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Abstract

In this work, we introduce hyperbolic quaternions and their algebraic properties. Moreover,
we express Euler’s and De Moivre’s formulas for hyperbolic quaternions.

1. Introduction

Real quaternions were introduced by Hamilton (1805-1865) in 1843 as he looked for ways of extending complex numbers to higher spatial
dimensions. So the set of real quaternions can be represented as [1]

H = {q = a0 +a1i+a2 j+a3k : a0,a1,a2,a3 ∈ R and i, j,k /∈ R} ,

where

i2 = j2 = k2 =−1, i j = k− ji, jk = i =−k j, ki = j =−ik.

From these ruled it follows immediately that multiplication of real quaternions is not commutative. The roots of a real quaternions were
given by Niven [7] and Brand [8] proved De Moivre’s theorem and used it to find nth roots of a real quaternion. Cho [2] generalized Euler’s
formula and De Moivre’s formula for real quaternions. Also, he showed that there are uncountably many unit quaternions satisfying xn = 1
for n≥ 3. Using De Moivre’s formula to find roots of real quaternion is more useful way.
After the discovery of real quaternions by Hamilton, MacFarlane [4] in 1981 introduced the set of hyperbolic quaternions. The hyperbolic
quaternions are not commutative like real quaternions. But the set of hyperbolic quaternions contains zero divisors [6].
In this work, we express Euler and De moivre’s formulas for hyperbolic quaternions after we give some algebraic properties of hyperbolic
quaternions.

2. Hyperbolic Quaternions

A set of hyperbolic quaternions are denoted by

K = {q = a0 +a1i+a2 j+a3k : a0,a1,a2,a3 ∈ R and i, j,k /∈ R} (2.1)

where

i2 = j2 = k2 = 1, i j = k− ji, jk = i =−k j, ki = j =−ik. (2.2)

A hyperbolic quaternion q = a0 + a1i+ a2 j + a3k is pieced into two parts with scalar piece S (q) = a0 and vectorial piece
−→
V (q) =

a1i+ a2 j + a3k. We also write q = S (q)+
−→
V (q) . Let a hyperbolic quaternion be qn = an + ani+ an j + ank for n = 0,1. Addition and

subtraction of a hyperbolic quaternions is defined by

q0±q1 = (a0 +b0i+ c0 j+d0k)± (a1 +b1i+ c1 j+d1k)
= (a0±a1)+(b0±b1) i+(c0± c1) j+(d0±d1)k.

(2.3)
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156 Universal Journal of Mathematics and Applications

Scalar multiplication of a hyperbolic quaternion is defined by

λq = λ (a+bi+ c j+dk) = λa+λbi+λc j+λdk (2.4)

for any λ ∈ R. Then, the set K is a vector space over R.
Multiplication of hyperbolic quaternions are defined by

q0q1 = (a0 +b0i+ c0 j+d0k)(a1 +b1i+ c1 j+d1k)
= (a0a1 +b0b1 + c0c1 +d0d1)+(a0b1 +b0a1 + c0d1−d0c1)i
+(a0c1−b0d1 + c0a1 +d0b1) j+(a0d1 +b0c1− c0b1 +d0a1)k.

(2.5)

Equation (2.5) can be represented by means of matrix multiplication. The representation as a 4×4 real matrix is
a0 b0 c0 d0
b0 a0 −d0 c0
c0 d0 a0 −b0
d0 −c0 b0 a0

 (2.6)

which is a useful way to compute quaternion multiplication
r0
r1
r2
r3

=


a0 b0 c0 d0
b0 a0 −d0 c0
c0 d0 a0 −b0
d0 −c0 b0 a0




a1
b1
c1
d1

 (2.7)

where pq = r0 + r1i+ r2 j+ r3k.
Unlike the real quaternions, the hyperbolic quaternion is not associative due to (i j) j 6= i( j j) . Moreover, it is not commutative. The
conjugate of a hyperbolic quaternion is defined by

q = a−bi− c j−dk. (2.8)

The conjugate of hyperbolic quaternions satisfies the properties (p) = p and (pq) = q p for p,q ∈ K.
The scalar and vector parts of q ∈ K are defined

S (q) =
1
2
(q+q) ,

−→
V (q) =

1
2
(q−q) . (2.9)

We note that

S (q) = 1
2 (q+q) = S (q) ,

S (p+q) = S (p)+S (q) .
(2.10)

Let p and q be hyperbolic quaternions. Then, inner product of them is defined to be the real number

〈p,q〉= S (pq) . (2.11)

As is easily verified, the following properties are satisfied
(I) 〈p,q〉= S (pq) = S (q p) = 〈q, p〉 ,
(II) 〈p,q+ r〉= S

(
p (q+ r)

)
= S (pq+ pr) = 〈p,q〉+ 〈p,r〉 ,

(III) α 〈p,q〉= S ((α p) q) = 〈α p,q〉= S
(

p(αq)
)
= 〈p,αq〉 ,λ ∈ R

(IV) 〈q,q〉= S (qq) = a2−b2− c2−d2.
Thus the inner product defined here is a symmetric bilinear form but is not positive definite. The inner product defines the norm of
q = a+bi+ c j+dk ∈ K as follows

N (q) = 〈q,q〉= qq = a2−b2− c2−d2. (2.12)

The norm is real-valued function and the norm of a hyperbolic quaternions satisfies the properties N (q) = N (q) . But N (pq) 6= N (p)N (q).
Let p = pα eα , q = qα eα be hyperbolic quaternions where eα ∈ {1, i, j,k} . Then the relations:

〈p,q〉= S (pq) = ηαβ pα qβ (2.13)

defines metric ηαβ . To obtain its components explicitly, we choose p = eα , q = eβ (for particular α,β ). Then

p = δ
αµ eµ , q = δ

βν eν (2.14)

where δ αβ is kronecker delta. That is

pµ = δ
αµ , qν = δ

βν (2.15)

therefore

〈p,q〉= 1
2

[
eα e

β
+ eβ eα

]
(2.16)
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also

〈p,q〉= ηµν δ
αµ

δ
βν = ηαβ (2.17)

and so

ηαβ =
1
2

[
eα e

β
+ eβ eα

]
(2.18)

giving, after a short calculation, we reach

ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.19)

which is the usual flat-space metric of Minkowski space.

3. Euler’s and De Moivre’s Formulas for a Hyperbolic Quaternions

In this section, we express Euler’s formula and De Moivre’s formula for hyperbolic quaternions and examine roots of hyperbolic quaternion
with respect to the norm of the hyperbolic quaternions.
Every hyperbolic quaternion q = a+bi+ c j+dk (N (q)> 0) can be written in the form

q =
√

N (q)(coshφ +wsinhφ) (3.1)

where coshφ =
|a|√
N(q)

, sinhφ =
√

b2+c2+d2√
N(q)

, w = 1√
b2+c2+d2 (bi+ c j+dk) is unit hyperbolic quaternion and w2 = ww = 1. Since w2 = 1,

we have

ewφ =

(
1+

φ 2

2!
+

φ 4

4!
+ ...

)
+w

(
φ +

φ 3

3!
+

φ 5

5!
+ ...

)
= coshφ +wsinhφ . (3.2)

Moreover, this can be shown using another method. In following manner

q = (coshφ +wsinhφ)⇒ dq = (sinhφ +wcoshφ)dφ

⇒ dq = w(coshφ +wsinhφ)dφ = wqdφ .
(3.3)

Thus, we get∫ dq
q

=
∫

wdφ ⇒ lnq = wφ ⇒ q = ewφ = (coshφ +wsinhφ) . (3.4)

Now let’s prove De Moivre’s formula for hyperbolic quaternion.

Theorem 3.1. Let q =
√

N (q)(coshφ +wsinhφ) , where φ is a real number and w2 = 1. Then

qn =
(√

Nq
)n
(coshφ +wsinhφ)n =

(√
Nq
)n

(cosh(nφ)+wsinh(nφ)) (3.5)

for every integer n.

Proof. We use induction on positive integers n. Assume that

qn =
(√

Nq
)n

(cosh(nφ)+wsinh(nφ))

holds. Then,

qn+1 =
(√∣∣Nq

∣∣)n
(cosh(nφ)+wsinh(nφ))

(√∣∣Nq
∣∣)(coshφ +wsinhφ)

=
(√∣∣Nq

∣∣)n+1
[

(cosh(nφ)coshφ + sinh(nφ)sinhφ)
+w(cosh(nφ)sinhφ + sinh(nφ)coshφ)

]
=
(√∣∣Nq

∣∣)n+1
[(cosh(φ (n+1)))+w(sinh(φ (n+1)))] .

Hence, the formula is true. Moreover, since

q−1 =
(√∣∣Nq

∣∣)−1
(coshφ −wsinhφ)

q−n =
(√∣∣Nq

∣∣)−n
(cosh(nφ)−wsinh(nφ))

=
(√∣∣Nq

∣∣)−n
(cosh(−nφ)+wsinh(−nφ)) ,

the formula holds for all integer.
If the power series definition

coshx = 1+
x2

2!
+

x4

4!
+ ... (3.6)

sinhx = x+
x3

3!
+

x5

5!
+ ... (3.7)
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is used for hyperbolic quaternion w, then we obtain

coshw = cos I (3.8)

sinhw =−wI sin I (3.9)

where I is complex operator.

Every hyperbolic quaternion q = a+bi+ c j+dk, (N (q)< 0) can be written in the form

q =
√
|N (q)|(sinhφ +wcoshφ) (3.10)

where sinhφ = a√
|N(q)|

, coshφ = 1√
|N(q)|

√
b2 + c2 +d2 and w = 1√

b2+c2+d2 (bi+ c j+dk) is unit hyperbolic quaternion.

Theorem 3.2. Let q =
√
|N (q)|(sinhφ +wcoshφ) , (N (q)< 0) be hyperbolic quaternion. Then

qn =


(√
|N (q)|

)n
(sinhnφ +wcoshnφ) , n is odd(√

|N (q)|
)n

(coshnφ +wsinhnφ) , n is even.

The proof can be bypassed since it can be proved in same manner of the proof of the Theorem 3.1.

3.1. The roots of a Hyperbolic Quaternions

Theorem 3.3. Let p =
√

N (p)(coshφ +wsinhφ) . Then the equation qn = p has only one root:

q = 2n
√

N (p)
(

cosh
(

φ

n

)
+wsinh

(
φ

n

))
(3.11)

in the hyperbolic quaternions which N (q)> 0.

Proof. Assume that q=
√

N (q)(coshx+wsinhx) is a root of the equation qn = p. From theorem 3.1, we have qn =
(√

N (q)
)n

(cosh(nx)+wsinh(nx))

. Thus, x = φ

n and |N (q)|= n
√
|N (p)|. Then, q = 2n

√
N (p)

(
cosh

(
φ

n

)
+wsinh

(
φ

n

))
is a root of the equation. If we suppose that there are

two roots satisfying the equality, we obtain that these roots must be equal to each other.

Example 3.4. We find the roots of the equation q2 =
√

3+ i+ j. Here p =
√

3+ i+ j is a hyperbolic quaternion such that Np = 1. Then, p
can be written as

p = cosh
(

ln
(√

3+
√

2
))

+wsinh
(

ln
(√

3+
√

2
))

where w = 1√
2
(i+ j) . From theorem 3.3, the root of the equation

q2 = cosh
(

ln
(√

3+
√

2
))

+wsinh
(

ln
(√

3+
√

2
))

is as follows

q = cosh

 ln
(√

3+
√

2
)

2

+wsinh

 ln
(√

3+
√

2
)

2

 .

Theorem 3.5. Let p =
√
|N (p)|(sinhφ +wcoshφ) be hyperbolic quaternion. Then the solution of hyperbolic quaternion qn = p

1. doesn’t exist if n is an even number,
2. has only one root q = 2n

√
|N (p)|

(
sinh φ

n +wcosh φ

n

)
if n is an odd number

in the hyperbolic quaternions which N (q)< 0,

Proof. If n is an even number, the norm of the nth power of hyperbolic quaternion will be positive and in this case there is no solution.
So, let q =

√
|N (q)|(sinhx+wcoshx) be root of the equation qn = p such that n is an odd number. Then

qn =
√
|N (q)|n (sinhnx+ coshnx) =

√
|N (p)|(sinhφ + coshφ)

and we get x = φ

n and |N (q)|= n
√
|N (p)|.
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Example 3.6. We find the roots of the equation q3 = 1+
√

2 j. Here p = 1+
√

2 j is a hyperbolic quaternion such that N (p) = 1. Then p
can be written as

p = sinh
(

ln
(

1+
√

2
))

+wcosh
(

ln
(

1+
√

2
))

where w = j. From theorem 3.4 the root of the equation

q3 = sinh
(

ln
(

1+
√

2
))

+wcosh
(

ln
(

1+
√

2
))

is

q = sinh

 ln
(

1+
√

2
)

3

+wcosh

 ln
(

1+
√

2
)

3

 .
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