
Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018 RESEARCH

DOI:10.17482/uumfd.425094

91

A NEW AUTOMATA BASED APPROXIMATE STRING

MATCHING APPROACH AND WEB INTERFACE FOR

BIOINFORMATICS ALGORITHMS

Burak KOCA
*

Gıyasettin ÖZCAN
**

Received: 22.05.2018; revised: 27.09.2018; accepted: 16.10.2018

Abstract: In this study, we present a new web interface for major bioinformatics algorithms and

introduce a novel approximate string matching algorithm. Our web interface executes major algorithms

on the field for the use of computational biologists, students or any other interested researchers. In the

web interface, algorithms come under three sections: Sequence alignment, pattern matching and motif

finding. In each section, we introduce algorithms in order to find best fitting one for specific dataset and

problem. The interface introduces execution time, memory usage and context specific results of

algorithms such as alignment score. The interface utilizes emerging open source languages and tools. In

order to develop light and user-friendly interface, all parts of the interface coded with Python language.

On the other hand, Django is used for web interface. Second contribution of the study is novel A-BOM

algorithm, which is designed for approximate pattern matching problem. The algorithm is approximate

matching variation of Backward Oracle Matching. We compare our algorithm with popular approximate

string matching algorithms. Results denote that A-BOM introduces %30 to %80 short runtime

improvement when compared to current approximate pattern matching algorithms on long patterns.

Keywords: Bioinformatics, A-BOM, Interface, Approximate Pattern Matching

Başlıca Biyoinformatik Algoritmaları için Web Ara yüzü ve Yeni Otomat Tabanlı Yaklaşık Desen

Eşleştirme Yaklaşımı

Öz: Bu çalışmada temel biyoinformatik algoritmaları için yeni bir web ara yüzü ve özgün bir yaklaşık

desen eşleştirme algoritması sunmaktayız. Web ara yüzümüz biyologlar, öğrenciler ve ilgili araştırmacılar

için bu alandaki temel algoritmaları çalıştırmaktadır. Web ara yüzünde algoritmalar üç bölüm altında

toplanmaktadır: Dizilim hizalama, desen eşleştirme ve motif bulma. Her bir bölümde, özgül veri seti ve

problemlere en iyi uyan algoritmanın bulunabilmesi için sonuçlarını karşılaştırabilecekleri algoritmalar

sunulmaktadır. Web ara yüzü çalışma süreleri, hafıza kullanımı ve hizalama skoru gibi konuya özel

sonuçları sunmaktadır. Ara yüz yeni geliştirilen açık kaynak kodlu dilleri ve araçları kullanmaktadır.

Hafif ve kullanıcı dostu bir ara yüz olması amacıyla ara yüzün tüm kısımları Python dili ile kodlanmıştır.

Diğer yandan web ara yüzü için Django kullanılmıştır. Çalışmanın ikinci katkısı, yaklaşık desen

eşleştirme için tasarlanmış yeni A-BOM algoritmasıdır. Bu algoritma Backwards Oracle Matching

algoritmasının yaklaşık varyasyonudur. Algoritmamızı popüler yaklaşık desen eşleştirme algoritmaları ile

kıyasladık. Sonuçlar, A-BOM algoritmasını güncel yaklaşık desen eşleştirme algoritmaları ile uzun

desenler üzerinde karşılaştırdığımızda, çalışma süresinde %30 ile %80 arasında kısalma gelişimi

olduğunu göstermektedir.

Anahtar Kelimeler: Biyoinformatik, A-BOM, Ara yüz, Yaklaşık Desen Eşleştirme

* Faculty of Engineering, Computer Engineering Department, Gebze Technical University, 16059, Bursa, Turkey
** Faculty of Engineering, Computer Engineering Department, Uludag University, 16059, Bursa, Turkey

Corresponding Author: Gıyasettin Özcan (gozcan@uludag.edu.tr)

mailto:gozcan@uludag.edu.tr

Koca B.,Özcan G.: A New Automata Based Approximate String Matching Approach and Web Interface For
Bioinformatics Algorithms

92

1. INTRODUCTION

Recent development of the technology have introduced big amount of data in scientific

fields. For instance, biologists extract have DNA sequences of organisms, where a human

genome consist of nearly 3 billion nucleotides (Pevsner, 2015). In order to the DNA store and

extract its features, new computational methods and tools are needed. As a result of this fact, a

new discipline, Bioinformatics, has been emerged.

Bioinformatics is an interdisciplinary study field which tries to understand biological

information. For this goal, researchers of the computer science and biology introduces various

tools and software that can collect, store and process biological data. Particularly, main

motivation of computer scientists presenting new algorithms and software tools.

One sub field of Bioinformatics is fast and accurate sequence matching among long

nucleotide sequences. The sequence matching studies are important since DNA strand of living

organisms are very long. For instance, human genome consist of nearly 3 billion nucleotides

and sequence alignment among the genome sequences are computationally expensive.

Therefore efficient algorithms and software tools are highly demanded.

In terms of computational aspects of biology, there exist three major sequence alignment

problems. Literature denotes these problems as sequence alignment, pattern matching, motif

finding.

The sequence alignment process is finding relationships between the sequences to identify

similarity of species. The problem is mutations can occurs in DNA sequences and a single

mutated nucleotide on middle of long sequence corrupt all alignment. This problem handled by

dynamic programming and its variations like Smith – Waterman and Needleman – Wunsch

(Smith and Waterman 1981) (Needleman and Wunsch, 1970).

Pattern matching is the second challenging problem in bioinformatics (Bishop, 2006). The

process in the basic is detecting the exactly same of pattern presences of a given pattern in a

long sequence. Since the single one sequence consist of about 3 billion nucleotides, in case of

programming 3 billion characters, brute force approaches can’t handle the problem in

reasonable time. To solve this problem, searching approach should detect the positions which

have no chance to match and skip these points for reduce volume of searching points.

Motif finding is the third and still under development problem in bioinformatics. The main

idea for motif finding is detect the most repetitive sub sequences (D'haeseleer, 2006). There are

many problem for the process like how many is motif length should be or how can group k

length patterns. Current approaches usually offers divide and conquer technique. In the

interface, an algorithm had presented for motif finding with the technique.
Sequence alignment is commonly is used by biologists to compare nucleotide sequences

and to find functions of the genomes. There exists various software utilities that contain tools to

do string matching methods such as sequence alignment, pattern matching and motif finding.

On the other hand, advancements in web framework technologies, and programming languages

enables to design better software tools. Also novel string matching algorithms give rise to new

interfaces and tools.

Performance of the string matching algorithms depends on the data set and problem (Ozcan

and Ünsal, 2015) Even further performance of and approximate string matching depends on the

data. Most commonly used techniques are based on Dynamic Programming (Langmead and

Salzberg, 2012). However, the techniques require high memory consumption.

Finally, some of the most efficient genomic analysis tools require licenses. Also the tools

may have access limitations. In contrast, developing an open source tool with easy access

property contributes to the educational demands. So that native language support can be

introduced as well.

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

93

This study aims to present free, complete, user-friendly interface for whole bioinformatics

field. The tool supports both English and Turkish languages. Therefore it can be useful for

biology students who cannot read English.

The tool also introduces a novel approximate string matching algorithm. The algorithm

speeds up string matching time. Due to its automata based technique, it also reduces memory

consumption.

Overall the study has two contributions to the literature. First, it presents a novel

approximate string matching algorithm. Second it introduces a new bioinformatics interface,

which is coded with open source languages. The bioinformatics interface presents a simple and

efficient interface. Together with its native language support it support academic improvement.

2. DEFINITIONS AND LITERATURE

Sequence alignment, pattern matching and motif finding problems have several solution

approaches. In this section each major problem and their fundamental solutions will be

mentioned in separated subheadings. Only de facto algorithms have explained in detail, other

approaches in literature are variations of these major algorithms.

2.1. Sequence Alignment

Sequence alignment aims to find similarity of two sequences. Let’s suppose that we have

two sequences defined as

𝑇1 = 𝑡0, 𝑡1, … , 𝑡𝑛−1 𝑎𝑛𝑑 𝑇2 = 𝑡0, 𝑡1, … , 𝑡𝑛−1 {𝑡𝑖 ∈ 𝐴, 𝐶, 𝐺, 𝑇}

(1)

The sequences is not exactly the same but they are very similar to each other. In example, there

are two text that are T1 and T2 and all characters of the texts are same except i-th character. The

i-th character of T1 is not same with i-th character of T2 . So the equation can be defined as:

𝑇1(0) = 𝑇2(0), 𝑇1(1) = 𝑇2(1), … , 𝑇1(𝑖) ≠ 𝑇2(𝑖), … , 𝑇1(𝑛−1) = 𝑇2(𝑛−1) (2)

To find optimum relativity between the sequences, sequences need to be realigned with gaps.

 Sequence alignment is an essential problem because in real world, sequences not always

remain in their original form of being created due to mutations. On the other hand, corruptions

may arise during sequencing. To solve these kind of problems, there are two major approaches

in literature; Smith-Waterman and Needleman-Wunsch. Both algorithms are variation of

dynamic programming (Smith and Waterman, 1981).

Smith-Waterman Algorithm is a variation of dynamic programming. Dynamic

programming approaches for sequence alignment have common variables like match score,

mismatch score and gap score to calculate similarity score. Dynamic programming using for

creating a relativity matrix from the sequences in Smith-Waterman algorithm. Each node of

matrix value is maximum value of transitions from left, top and left top diagonal nodes. There

are one more value which is zero for calculation maximum value additionally. Zero value gives

a guarantee to there are no negative value in matrix. This particular precaution increases

alignment success efficiency. The diagonal transition represent match, and other transitions

means gaps. Once matrix have crated, trackback on matrix from last node to first node for

calculating alignment score. Algorithm and explanations can be found on (Smith and

Waterman, 1981).

Needleman – Wunsch is another derivation of dynamic programming which differs from

Smith Waterman with negative values because of there is no zero condition on score function.

Detailed explanation can be found on (Needleman and Wunsch, 1970)

Koca B.,Özcan G.: A New Automata Based Approximate String Matching Approach and Web Interface For
Bioinformatics Algorithms

94

2.2 Pattern Matching

In terms of exact string search, pattern matching can be defined as detecting occurrences of

the pattern on a long sequences.

Let suppose we have a sequence T as defined in sequence alignment. On the other hand we

have another short sequence which entitled pattern, P, as:

𝑃 = 𝑝0, 𝑝1, … , 𝑝𝑚−1 (3)

Pattern matching aims to locate the subsequences which is same with P exactly or tolerance

contrast in a range. In general, there are two approach to pattern matching: exact and

approximate matching.

Exact pattern matching aims to find presences of exactly the same of P in sequence as

follows:

𝑝0 = 𝑡𝑖, 𝑝1 = 𝑡𝑖+1, 𝑝2 = 𝑡𝑖+2, … , 𝑝𝑚−1 = 𝑡𝑖+𝑚+1 (4)

Current approaches using several skip algorithms to do this process efficiently. Skip

algorithms boost matching process because many position skips and that means far less

operations while matching. Essentially there are two main idea behind the skip algorithms; bad

character and good suffix. Bad character means if there is any mismatch while matching, shift

the pattern until the bad character is not in current sub sequence. The good suffix means if there

is any prefix which same with suffix on mismatch point, shift pattern to align prefix with suffix.

All major algorithms developed with this two approaches like KMP, Boyer – Moore, BOM etc.

Knuth – Morris – Pratt algorithm is an exact pattern matching algorithm which searches for

presences of P within a subsequence T by using bad character approach. Before the matching

process, preprocess should be done on P for calculating skip count for every position of P.

Detailed explanation can be found on (Knuth, Morris and Pratt, 1977).

The Boyer-Moore algorithm is another exact matching algorithm. As a distinct from KMP,

Boyer-Moore algorithm combining good suffix and bad character approaches. While matching,

if there is a mismatch between current part of T and P, looking bad character and good suffix

tables respectively for decide shift count on current position. Details can be found on (Boyer

and Moore, 1977).

Another exact pattern matching algorithm is Backward Oracle Matching, BOM (Allauzen,

Crochemoore and Raffinot, 1999). BOM is an automat based algorithm which is variation of

BNDM algorithm. The details of BNDM algorithm can be found on (Navarro and Raffinot,

2002). The BOM algorithm based on the Boyer-Moore strategy. Thereupon try to match prefix

with suffix of the pattern on mismatch position. On the other hand matching progress performs

right as a necessity of good suffix approach. The algorithm using automat instead of tables

unlike other Boyer-Moore approaches.

The first step of generating BOM automat is taking reverse of pattern and generate states

for each character in reversed pattern and character transitions are added between the states

respectively. After produced all factors of P, transitions for factors appends to the automat.

Search algorithm and details can be found on (Allauzen, Crochemoore and Raffinot, 1999).

The second approach for pattern matching is approximate pattern matching. Approximate

pattern matching differs from exact matching with mismatch tolerance. That means matching

process tolerance to mismatches as long as number of mismatch is under threshold. Formula,

[𝑃/𝑡𝑖…𝑖+𝑚+1] < 𝑘 (0 ≤ 𝑘 < 𝑚 ∶ 𝑚 = 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑙𝑒𝑛𝑔𝑡ℎ)

(5)

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

95

The approach make possible to find out mutated presences but this gain also cause

computational weight to the matching process. For reducing this weight, approximate matching

algorithms should have very efficient skip algorithms. On the other hand producing skip

algorithm for approximate pattern matching algorithms harder than exact algorithms because

skipped part could contain possible matches unlike exact approaches. To solve this problem

usually skip algorithms does pre-processing on pattern, text or both of them.

Approximate pattern matching approaches compare pattern and text characters one by one

until mismatch counter reach to the threshold or overall characters of the pattern has been

compared. If mismatch counter exceeds the threshold the text shifts one character. On the other

hand if does not exceed the threshold after all characters have been matched, that means there is

a match on current position. In other words, naïve search using hamming distance to decide

matching occurred on current position or not. If distance is under threshold there is a match or

exceeding threshold is not. There is no skip mechanism in naïve search that means naïve search

is a linear brute force matching algorithm but still useful small patterns and sequences due to no

needs preprocess on neither text nor pattern.

An efficient approximate matching algorithm which is Burrows Wheeler transform firstly

developed for data compression but nowadays there are many usage areas like pattern matching

and sequence alignment (Durbin and others, 1998). The basic idea behind BWT is produce the

permutations of the characters of text and positioning closely to similar contexts. That means in

approximate matching, k mismatched contexts can be found in k neighborhoods. This process

increases efficiency of approximate matching but on the other hand, pre-process on long

patterns takes long execution times. Exhaustive explanations and detailed example could be

found on (Burrows and Wheeler, 1994).

3. APPROXIMATE BOM

In this study, we present the approximate version of Backwards Oracle Matching

algorithm. Recall that approximate pattern matching enables to find very similar presences of

pattern on text. The flexible matching approach extends scope of matching but the profit comes

with computation weight because of permutations of the pattern. In general approximate search

algorithms are slower by nature. Especially matching takes huge execution times on long

patterns. To overcome the problem, any preprocess should be done on pattern before matching.

BOM algorithm is an automat based exact pattern matching algorithm as mentioned above.

The algorithm offers an automat for permutation problem. The automat provide how many shift

performs any location on mismatch. The automat accelerate the matching process because shift

counts for all permutations have already calculated. From this idea, the automat based approach

could be apply on approximate pattern matching. The novel A-BOM algorithm is approximate

variation of Backward Oracle Matching algorithm. BOM algorithm is best fit when long pattern

searching case because all suffix combinations (factors) are calculated before search process and

factor automaton prepared for search process. That means when any mismatch occurs on any

position, search already know to how many shifts are necessary. Therefore like BOM algorithm,

approximate BOM algorithm is supposed to be powerful on long pattern search.

Approximate BOM algorithm using same automata logic and matching function with BOM

algorithm can be found on (Allauzen and others, 1999). Approximation feature provided on

calculating match score of current subsequence. Unlike BOM, the algorithm doesn’t skip

current position on mismatch until error counter is under threshold. When any mismatch occurs

as long as error counter under threshold, matching branch out sub matching process by all

transitions of current state.

Let’s suppose there is a pattern like P=”GTACTGTA”. The automat of reversed pattern

shown in Figure 1.

Koca B.,Özcan G.: A New Automata Based Approximate String Matching Approach and Web Interface For
Bioinformatics Algorithms

96

Figure 1:

Factor oracle automat of the pattern P=GTAACTGTA

On the other hand let assume that also there is a sequence T=”GTACTTTA…”. Let suppose

that the threshold is 3. The score function performs matching from end to begin due to Boyer –

Moore characteristics. When the score function come at third letter, the letter T is not match

with the third character of pattern G. The approximation mechanism step in and branching starts

at position 3. The root process branch out four sub matching process because of alphabet consist

of four letter which A, T, G and C. The branching shown in Figure 2.

Figure 2:

Branching on the mismatch at third character

 The sub processes perform matching after mismatch location and they can branch out as

long as error doesn’t reach up to threshold. Therefore matching score function designed as

recursive. Branches go on matching with related transition of current state. There is a significant

detail on the transitions. If there are no transition or the transition offers to jump over left error

tolerance, branch go on matching with state of next expected character on the pattern. After all

branches done of any parent process, largest matching score of branches adds parent’s score and

this adding process continues until the root matching process. After all branches of root

process’s done, score function returns the matching score to matching function. The matching

function announces there is a match on current position when the matching score equals to

pattern length. On the other hand if they are not equals, skips the matching location as much as

subtraction of pattern length and matching score. Pseudo code of match score function

explained in Algorithm 1.

4. EXPERIMENTAL RESULTS

In this section we introduce experimental performance comparison results of our

approximate matching algorithm against Barrows Wheeler and Naive hamming distance based

approximate matching algorithms. All the experiments we perform on a computer, with an Intel

i5 2.30 GHz CPU with 4 GB of RAM and running Ubuntu 16.7 64-Bit. The code was written in

C and compiled with CLion IDE.

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

97

1. # Score Function

2. WHILE index > 0 and current_state != length of automat

3. IF sequence[index] in current_state

4. move to next state

5. ELSE

a. BREAK

6. END WHILE

7. IF index > 0 and error_counter < threshold

8. FOREACH transition in alphabet

9. IF (next_state_transition – current_state + error_counter) <= threshold and

10. next_state_transition is not null

11. error counter += next_state – current state

12. append Score(next_state_transition) to temp_indexes

13. ELSE

14. append Score(next_expected_state) to temp_indexes

15. index =min(temp_index)

16. RETURN index

1

Algorithm 1:

Match score function algorithm

Test Sequence has 50K nucleotide and pattern lengths are variable. All experiments are

repeated 100 times and averaged results are collected. In Table 1 execution times of algorithms

are represented. Short names in Table 1 used as; A-BOM for Approximate Backward Oracle

Matching, BWT for Burrows Wheeler Transform and NAIVE for Hamming Distance based

approximate string matching.

The results on the table 1 presents execution time of algorithms in seconds. The observations

donates A-BOM algorithm performance increasing with pattern length progressively unlike

naïve matching algorithm. On the other hand, performance of BWT algorithm doesn’t show

significant variance on different patterns lengths.

The results denote that, A-BOM algorithm yields best performance results on long patterns.

Results of Table 1 denotes that highest performance improvement occurs when the pattern

length is 50 or 100. In general, observations donates the algorithm has from %30 to %80 better

performance when pattern lengths over 10. Table 1 concludes that A-BOM is slower than naïve

algorithm on short patterns, but still donates reasonable execution time. Increasing error rate

influence unfavorably all algorithms. Our algorithm is affected than high error rates because of

the branching characteristic.

In summary, A-BOM yields efficient approximate string matching for long patterns. Since

pattern search on long DNA sequences is common, our algorithm can make sense for DNA

sequences that contain mutations.

98

Table 1. Average running time for 50K length DNA sequence

Pattern Length Error Rate A-BOM BWT NAIVE

5 1 0. 084729 3.896761 0. 052436

10 1 0. 037810 3.867000 0. 046877

15 1 0. 031255 3.838748 0. 046883

25 1 0. 015626 3.932374 0. 053443

50 1 0. 002548 3.983852 0. 062507

5 2 0. 226232 3.821203 0. 062556

10 2 0. 084656 4.098129 0. 069030

15 2 0. 037353 3.824674 0. 068765

25 2 0. 022149 4.027949 0. 062505

50 2 0. 015628 3.898494 0. 069025

10 5 0. 268755 4.067687 0. 099815

25 5 0. 115907 3.974571 0. 099862

50 5 0. 052977 4.229776 0. 099817

75 5 0. 046839 4.139655 0.100351

100 5 0. 031255 4.007760 0. 100320

5. WEB INTERFACE

The web interface can accessible on “https://github.com/burakkoca/BioLab” address. In the

interface; sequence alignment, pattern matching and motif finding can be easily done with user

friendly graphic interface. Interface supports big amount of data. That means the interface can

be used for academic and research projects. Students can use learning major solutions and try on

own datasets also compare with several algorithms for the best fit solution. All algorithms

which mentioned in proposal are presented in the interface. There are Smith-Waterman and

Needleman- Wunsch algorithms for sequence alignment. For exact pattern matching KMP,

Boyer-Moore and BOM algorithms are available and BWT, naïve search and A-BOM presented

to perform approximate pattern matching. Motif finding can be done with greedy algorithm.

How to use the interface introduced in separated subheadings for all solutions.

5.1. Sequence Alignment

The Sequence alignment algorithms can reachable “Sequence Alignment” collapsible item

on left menu. Both KMP and Boyer-Moore algorithms have same interface for alignment. There

are five field that has been labeled for sequences, gap, match score and mismatch score. After

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

99

all fields filled, press “Align” button for alignment. Note that, sequence length must be under

ten thousand and must be consist of nucleotide letters.

When a query is given on the interface, results are returned in another page. Aligned string,

gap score, gap ratio, match score, match ratio introduced in that page. In figure 3 first row

presents aligned sequence. In Aligned sequence string, dashes stand for gaps and rods represent

matches. Second row colored and presents match, mismatch and gap statics.

Figure 3:

Sequence alignment results page

5.2. Pattern Matching

The Pattern search algorithms can reachable “Exact Pattern Search” and “Approximate

Pattern Search” collapsible items on left menu. Both exact and approximate matching pages

have same interface for all algorithms but approximate pattern matching page has threshold

field additively. The fields introduce with related parameter of matching. After all fields filled,

press “Match” button for pattern matching. Note that, for only pattern matching sequence length

could reach up to one million.

Pattern matching results are presented in consecutive web page. In other words sequence,

match points, and match count presented in result page. In Figure 4, First row on the page

presents treated sequence with colored presences of pattern. Second row represents matched

locations and last row demonstrate match count.

Figure 4:

Pattern matching results page

5.3. Motif Finding

Motif finding algorithm can reachable “Motif Finding” collapsible item on left menu.

There are two input for motif finding on the web page. The first input takes sequence and

100

second one for motif length. Multi sequences could be using for motif finding by separating

sequences with comma. After all fields filled, press “Find Motif” button for motif finding.

Founded motifs and consensus motif presented in Results page that shown in Figure 3.

Treated sequence stay on the first row of results. Second row presents founded motifs and last

row show us the consensus motif.

Figure 3:

Motif finding results page

5.4. Comparison

Each solution group have own “Compare” tab in collapsible menus. Comparison pages

have same interface with related solution page. Comparison results pages are same for all

solutions. The results introduced in a table which each comparison parameter heading for each

algorithm.

6. CONCLUSION

In this study we introduced a useful interface for all major bioinformatics problems

solution algorithms. The interface differs from variations with wide scope. From educational to

scientific purpose, any people who interested in bioinformatics can take the advantage of the

interface because of the extensive contents opportunity. Also the interface offers to execute

algorithms with large amount of data opportunity in free form. On the other hand, to the best of

our knowledge there is no national interface that provide pattern matching, sequence alignment

and motif finding for bioinformatics field and this study fulfill the need. We believe that the

study nourish bioinformatics studies in our country and worldwide.

The second contribution of this study is a novel approximate string matching algorithm

which present best performance for long patterns. Experimental results show that approximate

approach of BOM speeds up approximate matching on long patterns. Our solution yields up to

%80 better performance compared to Burrows Wheeler and Hamming Distance approach if

pattern length is longer than 10. The results may contribute to the recent bioinformatics

researches. For example A-BOM may fit better for approximate matching problems like error

correction or merging read data from new generation DNA sequencing methods like Nanopores.

In summary, the algorithm can be used for tolerant pattern matching with long patterns.

REFERENCES

1. Pevsner, J. (2015) Bioinformatics and functional genomics, John Wiley & Sons, UK

2. Smith, T.F. and Waterman, M.S. (1981) Identification of common molecular subsequences,

Journal of Molecular Biology, Academic Press Incorporated, London, 40-48.

doi: 10.1016/0022-2836(81)90087-5

Uludağ University Journal of The Faculty of Engineering, Vol. 23, No. 3, 2018

101

3. Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for

similarities in the amino acid sequence of two proteins, Journal of Molecular Biology,

Academic Press Incorporated, London, 443-453. doi: 10.1016/0022-2836(70)90057-4

4. Bishop, C. M. (2006) Machine learning and pattern recognition. Information Science and

Statistics. Springer, Heidelberg.

5. D'haeseleer, P. (2006) How does DNA sequence motif discovery work?. Nature

biotechnology, 24(8), 959-961

6. Özcan, G., and Ünsal, O. S. (2015). Fast bitwise pattern-matching algorithm for DNA

sequences on modern hardware. Turkish Journal of Electrical Engineering & Computer

Sciences, 23(5), 1405-1417.

7. Langmead, B., and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2.

Nature methods, 9(4), 357.

8. Knuth, D.E., Morris, J.H and Pratt, W.R. (1977) Fast Pattern Matching in Strings, Journal

of Molecular Biology, SIAM Journal on Computing, Philadelphia, 323-350. doi:
10.1137/0206024

9. Boyer, R.S., Moore, J.S and Pratt, W.R. (1977) A Fast String Searching Algorithm, Journal

of Molecular Biology, Communications of the ACM, New York, 762-772. doi:
10.1145/359842.359859

10. Alluzen, C., Crochemore, M. and Raffinot, M. (1999) Factor Oracle: A New Structure for

Pattern Matching, SOFSEM’99: Theory and Practice of Informatics, Lecture Notes in

Computer Science, Berlin, 291-306. doi: 10.1007/3-540-47849-3_18

11. Ji, H. and Shendure, J. (2008) Next-generation DNA sequencing, Nature biotechnology

volume 26, Nature Publishing Group, London, 1135-1145. doi: 10.1038/nbt1486

12. Burrows, W. and Wheeler, D. J. (1994) A block-sorting lossless data compression

algorithm, Technical Report 124, Digital Equipment Corporation, Digital Equipment

Corporation, California.

13. Durbin, R., Eddy, S. R., Krogh, A. and Mitchison, G. (1998) Biological Sequence Analysis:

Probabilistic Models of Proteins and Nucleic Acids, Cambridge University Press,

Cambridge.

14. Navarro, R. and Raffinot, M. (2002) Flexible Pattern Matching in String, The press

Syndicate of The University of Cambridge, Cambridge.

15. Özcan, G. (2016) Detection of P53 Consensus Sequence: A Novel String Matching With

Classes Algorithm, Uludag University Journal of The Faculty of Engineering 21 (2), Bursa,

269-282.

102

