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Abstract

In this paper, an initial boundary value problem for a second order hyperbolic equation
is considered. Giving an additional condition, a time-dependent coefficient multiplying a
linear term is determined and existence and uniqueness theorem for small times is proved.
The finite difference method is proposed for solving the inverse problem numerically.

1. Introduction and problem formulation

Many physical models include unknown coefficients in the equation and the solution of the inverse problems consisting of the identification
of these coefficients has become a very popular area of research in recent years. The inverse problems for hyperbolic equations present
significant value for physical applications such as vibrating string, seismology, geophysics etc.
Consider the problem for the vibrating string with arbitrary initial conditions

vtt = c2vxx +a(t)v(x, t)+ s(x, t), (x, t) ∈ DT , (1.1)

v(x,0) = v0(x), vt(x,0) = v1(x), 0≤ x≤ 1, (1.2)

where DT = {(x, t) : 0 < x < 1, 0≤ t ≤ T} for some fixed T > 0, c = ϒ

ρ
known as phase velocity of the wave motion, ϒ is the force of

tension exerted on the string, ρ is the mass of density, s(x, t) is external forcing function, v = v(x, t) represents the wave displacement at
position x and time t and the functions v0(x) and v1(x) are wave modes or kinks and velocity, respectively. In this paper, we will get c = 1
for simplicity.
For a given function a(t), the problem of finding v(x, t) from the equation (1.1) with the initial condition (1.2) and the boundary condition

v(0, t) = b(t), vx(0, t) = vx(1, t), 0≤ t ≤ T, (1.3)

is called direct (forward) problem. The boundary condition v(0, t) = b(t) occurs if the left end of string is attached to a spring-mass system
and b(t) is the position of the mass at the left end.
If a(t) is unknown, finding the pair of solution {a(t),v(x, t)} of the problem (1.1)-(1.3) with the additional condition

v(1, t) = r(t), 0≤ t ≤ T, (1.4)
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is called inverse problem.
The inverse problems for the hyperbolic equation with different boundary conditions and space dependent coefficients are studied in [7, 10,
14, 16] and more recently in [5, 15]. The inverse problem for the hyperbolic equation with time dependent coefficient with integral condition
is investigated in [11].
For the some numerical aspects of initial and initial-boundary value problems of the hyperbolic equations is considered for direct problem in
[3], for finding unknown source term in [2, 9], for finding space dependent potential in [1, 4] and for finding time dependent source function
of time-fractional wave equation in [17].
The article is organized as following: In Section 2, we rewrite the problem with homogeneous boundary conditions by a simple transformation
and present auxiliary spectral problem of this problem and its properties. In Section 3, the series expansion method in terms of eigenfunctions
converts the new inverse problem to a fixed point problem in a suitable Banach space. Under some consistency, regularity conditions on
initial and boundary data the existence and uniqueness of the solution of the inverse problem is shown by the way that the fixed point problem
has unique solution for small T . In Section 4, we solve the inverse problem numerically by applying finite difference method. We also
present numerical example to illustrate the behaviour of the proposed method.

2. Auxiliary spectral problem

Since the boundary condition (1.3) is non-homogeneous, we introduce a new variable u(x, t) = v(x, t)−b(t). Then, from Eqs.(1.1)-(1.4), it is
easy to see that u(x, t) satisfies the following problem:

utt = uxx +a(t)u(x, t)+ f (x, t), (x, t) ∈ DT , (2.1)

u(x,0) = ϕ(x), ut(x,0) = ψ(x), 0≤ x≤ 1, (2.2)

u(0, t) = 0, ux(0, t) = ux(1, t), 0≤ t ≤ T, (2.3)

u(1, t) = h(t), 0≤ t ≤ T, (2.4)

where f (x, t) = s(x, t)+a(t)b(t)−b′′(t), ϕ(x) = v0(x)−b(0), ψ(x) = v1(x)−b′(0) and h(t) = r(t)−b(t).
We attempt to apply the Fourier method of eigenfunction expansion to the problem (2.1)-(2.4). Auxiliary spectral problem of the problem
(2.1)-(2.3) is

X ′′(x)+λX(x) = 0, 0≤ x≤ 1,

X(0) = 0, X ′(0) = X ′(1).
(2.5)

The problem (2.5) has eigenvalues λk = (µk)
2 = (2πk)2, k = 0,1,2, ... and corresponding eigenfunctions

X0(x) = x, X2k−1(x) = xcos µkx, X2k(x) = sin µkx, k = 1,2, .... (2.6)

It is known from [6] that the spectral problem (2.5) is not self-adjoint. Then we have to consider the adjoint spectral problem. The adjoint
spectral problem of (2.5) is

Y ′′(x)+λY (x) = 0, 0≤ x≤ 1,

Y ′(1) = 0, Y (0) = Y (1).
(2.7)

This problem has the same eigenvalues as in the problem (2.5) and corresponding eigenfunctions

Y0(x) = 2, Y2k−1(x) = 4cos µkx, Y2k(x) = 4(1− x)sin µkx, k = 1,2, .... (2.8)

The systems (2.6) and (2.8) arise in [6] for the solution of non-local boundary value problem in heat equation.
It is easy to verify that the systems (2.6) and (2.8) are bi-orthonormal on [0,1], i.e.

(
Xi(x),Y j(x)

)
=
∫ 1

0
Xi(x)Y j(x)dx =


0, i 6= j,

1, i = j.

Moreover the system (2.6) forms a basis in L2[0,1] and they are also Riesz basis in L2[0,1]. Then any function g(x) ∈ L2[0,1] is expanded in
bi-orthogonal series

g(x) =
∞

∑
k=0

gkXk(x)
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where gk =
∫ 1

0 g(x)Yk(x)dx, k = 0,1,2, ... and the estimate

r‖g(x)‖2
L2[0,1] ≤

∞

∑
k=0

g2
k ≤ R‖g(x)‖2

L2[0,1]

is valid for any function g(x) ∈ L2[0,1], here r = 3/4, R = 16.
Let us introduce the functional space [12]

B3
2,T =

{
u(x, t) =

∞

∑
k=0

uk(t)Xk(x) : uk(t) ∈C[0,T ], JT (u) = ‖uo(t)‖C[0,T ]

+

(
∞

∑
k=1

(µ3
k ‖u2k(t)‖C[0,T ])

2

)1/2

+

(
∞

∑
k=1

(µ3
k ‖u2k−1(t)‖C[0,T ])

2

)1/2

<+∞

 ,

with the norm ‖u(x, t)‖B3
2,T
≡ JT (u) which is related with the Fourier coefficients of the function u(x, t) by the eigenfunctions Xk(x),

k = 0,1,2, .... It is shown in [8] that B3
2,T is Banach space. Obviously E3

T = B3
2,T ×C[0,T ] of the vector function z(x, t) = {a(t),u(x, t)} with

the norm ‖z(x, t)‖E3
T
= ‖a(t)‖C[0,T ]+‖u(x, t)‖B3

2,T
is also Banach space.

3. Existence and uniqueness of the solution

The pair {a(t),u(x, t)} from the class C[0,T ]×C2(DT ) for which the conditions (2.1)-(2.4) are satisfied, is called a classical solution of the
inverse problem (2.1)-(2.4).
Since the system (2.6) forms Riesz basis and the systems (2.6),(2.8) are bi-orthogonal in L2[0,1] and the function a(t) is time dependent,
seeking the solution of the problem (2.1)-(2.4) in the following form is suitable:

u(x, t) =
∞

∑
k=0

uk(t)Xk(x), (3.1)

where uk(t) =
∫ 1

0 u(x, t)Yk(x)dx, k = 0,1,2, ....
For an arbitrary a(t) ∈C[0,T ], the solution of the problem (2.1)-(2.4) can be written as

u(x, t) = u0(t)X0(x)+
∞

∑
k=1

u2k−1(t)X2k−1(x)+
∞

∑
k=1

u2k(t)X2k(x).

By using the Fourier’s method, it is easy to obtain that uk(t), k = 0,1,2, ... should be satisfies the equations:

u′′0(t) = a(t)u0(t)+ f0(t), (3.2)

u′′2k−1(t)+µ
2
k u2k−1(t) = a(t)u2k−1(t)+ f2k−1(t), k = 1,2, ..., (3.3)

u′′2k(t)+µ
2
k u2k(t) = a(t)u2k(t)+ f2k(t)−2µku2k−1(t), k = 1,2, ..., (3.4)

uk(0) = ϕk, u′k(0) = ψk, k = 0,1,2, ..., (3.5)

where fk(t) =
∫ 1

0 f (x, t)Yk(x)dx, ϕk =
∫ 1

0 ϕ(x)Yk(x)dx, ψk =
∫ 1

0 ψ(x)Yk(x)dx, k = 0,1,2, ....
Solving the problem (3.2)-(3.5), we obtain

u0(t) = ϕ0 + tψ0 +
∫ t

0
(t− τ)F0(τ;u,a)dτ, 0≤ t ≤ T, (3.6)

u2k−1(t) = ϕ2k−1 cos µkt +
1
µk

ψ2k−1 sin µkt +
1
µk

∫ t

0
F2k−1(τ;u,a)sin µk(t− τ)dτ, k = 1,2, ..., (3.7)

u2k(t) = ϕ2k cos µkt +
1
µk

ψ2k sin µkt +
1
µk

∫ t

0
F2k(τ;u,a)sin µk(t− τ)dτ

−tϕ2k−1 sin µkt− 1
µk

ψ2k−1

[
1
µk

sin µkt− t cos µkt
]

(3.8)

− 2
µk

∫ t

0

∫
τ

0
F2k−1(ξ ;u,a)sin µk(τ−ξ )dξ sin µk(t− τ)dτ, k = 1,2, ...,

where Fk(t;u,a) = a(t)uk(t)+ fk(t), k = 0,1,2, ....
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Substituting (3.6)-(3.8) into (3.1),

u(x, t) =
(

ϕ0 + tψ0 +
∫ t

0
(t− τ)F0(τ;u,a)dτ

)
X0(x)

+
∞

∑
k=1

(
ϕ2k−1 cos µkt +

1
µk

ψ2k−1 sin µkt +
1
µk

∫ t

0
F2k−1(τ;u,a)sin µk(t− τ)dτ

)
X2k−1(x)

+
∞

∑
k=1

(
ϕ2k cos µkt +

1
µk

ψ2k sin µkt +
1
µk

∫ t

0
F2k(τ;u,a)sin µk(t− τ)dτ− tϕ2k−1 sin µkt

− 1
µk

ψ2k−1

[
1
µk

sin µkt− t cos µkt
]
− 2

µk

∫ t

0

∫
τ

0
F2k−1(ξ ;u,a)sin µk(τ−ξ )dξ sin µk(t− τ)dτ

)
X2k(x). (3.9)

Consider x = 1 in the equation (2.1) and by using the over-determination condition (2.4), we obtain

a(t) =
1

h(t)

[
h′′(t)− f (1, t)+

∞

∑
k=1

µ
2
k

(
ϕ2k−1 cos µkt +

ψ2k−1

µk
sin µkt +

1
µk

∫ t

0
F2k−1(τ;u,a)sin µk(t− τ)dτ

)]
. (3.10)

Thus, we get the equalities of the pair {a(t),u(x, t)}.
Let us denote z = [a(t),u(x, t)]T and consider the operator equation

z = Φ(z). (3.11)

The operator Φ is determined in the set of functions z and has the form [φ0,φ1]
T , where

φ0(z) =
1

h(t)

[
h′′(t)− f (1, t)+

∞

∑
k=1

µ
2
k

(
ϕ2k−1 cos µkt +

ψ2k−1
µk

sin µkt +
1
µk

∫ t

0
F2k−1(τ;u,a)sin µk(t− τ)dτ

)]
, (3.12)

φ1(z) =
(

ϕ0 + tψ0 +
∫ t

0
(t− τ)F0(τ;u,a)dτ

)
X0(x)

+
∞

∑
k=1

(
ϕ2k−1 cos µkt +

1
µk

ψ2k−1 sin µkt +
1
µk

∫ t

0
F2k−1(τ;u,a)sin µk(t− τ)dτ

)
X2k−1(x)

+
∞

∑
k=1

(
ϕ2k cos µkt +

1
µk

ψ2k sin µkt +
1
µk

∫ t

0
F2k(τ;u,a)sin µk(t− τ)dτ− tϕ2k−1 sin µkt

− 1
µk

ψ2k−1

[
1
µk

sin µkt− t cos µkt
]
− 2

µk

∫ t

0

∫
τ

0
F2k−1(ξ ;u,a)sin µk(τ−ξ )dξ sin µk(t− τ)dτ

)
X2k(x). (3.13)

Let us demonstrate that Φ maps E3
T onto itself continuously. In other words, we need to show φ0(z) ∈C[0,T ] and φ1(z) ∈ B3

2,T for arbitrary
z = [a(t),u(x, t)]T with a(t) ∈C[0,T ], u(x, t) ∈ B3

2,T .
We will use the following assumptions on the data of problem (2.1) - (2.4):

(A1) ϕ(x) ∈C3[0,1], ϕ(0) = ϕ ′′(0) = 0, ϕ ′(0) = ϕ ′(1),

(A2) ψ(x) ∈C2[0,1], ψ(0) = 0, ψ ′(0) = ψ ′(1),

(A3) h(t) ∈C2[0,T ], h(0) = ϕ(1), h′(0) = ψ(1),

(A4) f (x, t) ∈C(DT ), fx, fxx ∈C[0,1], ∀t ∈ [0,T ], f (0, t) = 0, fx(0, t) = fx(1, t).

First, let us show that φ0(z) ∈C[0,T ]. Under the assumptions (A1)-(A4), we obtain from (3.12)

|φ0(z)| ≤
1
|h(t)|

[∣∣h′′(t)∣∣+ | f (1, t)|+ ∞

∑
k=1

(
1
µk
|α2k−1|+

1
µk
|β2k−1|+

1
µk

∫ T

0

[
|γ2k−1(t)|+µ

2
k |a(t)| |u2k−1(t)|

]
dt
)]

,

where ϕ2k−1 = 1
µ3

k
α2k−1, ψ2k−1 = 1

µ2
k

β2k−1, f2k−1(t) = 1
µ2

k
γ2k−1(t), α2k−1 = −4

∫ 1
0 ϕ ′′′(x)sin(µkx)dx, β2k−1 = 4

∫ 1
0 ψ ′′(x)sin(µkx)dx,

γ2k−1(t) = 4
∫ 1

0 fxx(x, t)sin(µkx)dx.
Using Cauchy-Schwartz and Bessel inequalities, we derive from the last inequality

‖φ0(t)‖C[0,T ] ≤ R1(T )+R2(T )‖a(t)‖C[0,T ] ‖u(x, t)‖B3
2,T

, (3.14)
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where R1(T ) = 1
‖h(t)‖C[0,T ]

(‖h′′(t)‖C[0,T ]+ ‖ f (1, t)‖C[0,T ]+C0(‖ϕ ′′′(x)‖L2[0,1]+ ‖ψ
′′(x)‖L2[0,1]+T ‖ fxx(x, t)‖L2(DT )

)), R2(T ) =
2C1T

‖h(t)‖C[0,T ]
,

C0 =
(

∑
∞
k=1

1
µ2

k

)1/2
, C1 =

(
∑

∞
k=1

1
µ4

k

)1/2
. Thus φ0(z) is continuous in [0,T ].

Now, let us verify that φ1(z) ∈ B3
2,T , i.e.

JT (φ1) =
∥∥φ1,0(t)

∥∥
C[0,T ]+

(
∞

∑
k=1

(µ3
k
∥∥φ1,2k(t)

∥∥
C[0,T ])

2

)1/2

+

(
∞

∑
k=1

(µ3
k
∥∥φ1,2k−1(t)

∥∥
C[0,T ])

2

)1/2

<+∞,

where φ1,0(t), φ1,2k(t) and φ1,2k−1(t) are the equal to the right hand side of u0(t), u2k(t) and u2k−1 as in (3.6)-(3.8), respectively. After some
manipulations under the assumptions (A1)-(A4),

‖φ1‖B3
2,T
≤ R̃1(T )+ R̃2(T )‖a(t)‖C[0,T ] ‖u(x, t)‖B3

2,T
, (3.15)

where R̃1(T ) = ‖ϕ(x)‖C[0,1]+T ‖ψ(x)‖C[0,1]+2T 3/2 ‖ f (x, t)‖C(DT )
+(
√

2+4T )‖ϕ ′′′(x)‖L2[0,1]+(4+4T )‖ψ ′′(x)‖L2[0,1]

+(2
√

2T +8T 3/2)‖ fxx(x, t)‖L2(DT )
+2‖ϕ ′′′(x)(1− x)−3ϕ ′′(x)‖L2[0,1]+2‖ψ ′′(x)(1− x)−2ψ ′(x)‖L2[0,1]+2T 1/2 ‖ fxx(x, t)(1− x)−2 fx(x, t)‖L2(DT )

,

R̃2(T ) = max(T 2,2C0T,4
√

2C0T 2).
Since JT (φ1)<+∞, φ1 is belongs to the space B3

2,T . Now, let z1 and z2 be any two elements of E3
T . We know that ‖Φ(z1)−Φ(z2)‖E3

T
=

‖φ0(z1)−φ0(z2)‖C[0,T ]+‖φ1(z1)−φ2(z2)‖B3
2,T

. Here zi = [ai(t),ui(x, t)]T , i = 1,2.
Under the assumptions (A1)-(A4), we obtain

‖Φ(z1)−Φ(z2)‖E3
T
≤ A(T )C(a1,u2)‖z1− z2‖E3

T
,

where A(T ) = R2(T )+ R̃2(T ) and C(a1,u2) is the constant includes the norms of
∥∥a1(t)

∥∥
C[0,T ] and

∥∥u2(x, t)
∥∥

B3
2,T

.

For sufficiently small T , 0 < A(T )< 1. This implies that the operator Φ is contraction mapping which maps E3
T onto itself continuously.

Then according to Banach fixed point theorem there exists a unique solution of (3.11).
Thus, we proved the following theorem:

Theorem 3.1. Let the assumptions (A1)-(A4) be satisfied. Then, the inverse problem (2.1)-(2.4) has unique solution for small T .

Note that s(x, t) = f (x, t)− a(t)b(t)− b′′(t), v0(x) = ϕ(x)+ b(0), v1(x) = ψ(x)+ b′(0) and r(t) = h(t)+ b(t) then under the following
assumptions:(

Ã1

)
v0(x) ∈C3[0,1], v0(0) = b(0), v′′0(0) = 0, v′0(0) = v′0(1),(

Ã2

)
v1(x) ∈C2[0,1], v1(0) = b′(0), v′1(0) = v′1(1),(

Ã3

)
r(t) ∈C2[0,T ], r(0) = v0(1), r′(0) = v1(1),(

Ã4

)
s(x, t) ∈C(DT ), sx,sxx ∈C[0,1], ∀t ∈ [0,T ], s(0, t) =−a(t)b(t)+b′′(t), sx(0, t) = sx(1, t),

the problem (1.1)-(1.4) has a unique classical solution {r(t),v(x, t)} for small T where v(x, t) = u(x, t)+b(t).

4. Numerical solution of the problem

In this section,we describe the numerical method applied to the inverse initial boundary value problem (1.1)-(1.4). The discrete form of
our problem is as follows: We divide the domain (0,1)× (0,T ) into nx and nt subintervals of equal length hx and ht, where hx = 1/nx and
ht = T/nt, respectively. We denote by V n

j :=V (x j, tn), an := a(tn) and sn
j := s(x j, tn), where x j = jhx, tn = nht for j = 0, ...,nx, n = 0, ...,nt.

Then, a central difference approximation to the equations (1.1)-(1.3) at the mesh points (x j, tn) is

V n+1
j = k2V n

j+1 +2(1− k2)V n
j + k2V n

j−1−V n−1
j +(ht)2(anV n

j + sn
j), j = 1, ...,nx−1, n = 1, ...,nt−1, (4.1)

V 0
j = (v0) j, j = 0, ...,nx,

V 1
j −V−1

j

2ht
= (v1) j, j = 1, ...,nx−1, (4.2)

V n
0 = bn,

V n
nx−V n

nx−1
hx

=
V n

1 −V n
0

hx
, n = 0, ...,nt, (4.3)

where k = ht
hx . Equation (4.1) represents an explicit finite difference method which is stable for k ≤ 1. Putting n = 0 in the equation (4.1) and

using (4.2), we obtain

V 1
j =

1
2
(k2(v0) j+1 +2(1− k2)(v0) j + k2(v0) j−1 +2ht(v1) j +(ht)2(a0(v0) j + s0

j)), j = 1, ...,nx−1. (4.4)
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Consider (1.4) in the equation (1.1) at x = 1, we obtain

a(t) =
r′′(t)− vxx(1, t)− s(1, t)

r(t)
.

After discretizing last equation, we have

an =
(rn+1−2rn + rn−1)/(ht)2− (V n

nx−2V n
nx−1 +V n

nx−2)/(hx)2− sn
nx

rn , n = 1, ...,nt−1, (4.5)

ant =
(rnt −2rnt−1 + rnt−2)/(ht)2− (V nt

nx −2V nt
nx−1 +V nt

nx−2)/(hx)2− snt
nx

rnt , (4.6)

a0 =
(r2−2r1 + r0)/(ht)2− (V 0

nx−2V 0
nx−1 +V 0

nx−2)/(hx)2− s0
nx

r0 . (4.7)

Now let us consider (4.5)-(4.7) in (4.1), we obtain the system with respect to V n
j , j = 0, ...,nx, n = 0, ...,nt which can be solved explicitly.

Then using the calculated values of V n
nx−2 in (4.5)-(4.7), we obtain the values of an , n = 0, ...,nt.

Example 4.1. Consider the inverse problem (1.1)-(1.4) with the input data

s(x, t) = (1+2πx− sin2πx)exp(t)−1−2πx+ sin2πx,

v0(x) = 1+2πx− sin2πx, v1(x) = 1+2πx− sin2πx,

b(t) = exp(t), r(t) = (1+2π)exp(t), x ∈ [0,1], t ∈ [0,1].

It is easy to check that the conditions
(

Ã1

)
−
(

Ã4

)
are satisfied. Then according to Theorem 3.1 the solution of the inverse problem exists

and unique. In fact, it can easily be checked by direct substitution that the analytical solution is given by

{a(t),v(x, t)}= {1/exp(t),(1+2πx− sin2πx)exp(t)}.

Figure 4.1 shows the exact and numerical solution of {a(t),v(x, t)} for nt = 128 and nx = 64. Next, we investigate the stability of numerical
solution with respect to the noisy over-determination data (1.4), denoted by the function rγ (t) = r(t)(1+ γθ) where γ is the percentage
of noise and θ are random variables generated from a uniform distribution in the interval [−0.5,0.5] which are generated using rand
command in MATLAB. Figs. 4.2, 4.3 show the exact and numerical solutions of {a(t),v(nx/2, t)} when the input data (1.4) is contaminated
by γ = 1%,3% and 5% noise. Figs. 4.4, 4.5 show the exact and numerical solutions of {a(t),v(nx/2, t)} obtained after mollification, when
the input data (1.4) is contaminated by γ = 1%,3% and 5% noise. This mollification procedure has been performed using MATLAB version
of the computational program supplied by D. A. Murio in [13]. From these figures it can be seen that the application of the mollification to
stabilize the noisy function rγ (t), produce stable numerical solutions for{a(t),v(nx/2, t)}.
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Figure 4.1: Exact and numerical solution of the problem (1)-(4) for example 4.1.

5. Conclusion

The inverse problems for linear wave equations connected with recovery of the coefficient are scarce. The paper considers the inverse
problem of recovering a time-dependent coefficient in an initial boundary value problem for a wave equation with a non-homogeneous
boundary condition. The series expansion method in terms of eigenfunctions of a Sturm-Liouville problem converts the considered inverse
problem to a fixed point problem in a suitable Banach space. Under some conditions on the data, the existence and uniqueness of inverse
problem is shown by using the Banach fixed point theorem. Numerically, the inverse problem has been discretized by using finite difference
method, which has been solved using the MATLAB. Numerical results show that accurate, and stable solutions have been obtained.



184 Universal Journal of Mathematics and Applications

t-axis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

exact a
noisy a

t-axis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

exact a
noisy a

t-axis
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

exact a
noisy a

Figure 4.2: Exact and numerical coefficient solution of the problem (1)-(4) for example 4.1 with 1%, 3% and 5% noise.
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Figure 4.3: Exact and numerical coefficient solution of the problem (1)-(4) for example 4.1 after mollification with 1%, 3% and 5% noise.
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Figure 4.4: Exact and numerical u(x, t) solution of the problem (1)-(4) for example 1 with 1%, 3% and 5% noise.
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Figure 4.5: Exact and numerical u(x, t) solution of the problem (1)-(4) for example 1 after mollification with 1%, 3% and 5% noise.
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