution yet its

results are relatively close to the global minimums. Algorithms for

function optimization are widely studied by the researchers. Each

algorithm has their ups and downs when subject to their results and

performance.

References

[1] Eberhart, R., & Kennedy, J. A new optimizer using particle swarm

theory. In Micro Machine and Human Science, 1995. MHS'95.,

Proceedings of the Sixth International Symposium on (pp. 39-43).

(1995), IEEE.

[2] Clerc, M., & Kennedy, J. The particle swarm-explosion, stability, and

convergence in a multidimensional complex space. IEEE transactions

on Evolutionary Computation, 6(1), (2002). 58-73.

[3] Y.Yongjian, L.Yumei, A new discrete filled function algorithm for

discrete global optimization, Journal of Computational and Applied

Mathematics 202 (2007) 280 – 291.

[4] C. Hamzacebi, F. Kutay, Continuous functions minimization by

dynamic random search technique, Applied Mathematical Modelling

31 (2007) 2189-2198.

[5] M. D. Toksari, Ant colony optimization for finding the global

minimum, Applied Mathematics and Computation 176 (2006) 308–

316.

[6] J. Li, R. R. Rhinehart, Heuristic random optimization, Computers

chem. Engng (1998) 22 427-444.

[7] C. Hamzacebi, F. Kutay, A heuristic approach for finding the global

minimum: Adaptive random search technique, Applied Mathematics

and Computation 173 (2006) 1323–1333.

[8] Cura, Tunchan. "A random search approach to finding the global

minimum." Int. J. Contemp. Math. Science 5.4 (2010): 179-190.

[9] Pan, Quan-Ke, et al. "An improved fruit fly optimization algorithm for

continuous function optimization problems." Knowledge-Based

Systems 62 (2014): 69-83.

[10] Wang, Jie-Sheng, and Jiang-Di Song. "Application and Performance

Comparison of Biogeography-based Optimization Algorithm on

Unconstrained Function Optimization Problem." International Journal

of Applied Mathematics 47.1 (2017).

[11] Nabil, Emad. "A modified flower pollination algorithm for global

optimization." Expert Systems with Applications 57 (2016): 192-203.

[12] Guo, Ying, et al. "Function Optimization via a Continuous Action-Set

Reinforcement Learning Automata Model." Proceedings of the 2015

International Conference on Communications, Signal Processing, and

Systems. Springer Berlin Heidelberg, (2016).

[13] Wang, Chun-Feng, and Yong-Hong Zhang. "An improved artificial

bee colony algorithm for solving optimization problems." IAENG

International Journal of Computer Science 43.3 (2016): 336-343.

[14] Y. Liang, and K. S. Leung, “Genetic Algorithm with adaptive elitist-

population strategies for multimodal function optimization,” Applied

Soft Computing, vol. 11, no. 2, (2011), pp. 2017–2034.

