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Univalence of certain integral operators involving
generalized Struve functions
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Abstract

In this paper, we are mainly interested to find sufficient conditions for
some integral operators defined by generalized Struve functions. These
operators are normalized and as well as univalent in the open unit disc
U. Some special cases of Struve functions and modified Struve functions
are also a part of our investigations.
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1. Introduction and preliminaries

Let A be the class of functions of the form
(1.1)  f(2) :z+2anz”,
n=2

analytic in the open unit disc U = {z: |z| < 1} and 8 denotes the class of all functions
in A which are univalent in U.
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The Struve functions H, and L, appeared as special solutions of the second order
inhomogeneous differential equations of the form

4(32)""

VAl (v+3)’
4(L2)"

_\27

VAT (v+3)’

known as inhomogeneous Bessel differential equations. Both equations (1.2) and (1.3)
are similar and can be converted into each other by changing z into ¢z. In the solution
of equation (1.2), a function appeared in an article by Struve [31], was later ascribed
Struve’s name and the special notation H,. It is defined as

(1.2)  22w”(2) + zw(z) + (2° = v*)w(z) =

(1.3)  2°w”(2) 4 2w(z) — (2> — vH)w(z) =

LSyt
(1.4) H”(Z)iy;l“(n—kg)l“(n—kv%-%).

The modified Struve functions L, of order v was introduced by J. W. Nicholson in 1911. It
is defined as

[e%) (£)2n+v+l
1.5 LU = —1 _ilev ) - 2 ’
(1.5) (2) = —ie ™% H,(iz) ;F T

where I'(z) is the gamma function. Applications of Struve functions occur in water-wave
and surface-wave problems, unsteady aerodynamics, resistive MHD instability theory
and optical diffraction. More recently, Struve functions have appeared in many particle
quantum dynamical studies of spin decoherence and nanotubes. For some details see
[1, 23].

Now consider the second order inhomogeneous differential equation

1(3)™"
VAl (v+ %)’
where b, ¢, v € C. The equation (1.6) generalizes the equation (1.2) and (1.3). In

particular for b = 1, ¢ = 1, we obtain (1.2). For b =1, ¢ = —1 we get (1.3). Its
particular solution has the series form

(1.6)  22w"(2) + bzw'(2) + [cz2 — 4+ (11— bv] w(z) =

)n " (%Z)2n+v+1

(1.7) wo (2 Z F(n+v+ b+2)

It is known as generahzed Struve functions of order v. Counsider the transformation

Unpe(2) = ZU\fF(’UﬂL (b+2)/2)»2(7”71)/2%,5@(\/5)

where k =v+ (b+2)/2#0,—1,—-2,-3,...and

() :F(7+n):{1a TLIO,’YG(C\{O},
Tn I'(v) Y(y+1)...(y+n—-1), neN, yeC.

The function u, b, is analytic in U and is the solution of the differential equation
(1.9)  42%u" (2) +22u+b+3) 2t (2) + (cz + 2v + b)u (2) = 20+ b.

The function 4y, is introduced and studied by Orhan and Yagmur [24] and further
investigated in [3, 30, 32].
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Recently, many mathematicians have set the univalence criteria of several those inte-
gral operators which preserve the class 8. By using a variety of different analytic tech-
niques, operators and special functions, several authors have studied univalence criterion,
a few of them are as mentioned below.

Kanas and Srivastava [20], and Deniz and Orhan [13, 14| studied univalence criteria
for analytic functions defined in U by using the Loewner chains method. Kiryakova, Saigo
and Srivastava [21] obtained some univalence criteria for certain generalized fractional
integral and derivatives, accompanying all the linear integro-differential operators. In
2010 Baricz and Frasin [4] studied some integral operators involving Bessel functions.
These integral operators were defined by using the normalized Bessel functions of the
first kind. Frasin [18] and Arif and Raza [2] studied the convexity and strongly convexity
of the integral operators defined in [4]. Recently Deniz et al. [16] and Deniz [10] studied
the integral operator defined by generalized Bessel functions of order v. For further
details of these univalence criterion, we refer the readers to [4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28]. Motivated by the work of these above authors,
we contribute to this univalence theory by studying the univalence of integral operators
involving generalized Struve functions. These operators are defined as follows:

1
B

z n 1

1.10) Wa, . o - T Boibe(2) ) 7 4

(110) Was,.oa(2) = |6 [ U( t ,
0 =

1
ny+1

(1) %os(e) = |+ 1) [ [[Hunsc} de|

and
z /X
A
(1.12)  2a(2) = )\/t)\fl (euvi,b,dz)) dt
0

In order to derive our main results, we need the following lemmas.

1.1. Lemma. [26] Let 5 and d be complex numbers such that Re () > 0 and |d| < 1,
where d # —1. If the function f € A satisfies the following inequality

28 128 zf"(z) <
'd\z| +(1 2| )ﬁf'(z) <1 (zel),
then the function Fg defined by
z 1/B

(113) ) = (8 [ e |

0

is in class 8 of normalized univalent functions in U.
1.2. Lemma. [29] If f € A satisfies the following inequality
1— |Z|2Re(a) zf”(z)
Re (@) f'(2)

for all B € C such that Re(B) > Re (), then the function F3 defined by (1.13) s in the
class 8§ of normalized univalent functions in U.

<1 (Re (o) > 0),
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1.3. Lemma. [25] Let the parameter A € C and 0 € R be so constrained that Re (\) >
1, 0 > 1 and 20|\ < 3v/3. If the function q € A satisfies the following inequality

12q (2)| <0,
then the function Qx : W — C defined by
. /A
A
0, (2) = A/tH () at)
0

is in the class 8 of normalized univalent functions in U.

1.4. Lemma. [22](Schwarz lemma) Let f (z) be the function reqular in the open unit
disk W with |f (2)] < M, M s fized. If f (z) has one zero with multiplicity order greater
than m for z = 0, then

@19 17 () < M2

the equality can hold only if f (z) = e

(zeW),

0 Mz"

> where 0 is constant.

2. Inequalities involving in our Main Results

2.1. Lemma. [24] Ifb,v € R, and c € C, k = v+ %2 are so constrained that

7le|
k b}
>max{ Y }7

then the function uyp,.c : W — C defined by (1.8) satisfies the following inequalities:

. Uy,b,c(2) 2

L. u;,b,c(z) - szy < 3(4kli‘|e\) (zel),
.. Uy YC(z) 6k—2

. = > Gkil‘f" (zeW,

| zu o (2) lel(6k—]c])

W @ 1’ < s@-renerey (€W,

; 2k
1. |zuﬁ,,b,c(z) < fmvilri‘ (zel).

Proof. For the proof of the first three inequalities, see [24]. In order to prove the assertion
(iv) of Lemma 2.1, we will use the well-known triangle inequality and the following
inequalities

(62, > T (e,
(k), = k" (neN)
Now, consider that
/ o~ (=0 (n+ 1"
ZUy p.e(2 = |z+
ol T; (3/2)n4n (k)
o~ e (n+1)
<
= 1*;(3/2)714%"
< 14 lds (T
- 3k = \4



3. Univalence of Integral Operators Involving the Generalized
Struve Functions

The inequalities established in Lemma 2.1, will be used to find the sufficient conditions
for univalence of the integral operators defined in (1.10) when the functions w., s c(z)
(:=1,2,...,n) belong to the class A and the parameters a; € C/ {0} (i =1,2,...,n) and
B € C are so constrained that the integral operator in (1.10) is well defined.

3.1. Theorem. Let vi,...,vn, bER, c€ C and k; > 7|C‘

1,...,n. Let uy; p,c : W — C be defined as

with ki = v, + (b+2) /2, i =

(=1-vy)

uvi,b,c( ) 2vi fF (Uz b * 2) z 2 wvi,b,c(\/g)-

Suppose k = min{ki,k2,...,kn}, Re(8) > 0,c € C/{-1} and o; € C/{0} (i =
1,2,...,n) and these numbers satisfy the relation

|c| 6k
1+ 3 - c| wa =

then the function Wy, ... v, .bear,...an.8 : W — C defined by (1.10) is in the class 8 of
normalized univalent functions in U.

Proof. By setting 8 =1 in (1.10) so that

z . 1
Uy, t ag
W'ul,..4,'un,b,c,a1,.4.,cxn,1(z) = /H <%C()) dt.
o =1

First of all, we observe that, since uy, p.c(2) €A (1 =1,2,...,n),
U, b,c(0) = ui}i,b,C(O) -1=0,
therefore, we observe that Wy, . v b.c,aq,...,an,1(2) € A, that is,

/
WU1,.u,vn,b,c,al,m,an,l(o) = Wv1 Un,b,c,al,...,an,l(o) —1=0.

.....

n i
(31) qul,..4,’un,b,c,a1,.4.,an,1(z) = H <w> '

From (3.1), we obtain

2

Zwvl,m,vn,b,c,al,4.4,an,1(z) _ ii (zu{ui,b,c(z) _ 1)
w, an1(2) @ \ U be(2) '

V1,..0,Un,b,c 001 ...

By using the assertion (iii) of Lemma 2.1, for each v; (i =1,2,...,n), we obtain

Zw'ul,..4,vn,b,c,o¢1,.4.,an,1(z) < 1 Zuv bc(z) _ 1‘
qul ..... Un,b,Ca1 .y an 1( ) i=1 ‘Cl1| Uv;,b, C( )
|c] (6k: — |c])
<
- Z \oz1| 3 (4k; — |c]) (Bki —|¢])

(zeu; ko ki = z+bi2>@ (i:1,2,...,n)>.
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Now as it is shown that the function

(7l
T: <ﬂ7oo> — R,

defined by
|| (6k — |cl)
3 (4k — |cl) 3k — [e])’
is decreasing function. Therefore
|| (6k: — |c]) < lel(6k—]e)
3(4k; — |c]) Bki — |c]) — 3(4k —|c]) (3k —|¢|)

(k) =

Hence

"

W el (6k —lc) = 1

= 3(dk —[c]) Bk — e]) & Jau|

vl,m,vn,b,c,al,m,an,l(z)

g (
z
V1,yeeeyUn,biciay,..,ap, 1 )

Now using the Lemma 1.1 and the triangle inequality, we get

W z

d|Z|2ﬁ + (1 _ |Z|2,6> 1,)1 ,,,,, Un,b,ca1 ., an,l( )

Bwvl,.u,vn,b,c,al,m,an,l(z)

n
< il 4 A6 — ) Lo
3 (4k — |c]) (3k — |c|) & |Bavi
This implies that Wy, ... v ,6.c,a1,...,an,8 € S, which completes the proof of Theorem
3.1. O
By setting a1 = a2 = ... = an = a in Theorem 3.1 we will obtain the result given
below

3.2. Corollary. Letvi,...vn,b € R andc € C and k; > % with ks = vi+(b+2) /2, i =
1,...,n. Let Uy, p,c : W — C be defined as

) (=1-vy)
Uvi,b,c(z) =2" \/EF (Ui + HTQ) z 2 wvi,b,c(\/g)'

Suppose k = min {k1,k2,...,kn}, Re(8) > 0 and o € C\ {0} (i = 1,2,...,n) and these
numbers satisfy the relation

nolel6k—le)  _,
|Bal 3 (4k — |cf) Bk —[cf) =
then the function Wy, ... v, .b.ear,....an.8 : W — C defined by (1.10) is in the class 8 of
normalized univalent functions in U.

|d| +

Our second main result, to find the sufficient univalence conditions for an integral
operator of type (1.11). The key tools in the proof are Lemma 1.2 and the inequality
(#i7) of Lemma 2.1.

3.3. Theorem. Letwvi,...,vn,b € R andc € C andk; > % with k; = vi+(b+2) /2, i =
1,...,n. Let uy; p,c : U — C be defined as
) (=1-v;)
U, be(2) = 2" /7T (vi + HT2) 2T W e(V7).
Suppose k = min {k1, ka,...,kn} and Re(y) > 0 and these numbers satisfy the relation
n |y |e| (6k — |c]) 1
Re (v) 3 (4k — [e]) 3k — [c]) =
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then the function Xo, ... .0, b,en,y : U — C defined by (1.11) 4s in the class 8 of normalized
univalent functions in U.

Proof. Consider the function DNCvl,.,‘,vmb,C,n,a,(z) : U — C defined by

z

n ¥
~ U, b,e(t
Xog,eovn biein,y (2) :/H (bf()) dt.
o i=1

We observe that Xy, ... v, .b,e,n,7(2) € A, that is

~ ~/!
Xy vm bemy(0) = Xy on bieyn,y (0) =1 =0.
By using the assertion (iii) of Lemma 2.1 and the fact that

|| (6ki — |¢]) < lel(6k — )
3 (4ks — |cf) (Bks — [cl) = 3 (4k — |c]) (3k — [c])”

we have
~ 1
Cﬂmv%wWM@<l7n%M@4
Re ~! ~— Re ‘ Uy b.e(2
DT R vina(@) | ()

n|yl e e e
< RB(V)IC\(Gk lc])3 (4k — |c]) (3k — |e]) < 1.

Now, since Re (ny + 1) > Re () and the function can be written in the form of

1
n (nv+1)

/ n Uy, b,e(l v
xvl,“.vn,b,c,n,'y = (n'}/ + 1)/t g H (%()> dt
0

=1

From Lemma 1.2 implies that Xy, ,...v, b,c,n,y € 8, Which completes the proof of Theorem
3.3. O

By setting n = 1 in Theorem 3.3, we get the following result.

3.4. Corollary. Let v,b € R and ¢ € C and k > % with k = v + (b+2) /2, Let
Uy,p,c : U — C be defined as

(Z1=v)

b+2
) =2V (04 52 ) T (D)

Suppose Re () > 0 and these numbers satisfy the relation

o] || (6K — |c]) 1
Re (v) 3 (4k —|c]) Bk —|ef) =

then the function Xy p.c~ @ U — C defined by

1
1
2 v+

xwewmﬂmmw ,

0

s in the class 8 of normalized univalent functions in U.

Next, by applying the Lemma 1.4 and the inequality (iv) of Lemma 2.1, we get the
following result.
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3.5. Theorem. Let q(t) € A, X\ be a complex number such that Re()\) > 1, M be a real
number and M > 1, here M = 4k+\c| If

| 12k + |¢| Lel

(3.2) }zumb&(z) m,
and

3v3 [(12k — 3|
. < — | —
(3-3) A< 2 ( 12k + || )’

then the function (1.12) is in the class S.

Proof. Let us consider the function

z

(3.4) f(z):/(e“”f”-r“(z))kdz,

0

which is regular in U. Consider the function

1 2f" (2)
35)  h(z)= ~— ,
G2 O =R
where the constant |A| satisfies the inequality (3.3). From (3.4) and (3.5), it follows that
66 ()= fiethnel:)

With the help of (3.2), (3.6) becomes

12k + |c|

_ for all .
12k 3] orall zelU

@7 [h(z)] <

From (3.6), we obtain h (0) = 0 and by using the Schwarz-Lemma we have

1 |2f" (2) 12k + |c|
(38 WFe | = ks
a2 2f" (2) 12k + |c| 21 (1 — |22
(39) (=11 | LE) < () - ).

Consider the function H : [0,1] — R, H(z) = 2(1 — 2?) where 2 = |2|.
We have

2

3.10) H(z) < ——,
1) HE@ <2
for all z € [0,1]. From (3.3) and (3.10), (3.9) becomes

1

(1— o) |2 <y,

(2)
Hence from Lemma 1.2, it is clear that for Re(A) = 1 the integral operator (1.12) is in
8. O

Now, we discuss some special cases on the behalf of the above mentioned theorems.
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4. Some Special Cases of Struve Functions and Modified Struve
Functions

Struve Functions
We obtain the Struve function of first kind of order v, denoted by H,(z), defined by
(1.4) by setting b =c=11n (1.8). Let H, : U — C be defined as

30, (2) = 2" fr( b;?)z#mm

‘We observe that

Hoap(z) = vEsin(vE),
Hije(z) = 2(1—cosvz),

Gora(z) = 4<1+§)_8(sin\(f;/5)+cos\(f;/5)).

By making use of these particular values, we have the following assertions.

(4.1)

(4.2)

(1) Let v1,va,...,vn > —1.75 (n € N). Consider the function H,,(z) : U — C defined

3

by
(—1—v;)
() = 2 VAT (4 3 ) 2T HL(VR),

let v = min {v1, v, ...,v,} and let the parameters d, 5, ; (1 =1,2,...,n) be de-

fined as in Theorem 3.1. Now consider the function Wy, ... v, a1,...,0n,8(2) : U —
C, defined by

z n 1
_ Ho; (2) | @
War, o (2) = |8 / t’ H(¥) dt
0 1=1

This function is in class 8§, when the following inequality is satisfied.

1

4(3v+4)
d
| |+ 3 (24v? + 58v + 35) Z|[3m| -

In particular, we have the followings.
At v = 3!, the function W, o 5(2) : U — C, defined by (4.2), reduces to

2 ) 1 5
0

belongs to the class § when |d| 4+ 3 \6a\ <1.
At v =1, the function Wy o,5(2) : U — C, defined by (4.2), takes the form

2 1 1%
2 (1 —cosvt *
Wi/2,0,8(2) = 5/#3_1 ((;%\[)) dt|

0
belongs to the class 8 when |d| 4 o= \Bal <1
At v = 2, the function W, o,5(2) : U — C, defined by (4.2), implies to

oo (Sin(ﬁ) + Cos(ﬁ)) i dt %

51 Vit Vit
Wd/Q,a,ﬁ - B/t ¢ y




(4.4)

belongs to the class § when |d| 4+ 5 \Bal <1.

Let v1,v2,...,0n > —1.75 (n € N) . Consider the function H,, (z) : U — C defined
by (4.1). Let v = min{v1,v2,...,vn} and the parameters v be defined as in
Theorem 3.3. The function Xy, vs,...,vn,n,v(2) : U = C, defined by

.....

1
1
. AT

Yo prmimy(2) = | (7 + 1) / [[owEy e
0

=1
belongs to the class 8 when the following inequality holds.
n|y| 4(3v+4)
R (v) 3(24v% 4+ 58v +35) —

In particular, we have the followings.
At v = =2}, the function Xy n(2) : U — C, defined by (4.3), reduces to

X_1/2,m,4(2) = |(ny+1) /z {\/Esin (\/i) }7 dt ,
0

nl\

<1

belongs to the class § when =<
U — C, defined by (4.3), takes the form

Re(v) 1
At v = %, the function Xy n ~(2) :

n'y+1

Xij2,ny(2) = [(ny+1) /Z {2 (1 — cos \/i) }7 dt ,

belongs to the class § when ;J(WJ) % <1

At v = 2, the function Xy n(2) : U — C, defined by (4.3), implies to

1
nyF1

Xsj2,ny(2) = |(ny +1) / {4 (1 + %) _38 (Sin\(ff) n Cos\(/;/i) ) } 0

belongs to the class 8§ when ;‘J&‘) % <1

Let vi,v2,...,vn, > —1.75 (n € N). Consider the function H,,(z) : U — C as
defined by (4.1) . Let v = min {v1, v2, ..., vn } and the parameters A\ be defined as
in Theorem 3.5. Let us define a function Zy, v,,...,v.,x (2) : U = C by

1/A

This function lies from the class §, when the following inequality is satisfied.

o (1),

Al < —
A< 12v + 19

2

In particular, we have the followings.
At v = =, the function 2, x(z) : U — C, defined by (4.4), reduces to

. /2

. A
2= |pfe () ]

0



belongs to the class 8 when || < %.
At v = 3, the function Z,x(2) : U — C, defined by (4.4), takes the form
. 1/A
A
Ziaae) = [A [0 (000) |
0
belongs to the class 8 when |\| < GSI.
At v = 2, the function 2, (2) : U — C, defined by (4.4), implies to

1/
%)_s(sin(\ﬁ)+cos(ﬁ)> A
Far2a(2) = A/M e at|
belongs to the class 8 when || < 99774\/5_

Modified Struve Functions
We obtain the modified struve function of first kind of order v, denoted by L,(z),
defined by (1.5), by putting b = —c = 1 in (1.8) . Define a function £,(z) : U — C by

Lo(z) = 2" /AT (v + %) AL V7).

‘We observe that
L1/2(2) =2 (coshv/z — 1).

By making use of this particular value, we have the following assertions.

(1) Let v1,v,...,v, > —1.75 (n € N). Consider the function £,(z) : U — C defined
by

(45)  Lu,(s) = 2°VaT ( n §) 2L (V2)

2

Let v = min {v1,vg, ..., v, } and the parameters d, 8, «; (i = 1,2, ...,n) be defined
as in Theorem 3.1. Consider the function W, ... v, a1,....an,8(2) : U — C, defined
by

z n 1 B
_ Loy, (2) @i
(4.6)  Woi . vniarsan.s(2) = 5/#3 11 (%) dt
0 i=1

This function is in class 8, when the following inequality is satisfied.

4(3v+4)
d
| |+ 3 (24v2 + 58v + 35) Z|5041| -

In particular, at v = 3, the function Wy, (2) : U — C, defined by (4.6),

reduces to
L 1
[ 2 (cosh vt — 1) @ 5
0
belongs to the class 8 when |d| + ﬁ‘ o S L



(2) Let v1,v2,...,vn, > —1.75 (n € N), v = min {v1, v2, ..., v, } and the parameters v
be defined as in Theorem 3.3. Consider the function Xy, vs.....v,,n,v(2) : W = C,
defined by
> n'yl+1
(4.7) Xoyvaevniny (2) = | (ny +1) / H {Lv, (2)}7 dt )
o i=1
where L., (z) is defined by (4.5). This function X, v,
when the following inequality holds.
n |yl 4(3v+4)
Re () 3(24v% +58v +35) —

In particular, at v = 3, the function Xy n~(2) : U — C, defined by (4.7) , implies
to

v,y (2) 18 in class 8,

,,,,,

_1__
ny+1

Xij2ny(2) = [(ny+1) j {2 (cosh\/{f — 1)}7dt ,

nlyl 11 1
Re(~v) 105 —

(3) Let v1,v2,...,vp > —1.75 (n € N), v = min{v1, v2, ..., vn } and the parameters A
be defined as in Theorem(3.5). Consider the function Zy, v,,...,v..x (2) : U — C
defined by

belongs to the class § when

. 1/x
A
(4.8) Zoy wo,eomor (2) = )\/tk_l (eL”i) dt ,
0

where L., (z) is defined by (4.5). This function Zy, u,,...,vn,x (2) is in class 8 of
normalized univalent functions in U, when the following inequality is satisfied

12 1
A< 3v3 (120415
2 12v 4+ 19

In particular, at v = %, the function 2, (z) : U — C, defined by (4.8), takes
the form

z 1/

A

L jon(2) = )\/tkfl (eg(cosh ﬁq)) at|

0

633

50 °

belongs to the class 8 when || <
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