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Abstract

The purpose of the present work is to introduce extended notion of weak statistical convergence on normed spaces. Furthermore, some
certain properties of this mode of convergence are given.
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1. Introduction

Zygmund introduced the idea of statistical convergence in [1]. Fast and Steinhaus introduced statistical convergence to assign limit to
sequences which are not convergent in the usual sense independently in the same year (see [2],[3]).

We begin by recalling the notion of asymptotic (or natural) density of a set A⊂ N such that

δ (A) = lim
n→∞

1
n
|{k ≤ n : k ∈ A}| ,

whenever the limit exists. |{.}| indicates the cardinality of the enclosed set. A sequence (xk) of numbers is called statistically convergent to a
number x provided that for ε > 0,

lim
n→∞

1
n
|{k ≤ n : |xk− x| ≥ ε}|= 0.

In this case, S− lim
k→∞

xk = x. This notion is used an effective tool to resolve many problems in ergodic theory, fuzzy set theory, trigonometric

series and Banach spaces. Also many researchers studied related topics with summability theory. (see [4]-[6]).

A sequence (xk) in a normed space X is said to be weakly convergent to x ∈ X provided that lim
k→∞

ϕ (xk− x) = 0 for each ϕ ∈ X∗, the

continuous dual of X . In this case, we write W − lim
k→∞

xk = x.

Connor et al. introduced weak statistical convergence and used it to give description of Banach spaces with seperable duals in [7].

A sequence (xk) in a normed space X is said to be weakly statistically convergent to x∈X provided that, for each ε > 0, δ ({k ≤ n : |ϕ (xk− x)| ≥ ε})=
0 for each ϕ ∈ X∗. In this case, we write WS− lim

k→∞
xk = x. The set of all weakly statistically convergent sequences is denoted by WS.

Bhardwaj et al. defined weak statistical Cauchy sequences in a normed space X and studied weak statistical convergence in lp spaces in [8].
Meenakshi et al. studied weak λ -statistical convergence, weak λ -statistically Cauchy and weak (V,λ )-summability in a normed space X in
[9].

Weighted statistical convergence introduced by Karakaya and Chisti in [10]. Also Küçükaslan studied this concept in [11]. Then the modified
definition is given by Mursaleen et al. in [12] as follow:
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Let (pk) be a positive sequence of nonnegative numbers such that p0 > 0 and Pn =
n
∑

k=0
pk → ∞ as n→ ∞. A sequence (xk) is weighted

statistically convergent (or SN̄ -convergent) to x if for ε > 0, the set {k ∈ N : pk |xk− x| ≥ ε} has weighted density zero, i.e.

lim
n→∞

1
Pn
|{k ≤ Pn : pk |xk− x| ≥ ε}|= 0.

It is denoted by SN̄ − lim
k→∞

xk = x. SN̄ denote the set of these sequences. Ghosal studied the concept of weighted statistical convergence of

order α in [13].

2. Main Results

In this section, we give the notion of weighted norm statistical convergence, weighted weak statistical convergence, weighted weak statistical
Cauchy sequence and weighted weak (N̄, tn)-summability. Then we establish the relationship between these notions and give some important
properties related to the modes of these covergences. Let K ⊆ N, the set of positive integers, the weighted density of K is defined by

δN̄ (K) = lim
n→∞

1
Pn
|{k ≤ Pn : k ∈ K}| .

In particular, if we choose pk = 1, then it reduces to natural density. After that we use (tk) instead of (pk) in our results to avoid confusing

and Tn =
n
∑

k=0
tk→ ∞ as n→ ∞. Throughout the paper, X denotes a normed linear space, X∗ is its continuous dual.

Now, we begin with the following definitions.

Definition 2.1. A sequence (xk) in X is called weighted norm statistically convergent (or S (N̄)-convergent) to x ∈ X if for every ε > 0,

lim
n→∞

1
Tn
|{k ≤ Tn : tk ‖xk− x‖ ≥ ε}|= 0

In this case we write S (N̄)− lim
k→∞

xk = x. S (N̄) denotes the set of these sequences in X .

Definition 2.2 A sequence (xk) in X is called weighted weakly statistically convergent (or WSN̄ -convegent) to x ∈ X if for every ε > 0,

lim
n→∞

1
Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|= 0

for every ϕ ∈ X∗. In this case we write WSN̄ − lim
k→∞

xk = x. WSN̄ denotes the set of these sequences in X .

Definition 2.3. A sequence (xk) in X is called weighted weakly statistically Cauchy sequence (or WSN̄ -Cauchy) if for every ε > 0, there
exists a number n = n0 (ε) such that

lim
n→∞

1
Tn
|{k ≤ Tn : tk |ϕ (xk− xn0)| ≥ ε}|= 0

for every ϕ ∈ X∗.

Definition 2.4. A sequence (xk) in X is called weighted weakly (N̄, tn)-summable (or W (N̄, tn)-summable) to x ∈ X provided that

lim
n→∞

1
Tn

n

∑
k=0

tk |ϕ (xk− x)|= 0

for each ϕ ∈ X∗. In this case we write W (N̄, tn)− lim
k→∞

xk = x. W (N̄, tn) denotes the set of these sequences in X .

For particular case tk = 1, definition 2.1, definition 2.2 coincide with norm statistical convergence, weak statistical convergence which are
defined in [7], definition 2.4 coincide with weak C1-summability is given in [15] and definition 2.3 coincide with weak statistically Cauchy is
given in [8].

Theorem 2.5 For any sequence (xk) in X , if (xk) ∈WSN̄ , then it has a unique limit value.

Proof. Suppose that there exists two limit value such as x1 6= x2. Choose ε = 1
2 |ϕ (x1− x2)|> 0 and tk > c > 0. Then we have

1 ≤ 1
Tn
|{k ≤ Tn : tk |ϕ (x1− x2)| ≥ εc}|

≤ 1
Tn

∣∣∣{k ≤ Tn : tk |ϕ (x− x1)| ≥
εc
2

}∣∣∣+ 1
Tn

∣∣∣{k ≤ Tn : tk |ϕ (x− x2)| ≥
εc
2

}∣∣∣ .
The right hand side limit is equal to zero. Hence x1 6= x2 is impossible.
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Theorem 2.6 Let (xk) and (yk) be the sequences in X and c is a scalar. Then the following statements hold.
(i) If WSN̄ − lim

k→∞
xk = x, then WSN̄ − lim

k→∞
cxk = cx.

(ii) If WSN̄ − lim
k→∞

xk = x and WSN̄ − lim
k→∞

yk = y, then WSN̄ − lim
k→∞

(xk + yk) = x+ y.

Theorem 2.7 A sequence (xk) in X is WSN̄ -convergent to x if and only if there exists a set K = {k1 < k2 < k3 < ...}⊂N such that δN̄ (K) = 1
and lim

k∈K
tk |ϕ (xk− x)|= 0 for each ϕ ∈ X∗.

Proof. Assume that the sequence (xk) is weighted weakly statistically convergent to x. Let ε > 0 and ϕ ∈ X∗ be arbitrary. Consider
Mr =

{
k : tk |ϕ (xk− x)| ≥ 1

r
}

and Kr =
{

k : tk |ϕ (xk− x)|< 1
r
}

for r = 1,2, ... . From the assumption δN̄ (Mr) = 0. Also

K1 ⊃ K2 ⊃ ...⊃ Ki ⊃ Ki+1 ⊃ ... (2.1)

and

δN̄ (Kr) = 1, r = 1,2, ... . (2.2)

Now to prove the desired result assume that lim
k∈Kr

pk |ϕ (xk− x)| 6= 0. Hence there exist ε > 0 for which tk |ϕ (xk− x)| ≥ ε for infinitely terms.

If we take Kε = {k : tk |ϕ (xk− x)|< ε} and ε > 1
r (r = 1,2, ...), then δN̄ (Kε ) = 0 and by (2.1), Kr ⊂ Kε . This means δN̄ (Kr) = 0 and it

contradicts by (2.2). As a result we have lim
k∈Kr

tk |ϕ (xk− x)|= 0 for each arbitrary ϕ ∈ X∗.

Conversely, suppose that there exists a set K = {k1 < k2 < k3 < ...} ⊂ N with δN̄ (K) = 1 and lim
k∈K

tk |ϕ (xk− x)| = 0 for every ϕ ∈ X∗.

So we can find a positive integer n0 such that tk |ϕ (xk− x)| < ε for all k ≥ n0, k ∈ K and ϕ ∈ X∗. Mε = {k : tk |ϕ (xk− x)| ≥ ε} ⊆
N−

{
kn0+1,kn0+2,kn0+3, ...

}
and therefore δN̄ (Mε ) = 0. This shows that (xk) is WSN̄ -convergent to x.

Theorem 2.8 For any sequence (xk) in X , if tk < 1 and W − lim
k→∞

xk = x, then WSN̄ − lim
k→∞

xk = x.

Proof. Assume that a sequence (xk) in X is weakly convergent to x and tk < 1. Then for every ε > 0 and each ϕ ∈ X∗, there exists a positive
integer n0 such that |ϕ (xk− x)|< ε for all k ≥ n0. Thus the set Mε = {k ∈ N : |ϕ (xk− x)| ≥ ε} is finite and we have

1
Tn
|{k ≤ Tn : |ϕ (xk− x)| ≥ ε}| ≥ 1

Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}| .

The left hand side tends to zero. This means (xk) is also weighted weakly statistically convergent to x.

The converse of this result is not true. It will be seen from following example.

Example 2.9 Let tk < 1 and (xk) ∈ `p (1 < p < ∞) defined by

x(k)j =


m, i f j ≤ k, k = m2,
1
k , i f j ≤ k, k 6= m2,
0, otherwise.

For k 6= m2 and arbitrary ϕ ∈ `∗p, there is unique y ∈ `q such that

|ϕ (xk)| =

∣∣∣∣∣ ∞

∑
j=1

x(k)j y j

∣∣∣∣∣
≤ ‖x‖p ‖y‖q

≤

(
∞

∑
j=1

∣∣∣x(k)j

∣∣∣p)1/p(
∞

∑
j=1

∣∣y j
∣∣q)1/q

≤

(
k

∑
j=1

1
kp

)1/p

H1/q

=

(
H
k

)1/q
→ 0

for some positive constant H as k→ ∞. Hence we have WSN̄ − lim
k→∞

xk = 0 by Theorem 2.7. For k = m2, consider the functional defined on

`p by ϕ j (x) = x j, where (xk) ∈ `p. Clearly, ϕ j (xk) = x(k)j =
√

k→ ∞, as k→ ∞. Hence, (xk) is not weakly convergent.

Theorem 2.10 S (N̄)-convergence implies WSN̄ -convergence with same limit in X but the converse is not true.

Proof. Let (xk) in X , be a sequence which is S (N̄)-convergent to x. Then for every ε > 0,

lim
n→∞

1
Tn
|{k ≤ Tn : tk ‖xk− x‖ ≥ ε}|= 0.
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Now for every ε > 0 and each ϕ ∈ X∗,

1
Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}| ≤ 1

Tn
|{k ≤ Tn : tk ‖ϕ‖‖xk− x‖ ≥ ε}|

=
1
Tn

∣∣∣∣{k ≤ Tn : tk ‖xk− x‖ ≥ ε

‖ϕ‖

}∣∣∣∣ .
This means x is also WSN̄ -convergent to x.

We give an example to show that the converse of this result is not true.

Example 2.11 Let consider the space Lp (−1,1) for p > 1. Then define xk : (−1,1)→ R by

xk (a) =
{

k1/p, i f a ∈ [0, 1
n ]

0, otherwise.

and let choose tk = 1/2. Then we have W − lim
k→∞

xk = 0 in Lp (−1,1) [14]. By Theorem 2.8 we have WSN̄ − lim
k→∞

xk = 0. Next we show that

it is not S (N̄)-convergent to 0. Since ‖xk‖Lp(−1,1) = 1 we have

lim
n→∞

2
n

∣∣∣∣{k ≤ n
2

:
1
2
‖xk−0‖ ≥ ε

}∣∣∣∣ 6= 0

for 0 < ε < 1
2 . Hence (xk) is not a S (N̄)-convergent sequence.

Theorem 2.12 If a sequence (xk) in X is weighted weakly (N̄, tn)-summable to x, then it is weighted weakly statistically convergent to x.

Proof. Let (xk) is weighted weakly (N̄, tn)-summable to x. Then for each ϕ ∈ X∗ and ε > 0, we have

1
Tn

∞

∑
k=0

tk |ϕ (xk− x)| ≥ 1
Tn

n

∑
k=0

k∈Ktn (ε)

tk |ϕ (xk− x)| ≥ ε

Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|

where Ktn (ε) = |{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|. Hence (xk) is also weighted weakly statistically convergent to x.

Theorem 2.13 If (tk) ∈ `∞ and WSN̄ − lim
k→∞

xk = x, then W (N̄, tn)− lim
k→∞

xk = x for a sequence (xk) in X .

Proof. Suppose that (tk) ∈ `∞ and (xk) is weighted weakly statistically convergent to x. Since ϕ ∈ X∗, ϕ is bounded and we have
tk |ϕ (xk− x)| ≤ H for all k.

1
Tn

n

∑
k=1

tk |ϕ (xk− x)| =
1
Tn

n

∑
k=1

k∈Ktn (ε)

tk |ϕ (xk− x)|+ 1
Tn

n

∑
k=1

k∈Kc
tn (ε)

tk |ϕ (xk− x)|

≤ H
Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|+ ε .

This means that (xk) is weighted weakly (N̄, tn)-summable to x.

Theorem 2.14 Let

lim
n→∞

inf
Tn

n
≥ 1 and lim

n→∞
sup

Tn

n
< ∞. (2.3)

(i) If (2.3) and tk < 1 hold, then WS (X)⊂WSN̄ (X).
(ii) If (2.3) and tk ≥ 1 hold, then WSN̄ (X)⊂WS (X).

Proof. (i) If we take a sequence (xk) from the set WS (X) and by (2.3), we have

1
n
|{k ≤ n : |ϕ (xk− x)| ≥ ε}| ≥ 1

n
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|

=

(
Tn

n

)
1
Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|

for arbitrary ε > 0. Also taking the limit as n→ ∞ we have (xk) belongs to WSN̄ (X).

(ii) If we take a sequence (xk) from the set WSN̄ (X) and by (2.3), we have

1
n
|{k ≤ n : |ϕ (xk− x)| ≥ ε}| ≤ 1

n
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|

=

(
Tn

n

)
1
Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}|
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for arbitrary ε > 0.

Corollary 2.15 Let (2.3) holds and tk ≥ 1. Then the following statements hold.
(i) Weighted norm statistical convergence implies norm statistical convergence.
(ii) Weighted weak (N̄, tn)-summability implies weak C1-summability.
(iii) Weighted weak statistical convergence implies weak statistical convergence.
(iv) Every weighted weak statistical Cauchy sequence is weak statistical Cauchy sequence, in a normed space X .

Theorem 2.16 For a complete normed space X , if a sequence (xk) is WSN̄ -Cauchy, then it is WSN̄ -convergent.

Proof. Suppose that (xk) is WSN̄ -Cauchy sequence. For given ε > 0,

1
Tn
|{k ≤ Tn : tk |ϕ (xk− x)| ≥ ε}| ≤ 1

Tn

∣∣∣{k ≤ Tn : tk
∣∣∣ϕ (xk− xḱ(n)

)∣∣∣≥ ε

2

}∣∣∣
+

1
Tn

∣∣∣{k ≤ Tn : tk
∣∣∣ϕ (xḱ(n)− xk

)∣∣∣≥ ε

2

}∣∣∣ ,
which gives that (xk) is WSN̄ -convergent. The converse implication is true while tk < 1 such as if (xk) is WSN̄ -convergent then it is
WSN̄ -Cauchy sequence.

Theorem 2.17 If dimX < ∞, then S (N̄)-convergence is equivalent to WSN̄ -convergence.

Proof. We have from Theorem 2.10 that S (N̄)-convergence implies WSN̄ -convergence. Hence we need to prove that WSN̄ -convergence
implies S (N̄)-convergence. Consider a basis {e1,e2,e3, ...,en} for X and the sequence (xk) which is WSN̄ -convergent to x, where

xk = ak
1e1 +ak

2e2 + ...+ak
nen for k = 1,2, ... ,

and

x = a1e1 +a2e2 + ...+anen.

Let define the linear functionals ϕi ∈ X∗ (i = 1,2, ...,n) as follows:

ϕi
(
e j
)
=

{
1, if i = j
0, if i 6= j.

Since (xk) is WSN̄ -convergent to x, it follows that ϕi (xk) is S (N̄)-convergent to ϕi (x). This implies a(k)i is S (N̄)-convergent to ai, as

ϕi (xk) = a(k)i and ϕi (x) = ai. For ε > 0,

1
Tn

∣∣∣{k ≤ Tn : tk
∣∣∣a(k)i −ai

∣∣∣≥ ε

}∣∣∣= 0 (2.4)

for i = 1,2, ...,n. Now we have

tk ‖xk− x‖= tk

∥∥∥∥∥ n

∑
i=1

(
a(k)i −ai

)
ei

∥∥∥∥∥≤ tk
n

∑
i=1

∣∣∣a(k)i −ai

∣∣∣‖ei‖ ≤ tkH
n

∑
i=1

∣∣∣a(k)i −ai

∣∣∣
where H = max‖ei‖. Hence we have for ε > 0,

{k ≤ Tn : tk ‖xk− x‖ ≥ ε} ⊆

{
k ≤ Tn : tk

n

∑
i=1

∣∣∣a(k)i −ai

∣∣∣≥ ε

H

}
=

{
k ≤ Tn : tk

∣∣∣a(k)1 −a1

∣∣∣≥ ε

H

}
∪ ...∪

{
k ≤ Tn : tk

∣∣∣a(k)n −an

∣∣∣≥ ε

H

}
.

Consequently we have the desired result from (2.4).

3. Conclusion

The concept of statistical convergence has applications in different fields of mathematics. In this paper, the concepts of weighted weak
statistical convergence, weighted norm statistically convergence, weighted weak statistical Cauchy sequence, weighted weak (N̄, tn)-
summability are introduced. Some topological properties of these concepts are investigated. Introduced constructions and obtained results in
this paper open new directions for further research.
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