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Univalence of certain integral operators involving
generalized Struve functions
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Abstract

In this paper, we are mainly interested to �nd su�cient conditions for
some integral operators de�ned by generalized Struve functions. These
operators are normalized and as well as univalent in the open unit disc
U. Some special cases of Struve functions and modi�ed Struve functions
are also a part of our investigations.
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1. Introduction and preliminaries

Let A be the class of functions of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n,

analytic in the open unit disc U = {z : |z| < 1} and S denotes the class of all functions
in A which are univalent in U.
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The Struve functions Hv and Lv appeared as special solutions of the second order
inhomogeneous di�erential equations of the form

(1.2) z2w′′(z) + zw(z) + (z2 − v2)w(z) =
4
(
1
2
z
)v+1

√
πΓ
(
v + 1

2

) ,
(1.3) z2w′′(z) + zw(z)− (z2 − v2)w(z) =

4
(
1
2
z
)v+1

√
πΓ
(
v + 1

2

) ,
known as inhomogeneous Bessel di�erential equations. Both equations (1.2) and (1.3)
are similar and can be converted into each other by changing z into iz. In the solution
of equation (1.2), a function appeared in an article by Struve [31], was later ascribed
Struve's name and the special notation Hv. It is de�ned as

(1.4) Hv(z) =

∞∑
n=0

(−1)n
(
z
2

)2n+v+1

Γ
(
n+ 3

2

)
Γ
(
n+ v + 3

2

) .
The modi�ed Struve functions Lv of order v was introduced by J. W. Nicholson in 1911. It
is de�ned as

(1.5) Lv(z) = −ie−iv
π
2 Hv(iz) =

∞∑
n=0

(
z
2

)2n+v+1

Γ
(
n+ 3

2

)
Γ
(
n+ v + 3

2

) ,
where Γ(z) is the gamma function. Applications of Struve functions occur in water-wave
and surface-wave problems, unsteady aerodynamics, resistive MHD instability theory
and optical di�raction. More recently, Struve functions have appeared in many particle
quantum dynamical studies of spin decoherence and nanotubes. For some details see
[1, 23].

Now consider the second order inhomogeneous di�erential equation

(1.6) z2w′′(z) + bzw′(z) +
[
cz2 − v2 + (1− b)v

]
w(z) =

4
(
z
2

)v+1

√
πΓ
(
v + b

2

) ,
where b, c, v ∈ C. The equation (1.6) generalizes the equation (1.2) and (1.3). In
particular for b = 1, c = 1, we obtain (1.2). For b = 1, c = −1 we get (1.3). Its
particular solution has the series form

(1.7) wv(z) =

∞∑
n=0

(−1)n cn
(
1
2
z
)2n+v+1

Γ
(
n+ 3

2

)
Γ
(
n+ v + b+2

2

) .
It is known as generalized Struve functions of order v. Consider the transformation

uv,b,c(z) = 2v
√
πΓ(v + (b+ 2)/2)z(−v−1)/2wv,b,c(

√
z)

∞

=
∑
k=0

(−c/4)n zn

(3/2)n (k)n
,(1.8)

where k = v + (b+ 2)/2 6= 0,−1,−2,−3, ...and

(γ)n =
Γ (γ + n)

Γ (γ)
=

{
1, n = 0, γ ∈ C\ {0} ,
γ (γ + 1) . . . (γ + n− 1) , n ∈ N, γ ∈ C.

The function uv,b,c is analytic in U and is the solution of the di�erential equation

(1.9) 4z2u′′ (z) + 2 (2v + b+ 3) zu′ (z) + (cz + 2v + b)u (z) = 2v + b.

The function uv,b,c is introduced and studied by Orhan and Yagmur [24] and further
investigated in [3, 30, 32].
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Recently, many mathematicians have set the univalence criteria of several those inte-
gral operators which preserve the class S. By using a variety of di�erent analytic tech-
niques, operators and special functions, several authors have studied univalence criterion,
a few of them are as mentioned below.

Kanas and Srivastava [20], and Deniz and Orhan [13, 14] studied univalence criteria
for analytic functions de�ned in U by using the Loewner chains method. Kiryakova, Saigo
and Srivastava [21] obtained some univalence criteria for certain generalized fractional
integral and derivatives, accompanying all the linear integro-di�erential operators. In
2010 Baricz and Frasin [4] studied some integral operators involving Bessel functions.
These integral operators were de�ned by using the normalized Bessel functions of the
�rst kind. Frasin [18] and Arif and Raza [2] studied the convexity and strongly convexity
of the integral operators de�ned in [4]. Recently Deniz et al. [16] and Deniz [10] studied
the integral operator de�ned by generalized Bessel functions of order v. For further
details of these univalence criterion, we refer the readers to [4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28]. Motivated by the work of these above authors,
we contribute to this univalence theory by studying the univalence of integral operators
involving generalized Struve functions. These operators are de�ned as follows:

(1.10) Wα1,...,αn,β(z) =

β z∫
0

tβ−1
n∏
i=1

(
uvi,b,c(z)

t

) 1
αi

dt

 1
β

,

(1.11) Xn,γ(z) =

(nγ + 1)

z∫
0

n∏
i=1

{uvi,b,c(z)}
γ dt


1

nγ+1

,

and

(1.12) Zλ (z) =

λ z∫
0

tλ−1
(
euvi,b,c(z)

)λ
dt

1/λ

.

In order to derive our main results, we need the following lemmas.

1.1. Lemma. [26] Let β and d be complex numbers such that Re (β) > 0 and |d| ≤ 1,
where d 6= −1. If the function f ∈ A satis�es the following inequality∣∣∣∣d |z|2β +

(
1− |z|2β

) zf ′′(z)
βf ′(z)

∣∣∣∣ ≤ 1 (z ∈ U) ,

then the function Fβ de�ned by

(1.13) Fβ(z) =

β z∫
0

tβ−1f ′(t)dt

1/β

,

is in class S of normalized univalent functions in U.

1.2. Lemma. [29] If f ∈ A satis�es the following inequality(
1− |z|2Re(α)

Re (α)

)∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1 (Re (α) > 0) ,

for all β ∈ C such that Re (β) ≥ Re (α) , then the function Fβ de�ned by (1.13) is in the
class S of normalized univalent functions in U.



824

1.3. Lemma. [25] Let the parameter λ ∈ C and θ ∈ R be so constrained that Re (λ) ≥
1, θ > 1 and 2θ |λ| ≤ 3

√
3. If the function q ∈ A satis�es the following inequality∣∣zq′ (z)∣∣ ≤ θ,

then the function Qλ : U→ C de�ned by

Qλ (z) =

λ z∫
0

tλ−1
(
eq(t)

)λ
dt

1/λ

,

is in the class S of normalized univalent functions in U.

1.4. Lemma. [22](Schwarz lemma) Let f (z) be the function regular in the open unit
disk U with |f (z)| < M , M is �xed. If f (z) has one zero with multiplicity order greater
than m for z = 0, then

(1.14) |f (z)| < M |z|m

Rm
(z ∈ U) ,

the equality can hold only if f (z) = eiθ Mzm

Rm
, where θ is constant.

2. Inequalities involving in our Main Results

2.1. Lemma. [24] If b, v ∈ R, and c ∈ C, k = v + b+2
2

are so constrained that

k > max

{
0,

7 |c|
24

}
,

then the function uv,b,c : U→ C de�ned by (1.8) satis�es the following inequalities:

i.
∣∣∣u′v,b,c(z)− uv,b,c(z)

z

∣∣∣ ≤ 2|c|
3(4k−|c|) (z ∈ U) ,

ii.
∣∣∣uv,b,c(z)z

∣∣∣ ≥ 6k−2|c|
6k−|c| (z ∈ U) ,

iii.
∣∣∣ zu′v,b,c(z)uv,b,c(z)

− 1
∣∣∣ ≤ |c|(6k−|c|)

3(4k−|c|)(3k−|c|) (z ∈ U) ,

iv.
∣∣zu′v,b,c(z)∣∣ ≤ 12k+|c|

12k−3|c| (z ∈ U) .

Proof. For the proof of the �rst three inequalities, see [24]. In order to prove the assertion
(iv) of Lemma 2.1, we will use the well-known triangle inequality and the following
inequalities

(3/2)n ≥ 3 (n+ 1)

4
(n ∈ N) ,

(k)n ≥ kn (n ∈ N) .

Now, consider that ∣∣zu′v,b,c(z)∣∣ =

∣∣∣∣∣z +

∞∑
n=1

(−c)n (n+ 1)zn+1

(3/2)n4n(k)n

∣∣∣∣∣
≤ 1 +

∞∑
n=1

|c|n (n+ 1)

(3/2)n4nkn

≤ 1 +
|c|
3k

∞∑
n=1

(
|c|
4k

)n−1

=
12k + |c|

12k − 3 |c|

(
k >

|c|
4

)
.
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3. Univalence of Integral Operators Involving the Generalized

Struve Functions

The inequalities established in Lemma 2.1, will be used to �nd the su�cient conditions
for univalence of the integral operators de�ned in (1.10) when the functions uvi,b,c(z)
(i = 1, 2, ..., n) belong to the class A and the parameters αi ∈ C/ {0} (i = 1, 2, ..., n) and
β ∈ C are so constrained that the integral operator in (1.10) is well de�ned.

3.1. Theorem. Let v1, . . . , vn, b ∈ R, c ∈ C and ki >
7|c|
24

with ki = vi + (b+ 2) /2, i =
1, . . . , n. Let uvi,b,c : U→ C be de�ned as

uvi,b,c(z) = 2vi
√
πΓ

(
vi +

b+ 2

2

)
z
(−1−vi)

2 wvi,b,c(
√
z).

Suppose k = min {k1, k2, . . . , kn}, Re (β) > 0, c ∈ C/ {−1} and αi ∈ C/ {0} (i =
1, 2, ..., n) and these numbers satisfy the relation

|d|+ |c| (6k − |c|)
3 (4k − |c|) (3k − |c|)

n∑
i=1

1

|βαi|
≤ 1,

then the function Wv1,...,vn,b,c,α1,...,αn,β : U → C de�ned by (1.10) is in the class S of
normalized univalent functions in U.

Proof. By setting β = 1 in (1.10) so that

Wv1,...,vn,b,c,α1,...,αn,1(z) =

z∫
0

n∏
i=1

(
uvi,b,c(t)

t

) 1
αi

dt.

First of all, we observe that, since uvi,b,c(z) ∈ A (i = 1, 2, ..., n),

uvi,b,c(0) = u′vi,b,c(0)− 1 = 0,

therefore, we observe that Wv1,...,vn,b,c,α1,...,αn,1(z) ∈ A , that is,

Wv1,...,vn,b,c,α1,...,αn,1(0) = W
′
v1,...,vn,b,c,α1,...,αn,1(0)− 1 = 0.

On the other hand, it is easy to see that

(3.1) W
′
v1,...,vn,b,c,α1,...,αn,1(z) =

n∏
i=1

(
uvi,b,c(z)

z

) 1
αi

From (3.1) , we obtain

zW
′′
v1,...,vn,b,c,α1,...,αn,1

(z)

W′v1,...,vn,b,c,α1,...,αn,1
(z)

=

n∑
i=1

1

αi

(
zu′vi,b,c(z)

uvi,b,c(z)
− 1

)
.

By using the assertion (iii) of Lemma 2.1, for each vi (i = 1, 2, ..., n), we obtain∣∣∣∣∣zW
′′
v1,...,vn,b,c,α1,...,αn,1

(z)

W′v1,...,vn,b,c,α1,...,αn,1
(z)

∣∣∣∣∣ ≤
n∑
i=1

1

|αi|

∣∣∣∣zu′vi,b,c(z)uvi,b,c(z)
− 1

∣∣∣∣
≤

n∑
i=1

1

|αi|
|c| (6ki − |c|)

3 (4ki − |c|) (3ki − |c|)(
z ∈ U; k, ki = vi +

b+ 2

2
>

7 |c|
24

(i = 1, 2, ..., n)

)
.
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Now as it is shown that the function

τ :

(
7 |c|
24

,∞
)
→ R,

de�ned by

τ (k) =
|c| (6k − |c|)

3 (4k − |c|) (3k − |c|) ,

is decreasing function. Therefore

|c| (6ki − |c|)
3 (4ki − |c|) (3ki − |c|)

≤ |c| (6k − |c|)
3 (4k − |c|) (3k − |c|) .

Hence ∣∣∣∣∣zW
′′
v1,...,vn,b,c,α1,...,αn,1

(z)

W′v1,...,vn,b,c,α1,...,αn,1
(z)

∣∣∣∣∣ ≤ |c| (6k − |c|)
3 (4k − |c|) (3k − |c|)

n∑
i=1

1

|αi|
.

Now using the Lemma 1.1 and the triangle inequality, we get∣∣∣∣∣d |z|2β +
(

1− |z|2β
) zW′′v1,...,vn,b,c,α1,...,αn,1

(z)

βW′v1,...,vn,b,c,α1,...,αn,1
(z)

∣∣∣∣∣
≤ |d|+ |c| (6k − |c|)

3 (4k − |c|) (3k − |c|)

n∑
i=1

1

|βαi|
≤ 1,

This implies that Wv1,...,vn,b,c,α1,...,αn,β ∈ S, which completes the proof of Theorem
3.1. �

By setting α1 = α2 = ... = αn = α in Theorem 3.1 we will obtain the result given
below

3.2. Corollary. Let v1, . . . vn, b ∈ R and c ∈ C and ki >
7|c|
24

with ki = vi+(b+ 2) /2, i =
1, . . . , n. Let uvi,b,c : U→ C be de�ned as

uvi,b,c(z) = 2vi
√
πΓ

(
vi +

b+ 2

2

)
z
(−1−vi)

2 wvi,b,c(
√
z).

Suppose k = min {k1, k2, . . . , kn}, Re (β) > 0 and α ∈ C\ {0} (i = 1, 2, ..., n) and these
numbers satisfy the relation

|d|+ n

|βα|
|c| (6k − |c|)

3 (4k − |c|) (3k − |c|) ≤ 1,

then the function Wv1,...,vn,b,c,α1,...,αn,β : U → C de�ned by (1.10) is in the class S of
normalized univalent functions in U.

Our second main result, to �nd the su�cient univalence conditions for an integral
operator of type (1.11). The key tools in the proof are Lemma 1.2 and the inequality
(iii) of Lemma 2.1.

3.3. Theorem. Let v1, . . . , vn, b ∈ R and c ∈ C and ki >
7|c|
24

with ki = vi+(b+ 2) /2, i =
1, . . . , n. Let uvi,b,c : U→ C be de�ned as

uvi,b,c(z) = 2vi
√
πΓ

(
vi +

b+ 2

2

)
z
(−1−vi)

2 wvi,b,c(
√
z).

Suppose k = min {k1, k2, . . . , kn} and Re (γ) > 0 and these numbers satisfy the relation

n |γ|
Re (γ)

|c| (6k − |c|)
3 (4k − |c|) (3k − |c|) ≤ 1,
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then the function Xv1,...,vn,b,c,n,γ : U→ C de�ned by (1.11) is in the class S of normalized
univalent functions in U.

Proof. Consider the function
∼
Xv1,...,vn,b,c,n,γ(z) : U→ C de�ned by

∼
Xv1,...,vn,b,c,n,γ(z) =

z∫
0

n∏
i=1

(
uvi,b,c(t)

t

)γ
dt.

We observe that
∼
Xv1,...,vn,b,c,n,γ(z) ∈ A, that is

∼
Xv1,...,vn,b,c,n,γ(0) =

∼
X
′

v1,...,vn,b,c,n,γ(0)− 1 = 0.

By using the assertion (iii) of Lemma 2.1 and the fact that

|c| (6ki − |c|)
3 (4ki − |c|) (3ki − |c|)

≤ |c| (6k − |c|)
3 (4k − |c|) (3k − |c|) ,

we have(
1− |z|2R(α)

Re (γ)

)∣∣∣∣∣∣z
∼
X
′′

v1,...,vn,b,c,n,γ(z)
∼
X
′

v1,...,vn,b,c,n,γ(z)

∣∣∣∣∣∣ ≤ |γ|
Re (γ)

n∑
i=1

∣∣∣∣zu′vi,b,c(z)uvi,b,c(z)
− 1

∣∣∣∣
≤ n |γ|

Re (γ)
|c| (6k − |c|)3 (4k − |c|) (3k − |c|) ≤ 1.

Now, since Re (nγ + 1) > Re (γ) and the function can be written in the form of

Xv1,...vn,b,c,n,γ =

(nγ + 1)

z∫
0

tnγ
n∏
i=1

(
uvi,b,c(t)

t

)γ
dt

 1
(nγ+1)

.

From Lemma 1.2 implies that Xv1,...vn,b,c,n,γ ∈ S, which completes the proof of Theorem
3.3. �

By setting n = 1 in Theorem 3.3, we get the following result.

3.4. Corollary. Let v, b ∈ R and c ∈ C and k > 7|c|
24

with k = v + (b+ 2) /2, Let
uv,b,c : U→ C be de�ned as

uv,b,c(z) = 2v
√
πΓ

(
v +

b+ 2

2

)
z

(−1−v)
2 wv,b,c(

√
z).

Suppose Re (γ) > 0 and these numbers satisfy the relation

|γ|
Re (γ)

|c| (6k − |c|)
3 (4k − |c|) (3k − |c|) ≤ 1,

then the function Xv,b,c,γ : U→ C de�ned by

Xv,b,c,γ =

(γ + 1)

z∫
0

(uv,b,c(t))
γ dt


1
γ+1

,

is in the class S of normalized univalent functions in U.

Next, by applying the Lemma 1.4 and the inequality (iv) of Lemma 2.1, we get the
following result.
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3.5. Theorem. Let q(t) ∈ A, λ be a complex number such that Re(λ) ≥ 1, M be a real

number and M > 1, here M = 4k+|c|
4k−|c| . If

(3.2)
∣∣zu′v,b,c(z)∣∣ ≤ 12k + |c|

12k − 3 |c| , z ∈ U

and

(3.3) |λ| ≤ 3
√

3

2

(
12k − 3 |c|
12k + |c|

)
,

then the function (1.12) is in the class S.

Proof. Let us consider the function

(3.4) f (z) =

z∫
0

(
euv,b,c(z)

)λ
dz,

which is regular in U. Consider the function

(3.5) h (z) =
1

|λ|
zf ′′ (z)

f ′ (z)
,

where the constant |λ| satis�es the inequality (3.3) . From (3.4) and (3.5) , it follows that

(3.6) h (z) =
λ

|λ|zu
′
v,b,c(z).

With the help of (3.2) , (3.6) becomes

(3.7) |h (z)| ≤ 12k + |c|
12k − 3 |c| for all z ∈ U.

From (3.6) , we obtain h (0) = 0 and by using the Schwarz-Lemma we have

1

|λ|

∣∣∣∣zf ′′ (z)f ′ (z)

∣∣∣∣ ≤ 12k + |c|
12k − 3 |c| |z| ,(3.8)

(
1− |z|2

) ∣∣∣∣zf ′′ (z)f ′ (z)

∣∣∣∣ ≤ |λ|
(

12k + |c|
12k − 3 |c|

)
|z|
(
1− |z|2

)
.(3.9)

Consider the function H : [0, 1]→ R, H(x) = x(1− x2) where x = |z| .
We have

(3.10) H(x) ≤ 2

3
√

3
,

for all x ∈ [0, 1] . From (3.3) and (3.10) , (3.9) becomes

(
1− |z|2

) ∣∣∣∣zf ′′ (z)f ′ (z)

∣∣∣∣ ≤ 1.

Hence from Lemma 1.2, it is clear that for Re(λ) = 1 the integral operator (1.12) is in
S. �

Now, we discuss some special cases on the behalf of the above mentioned theorems.



829

4. Some Special Cases of Struve Functions and Modi�ed Struve

Functions

Struve Functions

We obtain the Struve function of �rst kind of order v, denoted by Hv(z), de�ned by
(1.4) by setting b = c = 1 in (1.8) . Let Hv : U→ C be de�ned as

Hv(z) = 2v
√
πΓ

(
v +

b+ 2

2

)
z

(−1−v)
2 Hv(

√
z).

We observe that

H−1/2(z) =
√
z sin

(√
z
)
,

H1/2(z) = 2
(
1− cos

√
z
)
,

H3/2(z) = 4

(
1 +

2

z

)
− 8

(
sin (
√
z)√

z
+

cos (
√
z)√

z

)
.

By making use of these particular values, we have the following assertions.

(1) Let v1, v2, ..., vn > −1.75 (n ∈ N) . Consider the function Hvi(z) : U→ C de�ned
by

(4.1) Hvi(z) = 2vi
√
πΓ

(
vi +

3

2

)
z
(−1−vi)

2 Hvi(
√
z),

let v = min {v1, v2, ..., vn} and let the parameters d, β, αi (i = 1, 2, ..., n) be de-
�ned as in Theorem 3.1. Now consider the function Wv1,...,vn,α1,...,αn,β(z) : U→
C, de�ned by

(4.2) Wv1,...,vn,α1,...,αn,β(z) =

β z∫
0

tβ−1
n∏
i=1

(
Hvi(z)

t

) 1
αi

dt

 1
β

.

This function is in class S, when the following inequality is satis�ed.

|d|+ 4 (3v + 4)

3 (24v2 + 58v + 35)

n∑
i=1

1

|βαi|
≤ 1.

In particular, we have the followings.
At v = −1

2
, the function Wv,α,β(z) : U→ C, de�ned by (4.2) , reduces to

W−1/2,α,β(z) =

β z∫
0

tβ−1

(
sin
(√
t
)

√
t

) 1
α

dt


1
β

,

belongs to the class S when |d|+ 5
18

1
|βα| ≤ 1.

At v = 1
2
, the function Wv,α,β(z) : U→ C, de�ned by (4.2) , takes the form

W1/2,α,β(z) =

β z∫
0

tβ−1

(
2
(
1− cos

√
t
)

t

) 1
α

dt


1
β

,

belongs to the class S when |d|+ 11
105

1
|βα| ≤ 1.

At v = 3
2
, the function Wv,α,β(z) : U→ C, de�ned by (4.2) , implies to

W3/2,α,β(z) =

β
z∫

0

tβ−1

4
(
1 + 2

t

)
− 8

(
sin(
√
t)√
t

+
cos(
√
t)√

t

)
t


1
α

dt


1
β

,
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belongs to the class S when |d|+ 17
264

1
|βα| ≤ 1.

(2) Let v1, v2, ..., vn > −1.75 (n ∈ N) . Consider the function Hvi(z) : U→ C de�ned
by (4.1) . Let v = min {v1, v2, ..., vn} and the parameters γ be de�ned as in
Theorem 3.3. The function Xv1,v2,...,vn,n,γ(z) : U→ C, de�ned by

(4.3) Xv1,v2,...,vn,n,γ(z) =

(nγ + 1)

z∫
0

n∏
i=1

{Hvi(z)}
γ dt


1

nγ+1

,

belongs to the class S when the following inequality holds.

n |γ|
R (γ)

4 (3v + 4)

3 (24v2 + 58v + 35)
≤ 1.

In particular, we have the followings.
At v = −1

2
, the function Xv,n,γ(z) : U→ C, de�ned by (4.3) , reduces to

X−1/2,n,γ(z) =

(nγ + 1)

z∫
0

{√
t sin

(√
t
)}γ

dt


1

nγ+1

,

belongs to the class S when n|γ|
Re(γ)

5
18
≤ 1.

At v = 1
2
, the function Xv,n,γ(z) : U→ C, de�ned by (4.3) , takes the form

X1/2,n,γ(z) =

(nγ + 1)

z∫
0

{
2
(

1− cos
√
t
)}γ

dt


1

nγ+1

,

belongs to the class S when n|γ|
Re(γ)

11
105
≤ 1.

At v = 3
2
, the function Xv,n,γ(z) : U→ C, de�ned by (4.3) , implies to

X3/2,n,γ(z) =

(nγ + 1)

z∫
0

{
4

(
1 +

2

t

)
− 8

(
sin
(√
t
)

√
t

+
cos
(√
t
)

√
t

)}γ
dt


1

nγ+1

,

belongs to the class S when n|γ|
Re(γ)

17
264
≤ 1.

(3) Let v1, v2, ..., vn > −1.75 (n ∈ N) . Consider the function Hvi(z) : U → C as
de�ned by (4.1) . Let v = min {v1, v2, ..., vn} and the parameters λ be de�ned as
in Theorem 3.5. Let us de�ne a function Zv1,v2,...,vn,λ (z) : U→ C by

(4.4) Zv1,v2,...,vn,λ (z) =

λ z∫
0

tλ−1
(
eHvi

)λ
dt

1/λ

.

This function lies from the class S, when the following inequality is satis�ed.

|λ| ≤ 3
√

3

2

(
12v + 15

12v + 19

)
.

In particular, we have the followings.
At v = −1

2
, the function Zv,λ(z) : U→ C, de�ned by (4.4) , reduces to

Z−1/2,λ(z) =

λ z∫
0

tλ−1
(
e
√
t sin(

√
t)
)λ
dt

1/λ

,
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belongs to the class S when |λ| ≤ 27
√
3

26
.

At v = 1
2
, the function Zv,λ(z) : U→ C, de�ned by (4.4) , takes the form

Z1/2,λ(z) =

λ z∫
0

tλ−1
(
e2(1−cos

√
t)
)λ
dt

1/λ

,

belongs to the class S when |λ| ≤ 63
√
3

50
.

At v = 3
2
, the function Zv,λ(z) : U→ C, de�ned by (4.4) , implies to

Z3/2,λ(z) =

λ z∫
0

tλ−1

e4(1+ 2
t )−8

(
sin(
√
t)

√
t

+
cos(
√
t)

√
t

)λ

dt


1/λ

,

belongs to the class S when |λ| ≤ 99
√
3

74
.

Modi�ed Struve Functions

We obtain the modi�ed struve function of �rst kind of order v, denoted by Lv(z),
de�ned by (1.5) , by putting b = −c = 1 in (1.8) . De�ne a function Lv(z) : U→ C by

Lv(z) = 2v
√
πΓ

(
v +

3

2

)
z

(−1−v)
2 Lv(

√
z).

We observe that

L1/2(z) = 2
(
cosh

√
z − 1

)
.

By making use of this particular value, we have the following assertions.

(1) Let v1, v2, ..., vn > −1.75 (n ∈ N) . Consider the function Lvi(z) : U→ C de�ned
by

(4.5) Lvi(z) = 2v
√
πΓ

(
v +

3

2

)
z

(−1−v)
2 Lvi(

√
z)

Let v = min {v1, v2, ..., vn} and the parameters d, β, αi (i = 1, 2, ..., n) be de�ned
as in Theorem 3.1. Consider the functionWv1,...,vn,α1,...,αn,β(z) : U→ C, de�ned
by

(4.6) Wv1,...,vn,α1,...,αn,β(z) =

β z∫
0

tβ−1
n∏
i=1

(
Lvi(z)

t

) 1
αi

dt

 1
β

.

This function is in class S, when the following inequality is satis�ed.

|d|+ 4 (3v + 4)

3 (24v2 + 58v + 35)

n∑
i=1

1

|βαi|
≤ 1.

In particular, at v = 1
2
, the function Wv,α,β(z) : U → C, de�ned by (4.6) ,

reduces to

W1/2,α,β(z) =

β z∫
0

tβ−1

(
2
(
cosh

√
t− 1

)
t

) 1
α

dt


1
β

,

belongs to the class S when |d|+ 11
105

1
|βα| ≤ 1.
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(2) Let v1, v2, ..., vn > −1.75 (n ∈ N) , v = min {v1, v2, ..., vn} and the parameters γ
be de�ned as in Theorem 3.3. Consider the function Xv1,v2,...,vn,n,γ(z) : U→ C,
de�ned by

(4.7) Xv1,v2,...,vn,n,γ(z) =

(nγ + 1)

z∫
0

n∏
i=1

{Lvi(z)}
γ dt


1

nγ+1

,

where Lvi(z) is de�ned by (4.5) . This function Xv1,v2,...,vn,n,γ(z) is in class S,
when the following inequality holds.

n |γ|
Re (γ)

4 (3v + 4)

3 (24v2 + 58v + 35)
≤ 1.

In particular, at v = 1
2
, the function Xv,n,γ(z) : U→ C, de�ned by (4.7) , implies

to

X1/2,n,γ(z) =

(nγ + 1)

z∫
0

{
2
(

cosh
√
t− 1

)}γ
dt


1

nγ+1

,

belongs to the class S when n|γ|
Re(γ)

11
105
≤ 1.

(3) Let v1, v2, ..., vn > −1.75 (n ∈ N) , v = min {v1, v2, ..., vn} and the parameters λ
be de�ned as in Theorem(3.5) . Consider the function Zv1,v2,...,vn,λ (z) : U → C
de�ned by

(4.8) Zv1,v2,...,vn,λ (z) =

λ z∫
0

tλ−1
(
eLvi

)λ
dt

1/λ

,

where Lvi(z) is de�ned by (4.5) . This function Zv1,v2,...,vn,λ (z) is in class S of
normalized univalent functions in U, when the following inequality is satis�ed

|λ| ≤ 3
√

3

2

(
12v + 15

12v + 19

)
.

In particular, at v = 1
2
, the function Zv,λ(z) : U → C, de�ned by (4.8) , takes

the form

Z1/2,λ(z) =

λ z∫
0

tλ−1
(
e2(cosh

√
t−1)

)λ
dt

1/λ

,

belongs to the class S when |λ| ≤ 63
√
3

50
.

References

[1] Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions (Dover, New York,
1972).

[2] Arif, M. and Raza, M. Some properties of an integral operator de�ned by Bessel functions,
Acta Universitatis Apulensis 26, 69�74, 2011.

[3] Baricz, A., Dimitrov, D.K., Orhan, H. and Yagmur, N. Radii of starlikeness of some special
functions, Proc. Amer. Math. Soc. 144(8) 3355�3367, 2016.

[4] Baricz, A. and Frasin, B.A. Univalence of integral operators involving Bessel functions,
Appl. Math. Lett., 23, 371�276, 2010.

[5] Breaz, D. Univalence properties for a general integral operator, Bull. Korean Math. Soc,
46(3), 439�446, 2009.

[6] Breaz, D., Breaz, N. and Srivastava, H. M. An extension of the univalent condition for a

family of integral operators, Appl. Math. Lett. 22, 41�44, 2009.



833

[7] Breaz, D. and Güney, H.O. On the univalence criterion of a general integral operator, J.
Inequal. Appl. Volume 2008, Article ID 702715, 8 pages, doi:10.1155/2008/702715.

[8] Breaz, D., Owa, S. and Breaz, N. A new integral univalent operator, Acta Univ. Apulensis
Math. Inform., 16, 11�16, 2008.

[9] Bulut, S. Univalence preserving integral operators de�ned by generalized Al-Oboudi di�er-

ential operators, An. St. Univ. Ovidius Constata 17, 37�50, 2009.
[10] Deniz, E. Convexity of integral operators involving generalized Bessel functions, Integral

Transforms Spec. Funct. 24(3), 201�216, 2013.
[11] Deniz, E. On the univalence of two general integral operators, Filomat, 29(7), 1581�1586,

2015.
[12] Deniz, E. Univalence criteria for a general integral operator, Filomat 28(1), 11�19, 2014.
[13] Deniz, E. and Orhan, H. Loewner chains and univalence criteria related with Ruscheweyh

and Slgean derivatives, J. Appl. Anal. Comput. 5(3), 465�478, 2015.
[14] Deniz, E. and Orhan, H. Some notes on extensions of basic univalence criteria, J. Korean

Math. Soc. 48(1), 179�189, 2011.
[15] Deniz, E. and Orhan, H. Univalence criterion for meromorphic functions and Loewner

chains, Appl. Math. Comput. 218(6), 751�755, 2011.
[16] Deniz, E., Orhan, H. and Srivastava, H.M. Some su�cient conditions for univalence of

certain families of integral operators involving generalized Bessel functions, Taiwanese J.
Math. 15(2), 883�917, 2011.

[17] Frasin, B.A. Some su�cient conditions for certain integral operators, J. Math. Ineq. 2(4),
527�535, 2008.

[18] Frasin, B.A. Su�cient conditions for integral operator de�ned by Bessel functions, J. Math.
Ineq. 4(2), 301�306, 2010.

[19] Frasin, B.A. Univalence criteria for general integral operator, Math. Commun. 16, 115�124,
2011.

[20] Kanas, S. and Srivastava, H.M. Some criteria for univalence related to Ruscheweyh and

Salagean derivatives, Complex Variables Theory Appl. 38, 263�275, 1999.
[21] Kiryakova, V.S., Saigo, M., and Srivastava, H.M. Some criteria for univalence of analytic

functions involving generalized fractional calculus operators, Fract. Calc. Appl. Anal. 1 ,
79�102, 1998.

[22] Nehari, Z. Conformal Mapping, (McGraw-Hill, 1952).
[23] Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (eds.) NIST Handbook of

Mathematical Functions (Cambridge University Press, Cambridge, 2010).
[24] Orhan, H. and Yagmur, N. Geometric properties of generalized struve functions, An. Stiinµ.

Univ. Al. I. Cuza Iasi. Mat. (N.S.), doi:10.2478/aicu-2014-0007.
[25] Pescar, V. Univalence of certain integral operators, Acta Univ. Apulensis Math. Inform.,

12, 43�48, 2006.
[26] Pescar, V. A new generalization of Ahlfors and Beckers criterion of univalence, Bull.

Malaysian Math. Soc., 19, 53�54, 1996.
[27] Pescar, V. On the univalence of an integral operator, Appl. Math. Lett. 23(5), 615�619,

2010.
[28] Pescar, V. and Breaz, D. On an integral operator, Appl. Math. Lett. 23(5), 625�629, 2010.
[29] Pascu, N.N. An improvement of Beckers univalence criterion, in: Proceedings of the Com-

memorative Session: Simion Stoilow (Brasov), 43�48, 1987.
[30] Raza, M. and Ya§mur, N. Some properties of a class of analytic functions de�ned bygener-

alized Struve functions. Turkish Journal of Mathematics, 39(6), 931�944, 2015.
[31] Struve, H. Beitrag zur Theorie der Di�raction an Fernrö hren, Annalen der Physik und

Chemie, 17(13), 1008�1016, 1882.
[32] Yagmur, N. and Orhan, H. Starlikeness and convexity of generalized Struve functions, Abstr.

Appl. Anal., Volume 2013, Article ID: 954513, 6 pages, doi:10.1155/2013/954513.
[33] Zhang, S. and Jin, J. Computation of Special Functions, (Wiley, New york, 1996).


