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Abstract 

The slab albedo problem is solved by using HN method. The albedo, transmission coefficient 

and angular flux are calculated for the isotropic scattering. The behavior of these parameters 

according to the changing of slab thickness is obtained. The angular flux distributions are good 

agreement with literature. It was shown that HN method leads to concise equations and to fast 

converging numerical results. 
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1. INTRODUCTION 

 

Neutrons are able to escape through the boundaries while slowing down or when thermalized because of 

the finite dimension of a reactor core [1]. Thus, for any realistic reactor analysis, neutron transport or 

diffusion theory is used with spatial extent and neutron transport can be considered in a slab. 

 

The slab albedo problem consists of a finite plane-parallel medium surrounded by vacuum on both sides. 

The neutrons incident on the left side and on the other side there is no neutron entrance. This problem 

requires the solution of one speed neutron transport equation in plane geometry. One speed neutron 

transport equation in a homogeneous medium for isotropic scattering is given by [2-5] 
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Here   is the direction cosine, x  is the distance in terms of mean free path, c  is number of secondary 

neutrons per collisions,  , x   is the angular distribution of neutrons and S  is the source term.  

 

If monodirectional neutrons enter the left surface of a slab and scatter isotropically without energy loss, 

the flux at the boundary x=0 can be written as 

 

 0, 1 , 0                                                                                                                                     (2a) 

 

and if there is no neutron entrance at the boundary x  , we can write the boundary condition as 
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 , 0 , 0                                                                                                                                   (2b) 

 

The general solution of Eq. (1) is [3] 
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where 0  are the two discrete eigenvalues with eigenfunctions  0,    and   are the continuum 

eigenvalues on the range [-1,+1] with eigenfunctions  ,   . They are the elementary solutions of 

Case’s method [2].   0A   and  A   represent the expansion coefficients. Eigenfunctions are given 

by 
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The orthogonality relations of these eigenfunctions are 
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and where 
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2. SLAB ALBEDO PROBLEM WITH HN METHOD 

 

To apply the HN method to the slab albedo problem, firstly, the unknown coefficients  A   and 

  0, A     or  0,1    in Eq. (3) are calculated [6-7]. To do this, we consider the exit 

distributions at the boundaries of the slab. For a slab thickness  0 x  , the exit distributions for 

0 can be written from Eq.(3) as 
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We multiply both sides of Eq. (7a) and Eq. (7b) with  0,    and integrate over  , 1, 1    . 

Using the orthogonality relations for the discrete and continuum modes, the boundary conditions in Eqs. 

(2a–2b), the exit distributions for 0 are given by [5-6] 
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we obtain the unknown coefficients as  
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Here, 


a  and 


b  are the expansion coefficients,  2 1


P is the Legendre polynomials and 
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and 
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Now, multiplying the exit distribution  0,   in Eq.(7a) by 
1m , integrating over  0,1 , using 

boundary conditions Eqs.(2a, 2b, 8a, 8b) and the coefficients in Eqs.(9a –9b), we obtain 
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Similarly using the exit distribution  ,    in Eq. (7b) and multiplying by
1m , integrating over

 0,1 , we get 
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Finally, the two equations to be solved are 
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3. NUMERICAL RESULTS 

 

The expansion coefficients 


a  and 


b can be obtained from Eqs. (14a-14b) and then we can compute the 

albedo [3,8] 
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which is the ratio of the current of neutrons emerging from the medium to the incident current at the 

boundary 0x . The transmission factor is similarly at the boundary  x  
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In addition, the angular flux values can be obtained from Eqs. (8a-8b). 
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Table 1. Albedo values for S=0 

 c 0.1  c 0.3  c 0.5  c 0.7  c 0.9  

0.0 2.0394x10-7 7.0518x10-12 -2.6124x10-9 4.7578x10-9 -4.0589x10-11 

0.5 0.017771 0.058389 0.107676 0.168948 0.247494 

1.0 0.020748* 0.070073* 0.134165* 0.222070* 0.352712* 

1.5 0.021444 0.073159 0.142361 0.242390 0.407139 

2.0 0.021626 0.074052 0.145085 0.250616 0.437147 

2.5 0.021676 0.074324 0.146025 0.254036 0.454206 

3.0 0.021691 0.074410 0.146357 0.255479 0.464064 

3.5 0.021696 0.074438 0.146476 0.256093 0.469814 

4.0 0.021697 0.074447 0.146519 0.256357 0.473186 

4.5 0.021697 0.07445 0.146535 0.256471 0.475169 

5.0 0.021698 0.074451 0.146541 0.256519 0.476339 

* Siewert, 1978 [3] 

 

Table 2. Transmission factor values for S=0 

 c 0.1  c 0.3  c 0.5  c 0.7  c 0.9  

0.0 1.000000 1.000000 1.000000 1.000000 1.000000 

0.5 0.458010 0.492387 0.534993 0.589094 0.659920 

1.0 0.231854* 0.263095* 0.306709* 0.371195* 0.474746* 

1.5 0.122115 0.145009 0.180049 0.238777 0.352350 

2.0 0.065856 0.081381 0.107055 0.155071 0.265581 

2.5 0.036096 0.046231 0.064175 0.101235 0.201867 

3.0 0.020021 0.026496 0.038690 0.066299 0.154168 

3.5 0.011208 0.015289 0.023424 0.043511 0.118066 

4.0 0.006321 0.008870 0.014228 0.028597 0.090564 

4.5 0.003587 0.005168 0.008665 0.018815 0.069536 

5.0 0.002045 0.003022 0.005288 0.012389 0.053421 

* Siewert, 1978 [3] 

 

 

Figure 1. Albedo and transmission factors versus slab thickness for different values of c and S=0 
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Figure 2. Angular flux for isotropic scattering with S=0 [9] 
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Figure 3. Angular flux for isotropic scattering with S=1 

 

 

 

 
Figure 4. Angular flux versus slab thickness for different values of c and S=0 

 

 

 

 



938 Menekse SENYIGIT / GU J Sci, 31(3): 929-938 (2018) 

4. CONCLUSIONS 

 

The slab albedo problem is solved by using HN method depending on the use of the singular 

eigenfunctions of the method of elementary solutions. The albedo and transmission coefficients are 

calculated, shown as Table 1 and Table 2. Some values are compared with literature and they are in good 

agreement with it. The results can be obtained even in the lowest order of approximation of N. This is the 

success of the method. Albedo and transmission factor versus slab thickness with different values of c is 

given in Figure 1. The behavior of angular flux according to the changing of the direction cosine for some 

values of slab thickness are shown in Figure 2 and Figure 3, respectively for S=0 and S=1. Figure 2 is 

compatible with Ref.[9]. This paper is written on a problem in the radiative transfer theory as similar to 

the neutron transport theory. In Figure 4, the angular flux versus slab thickness is also given for different 

values of c with S=0. 
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