# On Subclasses Of Bi-Starlike Functions Defined By Tremblay Fractional Derivative Operator 

Sevtap Sümer Eker ${ }^{1 *}$ and Bilal Şeker ${ }^{2}$<br>${ }^{1}$ Department of Mathematics, Faculty of Science, Dicle University, TR-21280, Diyarbakır, Turkey<br>${ }^{2}$ Department of Mathematics, Faculty of Science, Dicle University, TR-21280, Diyarbakır, Turkey<br>*Corresponding author E-mail: sevtaps35@ gmail.com


#### Abstract

In this paper, we introduce and investigate new subclasses of strongly bi-starlike and bi-starlike functions defined by Tremblay fractional derivative operator in the open unit disk. Also we obtain upper bounds for the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions belonging to these classes. Unlike recent studies, we use different technique for obtain the upper bounds on the coefficients $\left|a_{3}\right|$. Theorems proved in this paper generalizes the results given in [3].


Keywords: bi-starlike functions, Tremblay operator, Bi-univalent functions, Fractional derivative, strongly bi-starlike functions, Coefficient bounds 2010 Mathematics Subject Classification: 30C45, 30C50, 30C80

## 1. Introduction

Let $\mathscr{A}$ denote the class of functions $f(z)$ which are analytic in the open unit disk $\mathbb{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$ and having the form:
$f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$.
Also let we denote by $\mathscr{S}$, the subclass of $\mathscr{A}$ which elements are univalent in $\mathbb{U}$ ([4]).
From The Koebe's One-Quarter Theorem ([4]) says that 'the range of every $f(z) \in \mathscr{S}$ contains the disk $\{w \in \mathbb{C}:|w|<1 / 4\}$ ". Therefore every $f \in \mathscr{S}$ has an inverse and the inverse function $f^{-1}$ satisfy the following:
$f^{-1}(f(z))=z$
and
$f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$.
The function $f^{-1}$ is given by
$g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.
$=w+\sum_{n=2}^{\infty} b_{n} w^{n}$.
Let $f \in \mathscr{A}$. If both $f(z)$ and $f^{-1}(z)$ are univalent in $\mathbb{U}$, then we say that $f$ is bi-univalent in $\mathbb{U}$. The class of all bi-univalent functions in $\mathbb{U}$ given by (1.1) is denoted by $\Sigma$.
The reader can find a detailed information about the function class $\Sigma$ in [16] (see also [3],[9],[22]).

Coefficient estimates for various subclasses of bi-univalent functions have been previously studied by some authors including Ali et al. [2], Frasin [6], Kumar et al. [8], Sümer Eker [1],[21], Magesh and Yamini [10], Srivastava et al. [15],[19],[20].
We need to following definitions of fractional integral and fractional derivative for our results. (For details, see [11],[12], [17], [18]).
Definition 1. For a function $f$, the fractional integral of order $\delta$ is defined, by
$D_{z}^{-\delta} f(z)=\frac{1}{\Gamma(\delta)} \int_{0}^{z} \frac{f(\xi)}{(z-\xi)^{1-\delta}} d \xi ;(\delta>0)$,
where $f$ is an analytic function in a simply-connected region of complex $z$-plane containing the origin, and the multiplicity of $(z-\xi)^{\delta-1}$ is removed by requiring, $\log (z-\xi)$ to be real when $z-\xi>0$.
Definition 2. The fractional derivative of order $\delta$ is defined, for a function $f$, by
$D_{z}^{\delta} f(z)=\frac{1}{\Gamma(1-\delta)} \frac{d}{d z} \int_{0}^{z} \frac{f(\xi)}{(z-\xi)^{\delta}} d \xi(0 \leq \delta<1)$,
where $f$ is constrained, and the multiplicity of $(z-\xi)^{-\delta}$ is removed, as in Definition 1.
Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order $(n+\boldsymbol{\delta})$ is defined by
$D_{z}^{n+\delta} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{\delta} f(z) \quad\left(0 \leq \delta<1, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$.

By virtue of Definitions 1, 2 and 3, we have
$D_{z}^{-\delta} z^{n}=\frac{\Gamma(n+1)}{\Gamma(n+\delta+1)} z^{n+\delta} \quad(n \in \mathbb{N}, \delta>0)$
and
$D_{z}^{\delta} z^{n}=\frac{\Gamma(n+1)}{\Gamma(n-\delta+1)} z^{n-\delta} \quad(n \in \mathbb{N}, 0 \leq \delta<1)$.

In his thesis, Tremblay [23] investigated a fractional calculus operator defined in terms of the Riemann-Liouville fractional differential operator. Recently, Ibrahim and Jahangiri [7] extended the Tremblay Operator in the complex plane.

Definition 4. Let $f \in \mathscr{A}$. The Tremblay fractional derivative operator $\mathrm{T}_{z}^{\mu, \gamma}$ of a function $f$ is defined, for all $z \in \mathbb{U}$, by
$\mathrm{T}_{z}^{\mu, \gamma} f(z)=\frac{\Gamma(\gamma)}{\Gamma(\mu)} z^{1-\gamma} D_{z}^{\mu-\gamma} z^{\mu-1} f(z)$
$(0<\gamma \leq 1 ; 0<\mu \leq 1,0 \leq \mu-\gamma<1, \mu \geq \gamma)$.
Obviously, if we choose $\mu=\gamma=1$, we obtain
$\mathrm{T}_{z}^{1,1} f(z)=f(z)$.
In [5], Esa et al. defined modified of Tremblay operator of analytic functions in complex domain as follows:
Definition 5. Let $f(z) \in \mathscr{A}$. The modified Tremblay operator denoted by $\mathfrak{T}^{\mu, \gamma}: \mathscr{A} \rightarrow \mathscr{A}$ and defined as:

$$
\begin{aligned}
\mathfrak{T}_{z}^{\mu, \gamma} f(z)= & \frac{\gamma}{\mu} \mathrm{T}_{z}^{\mu, \gamma} f(z) \\
& =\frac{\Gamma(\gamma+1)}{\Gamma(\mu+1)} z^{1-\gamma} D_{z}^{\mu-\gamma} z^{\mu-1} f(z) \\
& =z+\sum_{n=2}^{\infty} \frac{\Gamma(\gamma+1) \Gamma(n+\mu)}{\Gamma(\mu+1) \Gamma(n+\gamma)} a_{n} z^{n}
\end{aligned}
$$

$(0<\gamma \leq 1 ; 0<\mu \leq 1,0 \leq \mu-\gamma<1, \mu \geq \gamma)$.
where $\mathrm{T}_{z}^{\mu, \gamma}$ denote the Tremblay fractional derivative operator. For more information about Tremblay Operator see [20]).
The object of the present paper is to introduce new subclasses of strongly bi-starlike and bi-starlike functions defined by modified Tremblay operator and find estimates on the modulus of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this class. In the sequel, it is assumed that $0<\gamma \leqq 1 ; 0<\mu \leqq 1,0<\mu-\gamma<1, \mu \geq \gamma$.

## 2. Main Results

Definition 6. A function $f(z)$ given by (1.1) is said to be in the class $\mathscr{N}_{\Sigma}(\alpha, \mu, \gamma)$ if the following conditions are satisfied:
$f \in \Sigma$ and $\left|\arg \frac{z\left(\mathfrak{T}_{z}^{\mu, \gamma} f\right)^{\prime}(z)}{\mathfrak{T}_{z}^{\mu, \gamma} f(z)}\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in \mathbb{U})$
and
$\left|\arg \frac{w\left(\mathfrak{T}_{w}^{\mu, \gamma} g\right)^{\prime}(w)}{\mathfrak{T}_{w}^{\mu, \gamma} g(w)}\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in \mathbb{U})$
where the function $g(w)$ is given by (1.2).
It is clear that for $\gamma=\mu$, this class is reduced to $S_{\Sigma}^{*}(\alpha)$ of class of strongly bi-starlike of order $\alpha(0<\alpha \leq 1)$, which is introduced by Brannan and Taha [3].

Theorem 1. If $f(z)$ given by (1.1) be in the class $\mathscr{N}_{\Sigma}(\alpha, \mu, \gamma)$, then
$\left|a_{2}\right| \leq 2 \alpha(\gamma+1) \sqrt{\frac{(\gamma+2)}{(\mu+1)[4 \alpha(\mu+2)(\gamma+1)+(1-3 \alpha)(\mu+1)(\gamma+2)]}}$
and
$\left|a_{3}\right| \leq \frac{2 \alpha(\gamma+2)(\gamma+1)^{2}}{(\mu+1)[\gamma(\mu+3)+2]}$.
Proof. For $f$ given by (1.1), we can write from (2.1) and (2.2)
$\frac{z\left(\mathfrak{T}_{z}^{\mu, \gamma} f\right)^{\prime}(z)}{\mathfrak{T}_{z}^{\mu, \gamma} f(z)}=[p(z)]^{\alpha}$
$\frac{w\left(\mathfrak{T}_{w}^{\mu, \gamma} g\right)^{\prime}(w)}{\mathfrak{T}_{w}^{\mu, \gamma} g(w)}=[q(w)]^{\alpha}$
where $p(z)$ and $q(w)$ are in Caratheódory Class $\mathscr{P}$. So $p(z)$ and $q(w)$ are have the following series expansions:
$p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$
and
$q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots$.
(see for details [4]). Now, equating the coefficients (2.5) and (2.6), we find that
$\frac{\mu+1}{\gamma+1} a_{2}=\alpha p_{1}$,
$\frac{2(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)} a_{3}-\left(\frac{\mu+1}{\gamma+1}\right)^{2} a_{2}^{2}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}$,
$-\frac{\mu+1}{\gamma+1} a_{2}=\alpha q_{1}$
and
$\left[\frac{4(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)}-\left(\frac{\mu+1}{\gamma+1}\right)^{2}\right] a_{2}^{2}-\frac{2(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)} a_{3}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}$.
From (2.9) and (2.11), we get
$p_{1}=-q_{1}$
and
$2\left(\frac{\mu+1}{\gamma+1}\right)^{2} a_{2}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)$.
Also from (2.10), (2.12) and (2.14), we get
$a_{2}^{2}=\frac{\alpha^{2}\left(p_{2}+q_{2}\right)(\gamma+2)(\gamma+1)^{2}}{(\mu+1)[4 \alpha(\mu+2)(\gamma+1)+(1-3 \alpha)(\mu+1)(\gamma+2)]}$.
It is well known that from the Caratheódory Lemma, the coefficients of $\left|p_{n}\right| \leq 2$ and $\left|q_{n}\right| \leq 2$ for $n \in \mathbb{N}$ (see [4]). If we take absolute value of both side of $a_{2}^{2}$ and if we apply the Carathéodory Lemma to coefficients $p_{2}$ and $q_{2}$ we obtain
$\left|a_{2}\right| \leq \sqrt{\frac{4 \alpha^{2}(\gamma+2)(\gamma+1)^{2}}{(\mu+1)[4 \alpha(\mu+2)(\gamma+1)+(1-3 \alpha)(\mu+1)(\gamma+2)]}}$.
This gives desired bound for $\left|a_{2}\right|$ as asserted in (2.3).
Now, in order to find the bound on $\left|a_{3}\right|$, from (2.10), (2.12) and (2.13), we can write
$4 a_{3}=\alpha \lambda\left\{\frac{4(\mu+2)(\gamma+1)-(\mu+1)(\gamma+2)}{(\mu+2)(\mu+1)} p_{2}+\frac{(\gamma+2)}{\mu+2} q_{2}+\frac{2(\alpha-1)(\gamma+1)}{\mu+1} p_{1}^{2}\right\}$
where
$\lambda=\frac{(\gamma+1)(\gamma+2)}{\gamma(\mu+3)+2}$.
If $\alpha=1$, then
$\left|a_{3}\right| \leq \frac{2 \lambda(\gamma+1)}{\mu+1}$.
Now, we consider the case $0<\alpha<1$. From (2.16), we can write
$4 \operatorname{Re}\left(a_{3}\right)=\alpha \lambda \operatorname{Re}\left\{\frac{4(\mu+2)(\gamma+1)-(\mu+1)(\gamma+2)}{(\mu+2)(\mu+1)} p_{2}+\frac{(\gamma+2)}{\mu+2} q_{2}+\frac{2(\alpha-1)(\gamma+1)}{\mu+1} p_{1}^{2}\right\}$
From Herglotz's Representation formula (see [13]) for the functions $p(z)$ and $q(w)$, we have
$p(z)=\int_{0}^{2 \pi} \frac{1+z e^{-i t}}{1-z e^{-i t}} d \mu_{1}(t)$,
and
$q(w)=\int_{0}^{2 \pi} \frac{1+w e^{-i t}}{1-w e^{-i t}} d \mu_{2}(t)$,
where $\mu_{i}(t)$ are increasing on $[0,2 \pi]$ and $\mu_{i}(2 \pi)-\mu_{i}(0)=1, i=1,2$.
We also have
$p_{n}=2 \int_{0}^{2 \pi} e^{-i n t} d \mu_{1}(t), \quad n=1,2, \ldots$,
and
$q_{n}=2 \int_{0}^{2 \pi} e^{-i n t} d \mu_{2}(t), \quad n=1,2, \ldots$
Now (2.17) can be written as follows :
$4 \operatorname{Re}\left(a_{3}\right)=2 \lambda \alpha\left\{\left(\frac{4(\gamma+1)}{\mu+1}-\frac{\gamma+2}{\mu+2}\right) \int_{0}^{2 \pi} \cos 2 t d \mu_{1}(t)+\frac{\gamma+2}{\mu+2} \int_{0}^{2 \pi} \cos 2 t d \mu_{2}(t)\right\}$

$$
-\frac{8 \lambda \alpha(1-\alpha)(\gamma+1)}{\mu+1}\left[\left(\int_{0}^{2 \pi} \operatorname{costd} \mu_{1}(t)\right)^{2}-\left(\int_{0}^{2 \pi} \operatorname{sintd} \mu_{1}(t)\right)^{2}\right]
$$

$\leq 2 \lambda \alpha\left\{\left(\frac{4(\gamma+1)}{\mu+1}-\frac{\gamma+2}{\mu+2}\right) \int_{0}^{2 \pi} \cos 2 t d \mu_{1}(t)+\frac{\gamma+2}{\mu+2} \int_{0}^{2 \pi} \cos 2 t d \mu_{2}(t)+\frac{4(1-\alpha)(\gamma+1)}{\mu+1}\left(\int_{0}^{2 \pi} \operatorname{sintd} \mu_{1}(t)\right)^{2}\right\}$
$=2 \lambda \alpha\left\{\left(\frac{4(\gamma+1)}{\mu+1}-\frac{\gamma+2}{\mu+2}\right)\left(\int_{0}^{2 \pi}\left(1-2 \sin ^{2} t\right) d \mu_{1}(t)\right)+\frac{\gamma+2}{\mu+2}\left(\int_{0}^{2 \pi}\left(1-2 \sin ^{2} t\right) d \mu_{2}(t)\right)+\frac{4(1-\alpha)(\gamma+1)}{\mu+1}\left(\int_{0}^{2 \pi} \operatorname{sint}^{2 \pi} \mu_{1}(t)\right)^{2}\right\}$.
By Jensen's inequality (see [14]), we have
$\left(\int_{0}^{2 \pi}|\sin t| d \mu(t)\right)^{2} \leq \int_{0}^{2 \pi} \sin ^{2} t d \mu(t)$.
Hence
$4 \operatorname{Re}\left(a_{3}\right) \leq 2 \lambda \alpha\left\{\frac{4(\gamma+1)}{\mu+1}-\left(\frac{4(1+\alpha)(\gamma+1)}{\mu+1}-\frac{2(\gamma+2)}{\mu+2}\right) \int_{0}^{2 \pi} \sin ^{2} t d \mu_{1}(t)-\frac{2(\gamma+2)}{\mu+2} \int_{0}^{2 \pi} \sin ^{2} t d \mu_{2}(t)\right\}$
and thus
$\operatorname{Re}\left(a_{3}\right) \leq \frac{2 \lambda \alpha(\gamma+1)}{\mu+1}$
which implies
$\left|a_{3}\right| \leq \frac{2 \lambda \alpha(\gamma+1)}{\mu+1}$.
This completes the proof of theorem.

If we choose $\gamma=\mu$, in the Theorem 1 , we have the following corollary.
Corollary 1. [3] Let $f(z)$ given by (1.1) belong to $S_{\Sigma}^{*}(\alpha)(0<\alpha \leq 1)$. Then
$\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{1+\alpha}} \quad$ and $\quad\left|a_{3}\right| \leq 2 \alpha$

## 3. The Class $\mathscr{N}_{\Sigma}(\beta, \mu, \gamma)$ and Coefficient Estimates For The Functions In This Class

Definition 7. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{N}_{\Sigma}(\beta, \mu, \gamma)$ if the following conditions are satisfied:
$f \in \Sigma \quad$ and $\quad \operatorname{Re}\left\{\frac{z\left(\mathfrak{T}_{z}^{\mu, \gamma} f\right)^{\prime}(z)}{\mathfrak{T}_{z}^{\mu, \gamma} f(z)}\right\}>\beta \quad(0 \leq \beta<1, z \in \mathbb{U})$
and
$\operatorname{Re}\left\{\frac{w\left(\mathfrak{T}_{w}^{\mu, \gamma} g\right)^{\prime}(w)}{\mathfrak{T}_{w}^{\mu, \gamma} g(w)}\right\}>\beta \quad(0 \leq \beta<1, w \in \mathbb{U})$
where the function $g$ is inverse of the function $f$ given by (1.2),
For $\gamma=\mu$, the class of $\mathscr{N}_{\Sigma}(\beta, \mu, \gamma)$ is reduced to $S_{\Sigma}^{*}(\beta)$ of bi-starlike of order $\beta(0 \leq \beta<1)$, which is introduced by Brannan and Taha [3].
Theorem 2. If $f(z)$ given by (1.1) in the class $\mathscr{N}_{\Sigma}(\beta, \mu, \gamma)$, then
$\left|a_{2}\right| \leq \sqrt{\frac{2 \lambda(1-\beta)(\gamma+1)}{\mu+1}}$
and
$\left|a_{3}\right| \leq \frac{2(1-\beta) \lambda(\gamma+1)}{\mu+1}$
where
$\lambda=\frac{(\gamma+1)(\gamma+2)}{\gamma(\mu+3)+2}$.

Proof. We can write the inequalities in (3.1) and (3.2) as in the following:
$\frac{z\left(\mathfrak{T}_{z}^{\mu, \gamma} f\right)^{\prime}(z)}{\mathfrak{T}_{z}^{\mu, \gamma} f(z)}=\beta+(1-\beta) p(z)$
and
$\frac{w\left(\mathfrak{T}_{w}^{\mu, \gamma} g\right)^{\prime}(w)}{\mathfrak{T}_{w}^{\mu, \gamma} g(w)}=\beta+(1-\beta) q(w)$
where $p(z)$ and $q(w)$ are given by (2.7) and (2.8), respectively. Like the proof of Theorem 1 , by equating coefficients of (3.5) and (3.6) yields,
$\frac{\mu+1}{\gamma+1} a_{2}=(1-\beta) p_{1}$,
$\frac{2(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)} a_{3}-\left(\frac{\mu+1}{\gamma+1}\right)^{2} a_{2}^{2}=(1-\beta) p_{2}$,
$-\frac{\mu+1}{\gamma+1} a_{2}=(1-\beta) q_{1}$
and
$\left[\frac{4(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)}-\left(\frac{\mu+1}{\gamma+1}\right)^{2}\right] a_{2}^{2}-\frac{2(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)} a_{3}=(1-\beta) q_{2}$.
From (3.7) and (3.9) we get
$p_{1}=-q_{1}$
and
$2\left(\frac{\mu+1}{\gamma+1}\right)^{2} a_{2}^{2}=(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)$.
Also from (3.8) and (3.10) we obtain
$\frac{2(\mu+1)}{\lambda(\gamma+1)} a_{2}^{2}=(1-\beta)\left(p_{2}+q_{2}\right)$,
where $\lambda=\frac{(\gamma+1)(\gamma+2)}{\gamma(\mu+3)+2}$. Thus, clearly we have
$\left|a_{2}\right|^{2} \leq \frac{\lambda(\gamma+1)}{2(\mu+1)}(1-\beta)\left(\left|p_{2}\right|+\left|q_{2}\right|\right)$.
If we apply the Carathéodory Lemma to coefficients of $p_{2}, q_{2}$ we find the upper bound on $\left|a_{2}\right|$ as given in (3.3).
For the purpose of to find the bound on $\left|a_{3}\right|$, we multiply $\frac{4(\mu+1)(\mu+2)}{(\gamma+1)(\gamma+2)}-\frac{(\mu+1)^{2}}{(\gamma+1)^{2}}$ and $\frac{(\mu+1)^{2}}{(\gamma+1)^{2}}$ to the equations (3.8) and (3.10) respectively and on adding them we obtain:
$\frac{4(\mu+1)(\mu+2)}{\lambda} a_{3}=(1-\beta)\left\{(3 \mu \gamma+2 \mu+7 \gamma+6) p_{2}+(\mu+1)(\gamma+2) q_{2}\right\}$.
Now, let's take absolute value of the both side of (3.15). After then, if we apply the Carathéodory Lemma to coefficients of $p_{2}, q_{2}$ we find
$\left|a_{3}\right| \leq \frac{2(1-\beta) \lambda(\gamma+1)}{\mu+1}$,
which is asserted in (3.4).
In the Theorem 2, if we choose $\gamma=\mu$, we obtain:
Corollary 2. [3] If $f(z)$ given by (1.1) belongs to $S_{\Sigma}^{*}(\beta)(0 \leq \beta<1)$, then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\beta)} \quad \text { and } \quad\left|a_{3}\right| \leq 2(1-\beta)
$$

## 4. Conclusion

In our present paper, we introduce new subclasses $\mathscr{N}_{\Sigma}(\alpha, \mu, \gamma)$ and $\mathscr{N}_{\Sigma}(\beta, \mu, \gamma)$ of strongly bi-starlike and bi-starlike functions using Tremblay fractional derivative operator. Furthermore we obtained upper bounds for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions in these classes. Unlike recent studies about bi-univalent functions, we have used Brannan and Taha's technique for obtain the upper bounds on the coefficients $\left|a_{3}\right|$. For $\gamma=\mu$, we can concluded the results which were given by Brannan and Taha [3]. In fact, our Theorems generalizes the results given in [3].

## References

[1] G. Akın and S. Sümer Eker, Coefficient estimates for a certain class of analytic and bi-univalent functions defined by fractional derivative, C. R. Acad. Sci. Sér. I 352 (2014), 1005-1010.
[2] R.M. Ali, S.K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, 25 (2012) 344-351.
[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986) 70-77.
[4] P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983
[5] Z. Esa, A. Kilicman, R. W. Ibrahim, M. R.Ismail and S. K. S. Husain, Application of Modified Complex Tremblay Operator, AIP Conference Proceedings 1739, 020059 (2016); http://doi.org/10.1063/1.4952539.
[6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24 (2011), 1569-1573.
[7] R.W. Ibrahim, J.M. Jahangiri, Boundary fractional differential equation in a complex domain, Boundary Value Problems (2014) ; Article ID 66: 1 - 11.
[8] S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxford J. Inform. Math. Sci. 29 (2013), 487-504.
[9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
[10] N. Magesh and J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, Internat. Math. Forum 27 (2013), $1337-1344$.
[11] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978), 53-59.
[12] S. Owa and H.M.Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (1987), 1057-1077.
[13] Ch. Pommerenke, Univalent functions, Göttingen: Vandenhoeck Ruprecht 1975
[14] W.Rudin, Real and Complex Analysis, McGraw-Hill Education; 3 edition (May 1, 1986)
[15] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), $242-246$.
[16] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[17] H.M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, linear operators and certain subclasses of analytic functions, Nagoya Math.J. 106 (1987),1-28.
[18] H.M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, Ellis Horwood Limited, Chichester and JohnWiley and Sons, NewYork, Chichester, Brisbane and Toronto, 1989.
[19] H. M. Srivastava, S. Sümer Eker and R. M. Ali, Coefficient Bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845.
[20] H. M. Srivastava, S. Sümer Eker, S. G. Hamidi, J. M.Jahangiri, Faber Polynomial Coefficient Estimates for Bi-univalent Functions Defined by the Tremblay Fractional Derivative Operator, Bulletin of the Iranian Mathematical Society (2018), 44 (1), 149-157.
[21] S. Sümer Eker, Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turkish J Math (2016) 40: 641-646.
[22] T.S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[23] R. Tremblay, Une Contribution 'a la Théorie de la Dérivée Fractionnaire, Ph.D. thesis, Laval University, Québec, 1974.

