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Abstract 

In the present paper, a new nonlocal formulation for vibration derived for nano beam lying on elastic matrix. 
The formulation is based on the cubic shape polynomial functions via finite element method. The size effect on 
finite element matrix is investigated using nonlocal elasticity theory. Finite element formulations and matrix 
coefficients have been obtained for nano beams. Size-dependent stiffness and mass matrix are derived for Euler-
Bernoulli beams.  

Keywords: Size-depended vibration, cubic shape functions, Nonlocal elasticity, Euler-Bernoulli beam, new 
mass and stiffness matrix.  

 

1. Introduction 

It is known that the nanotechnology has enabled the opening of a new era in many areas in 
nano optics, microcomputers and micro devices, chemical, medicine, engineering, electronics. 
For keep up with technology fast, the correct solution method which considers the size effect 
is the most important factor. Experimental research is very difficult and expensive. Some 
methods such as Hybrid atomistic–continuum mechanics and related to the atomic modeling; 
molecular dynamics [1-3], tight-binding molecular dynamics, the density functional theory 
take into account the size effect. Therefore, various theories have been developed that gives 
importance to effects of small scale such as strain gradient theory [4,5], modified couple 
stress theory [6-9], couple stress elasticity theory [10-13], nonlocal elasticity theory [14-15]. 
Nonlocal elasticity theory of Eringen is the most widely used among them. According to the 
nonlocal elasticity theory of Eringen [14-15],  the stress at any reference point is effecting the 
whole body which not depends only on the strains at this point but also on strains at all points 
of the body. This definition of the Eringen’s nonlocal elasticity is based on the atomic theory 
of lattice dynamics, and some experimental observations on phonon dispersion. Nonlocal 
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theory considers long-range interatomic interaction and yields to results dependent on the size 
of a body [14-16]. Applying first the nonlocal elasticity theories to nanotechnology is by 
Peddieson et al. [17] and Sudak [18]. Nanostructures with nonlocal elasticity theory have been 
studied for different type ( numerical and analytical) solution with contributions continuum 
mechanics by finite element method [19-25], by finite difference method [26-27] by 
differential transform method [28-30], by differential quadrature method [31-34], and by 
analytical solution [35-43].  

 

2.  Size dependent formulation 

The main equations for a homogenous and isotropic elastic continuum body can be stated as 
[14,15,16]:  
 
 

,0, =jijσ       (1) 
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where ijσ is the nonlocal stress tensor, ρ is the mass density of the body, u is the displacement 
vector at a reference point x in the body, )(xCijkl ʹ is the classical (Cauchy) or local stress 
tensor at any point xʹ in the body, )(xεij ʹ is the linear strain tensor at point xʹ  in the body, t is 

denoted as time, V is the volume occupied by the elastic body, xxα ʹ−  is the distance in 

Euclidean form, λ and µ are the Lame constants. xxα ʹ−  is the nonlocal kernel which defines 
the impact of strain at point xʹ  on the stress at point x in body. The nonlocal constitutive 
formulation is 
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The displacement components based on the Euler-Bernoulli beam theory may be written as 
[36-37]:  
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where ‘w ‘ is the transverse displacement. The strain-displacement equations for Euler-
Bernoulli beam is given by 
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Consider the stress-strain relation for Euler-Bernoulli beam is given by 

),(2
2
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According to Eq. (4), the nonlocal stress-strain equations for beam can be written as [36-37] 
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The generalized Hamilton’s principle has the form 
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The strain and kinetic energies of the classic Euler-Bernoulli beam are equal to 
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The work done by the axial compressive force, Winkler foundation modulus   ( wk )	 and	

Pasternak foundation modulus ( gk ) can be expressed as 

 

( ) ( )∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛
∂
∂

−=
L

wg dxwk
x
wkPW

0

2
2

2
1         (12) 

Substitution of Eqs.(10)-(11) into Eq.(9), acquired 
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When Eq.(13) under the double integral equal to zero under the double integral, differential 
equations of motion, 
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The nonlocal moment resultants for beam can be obtained via (8a) as 
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Substitution of Eq.(14) in to Eq. (15) leads to 
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Finally, by substituting Eq.(16) into Eq.(13), we obtained governing equations for nonlocal  
Euler-Bernoulli beam [21,22,28,34] 
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The Euler-Bernoulli beam element is a beam with four degrees of freedom (DOF) and has two 
end nodes: 1 and 2. The node displacement vector 
 

[ ]2211 θθ wwwe =      (18) 

By multiplying shape function (φ  ) and discretized displacements at nodes ([ ]netw )( ) of an 
element we obtain the displacement of element ( etxw ),( ) 
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To solve the equations the ‘Hermitian cubic shape functions’ are used. Dimensionless natural 
coordinate can be stated as below 

12
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L
x

ξ       (20) 

where L is the element length. By using the shape functions (Eq.(21)) and dimensionless 
natural coordinates (Eq.(20)) , the stiffness matrix becomes (ignoring the axial load) 
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Similarly 
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Also, the mass matrix can be given as 
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Finally, the vibration of Euler-Bernoulli beam can be expressed as 
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0det 2 =− MK ω       (23)  

  

3. Results 

As numerical results, non-dimensional frequency values of boron nitride nanotube with 
clamped supports at both have been obtained and results listed in Table 1. The results 
obtained by discrete singular convolution are also given in this table. It is shown that, the 
frequency values are increased with the increasing value of nonlocal parameter. 

 

Table 1. Dimensionless Frequency values of C-C boron nitride nanotube 

e0a/L 
  Foundation parameters (Kw=10, Kg=50) 
ω1 ω2 ω3 
FEM DSC FEM DSC FEM DSC 

0.0 33.3266 33.3485 78.0638 78.0873 139.862 139.8836 
0.1 34.9378 34.9403 74.1135 74.1205 116.255 116.2673 
0.2 37.7969 37.8041 69.3394 69.3593 99.5596 99.5701 
0.3 40.0275 40.0359 66.8639 66.8704 93.7733 93.7937 
0.4 41.4571 41.4691 65.6397 65.6491 91.529 91.5383 
0.5 42.3505 42.3712 64.9805 64.9907 90.5076 90.5214 

 

4. Concluding remarks 

Experimental studies have shown that the mechanical behaviors of nano-scaled systems are 
completely different from structures having conventional dimensions (centimeters, meter 
dimensions). Experimental study on nanostructures and nanostructures is both costly and time 
consuming. For this reason, by using higher-order elasticity theories, the results have been 
theoretically tried to be obtained closer and many higher order theories taking the size effect 
into account have been emerged. In this paper, nonlocal elasticity theory was used to 
investigate the dimensional effect for nano beams. Using the nonlocal elasticity theory, 
equation of free vibration of beams on elastic matrix has been obtained. Obtained differential 
equation is solved using the finite element methods. 
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