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Abstract

In this paper, we introduce and investigate new subclasses of strongly bi-starlike and bi-starlike functions defined by Tremblay fractional
derivative operator in the open unit disk. Also we obtain upper bounds for the coefficients |a2| and |a3| of functions belonging to these
classes. Unlike recent studies, we use different technique for obtain the upper bounds on the coefficients |a3|. Theorems proved in this paper
generalizes the results given in [3].
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1. Introduction

Let A denote the class of functions f (z) which are analytic in the open unit disk U = {z : z ∈ Cand |z|< 1} and normalized by the
conditions f (0) = f ′(0)−1 = 0 and having the form:

f (z) = z+
∞

∑
n=2

anzn. (1.1)

Also let we denote by S , the subclass of A which elements are univalent in U ([4]).
From The Koebe’s One-Quarter Theorem ([4]) says that ”the range of every f (z) ∈S contains the disk {w ∈ C : |w|< 1/4}”. Therefore
every f ∈S has an inverse and the inverse function f−1 satisfy the following:

f−1 ( f (z)) = z (z ∈ U)

and

f
(

f−1(w)
)
= w

(
|w|< r0( f ), r0( f )≥ 1

4

)
.

The function f−1 is given by

g(w) = f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + · · · . (1.2)

= w+
∞

∑
n=2

bnwn.

Let f ∈A . If both f (z) and f−1(z) are univalent in U, then we say that f is bi-univalent in U. The class of all bi-univalent functions in U
given by (1.1) is denoted by Σ.
The reader can find a detailed information about the function class Σ in [16] (see also [3],[9],[22]).
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Coefficient estimates for various subclasses of bi-univalent functions have been previously studied by some authors including Ali et al. [2],
Frasin [6], Kumar et al. [8], Sümer Eker [1],[21], Magesh and Yamini [10], Srivastava et al. [15],[19],[20].
We need to following definitions of fractional integral and fractional derivative for our results. (For details, see [11],[12], [17], [18]).
Definition 1. For a function f , the fractional integral of order δ is defined, by

D−δ
z f (z) =

1
Γ(δ )

∫ z

0

f (ξ )
(z−ξ )1−δ

dξ ; (δ > 0),

where f is an analytic function in a simply-connected region of complex z-plane containing the origin, and the multiplicity of (z−ξ )δ−1 is
removed by requiring, log(z−ξ ) to be real when z−ξ > 0.
Definition 2. The fractional derivative of order δ is defined, for a function f , by

Dδ
z f (z) =

1
Γ(1−δ )

d
dz

∫ z

0

f (ξ )
(z−ξ )δ

dξ (0≤ δ < 1),

where f is constrained, and the multiplicity of (z−ξ )−δ is removed, as in Definition 1.
Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order (n+δ ) is defined by

Dn+δ
z f (z) =

dn

dzn Dδ
z f (z) (0≤ δ < 1,n ∈ N0 = N∪{0}) .

By virtue of Definitions 1, 2 and 3, we have

D−δ
z zn =

Γ(n+1)
Γ(n+δ +1)

zn+δ (n ∈ N,δ > 0)

and

Dδ
z zn =

Γ(n+1)
Γ(n−δ +1)

zn−δ (n ∈ N,0≤ δ < 1).

In his thesis, Tremblay [23] investigated a fractional calculus operator defined in terms of the Riemann-Liouville fractional differential
operator. Recently, Ibrahim and Jahangiri [7] extended the Tremblay Operator in the complex plane.

Definition 4. Let f ∈A . The Tremblay fractional derivative operator Tµ,γ
z of a function f is defined, for all z ∈ U, by

Tµ,γ
z f (z) =

Γ(γ)

Γ(µ)
z1−γ Dµ−γ

z zµ−1 f (z)

(0 < γ ≤ 1; 0 < µ ≤ 1, 0≤ µ− γ < 1, µ ≥ γ).

Obviously, if we choose µ = γ = 1, we obtain

T1,1
z f (z) = f (z).

In [5], Esa et al. defined modified of Tremblay operator of analytic functions in complex domain as follows:

Definition 5. Let f (z) ∈A . The modified Tremblay operator denoted by Tµ,γ : A →A and defined as:

T
µ,γ
z f (z) =

γ

µ
Tµ,γ

z f (z)

=
Γ(γ +1)
Γ(µ +1)

z1−γ Dµ−γ
z zµ−1 f (z)

= z+
∞

∑
n=2

Γ(γ +1)Γ(n+µ)

Γ(µ +1)Γ(n+ γ)
anzn

(0 < γ ≤ 1; 0 < µ ≤ 1, 0≤ µ− γ < 1, µ ≥ γ).

where Tµ,γ
z denote the Tremblay fractional derivative operator. For more information about Tremblay Operator see [20]).

The object of the present paper is to introduce new subclasses of strongly bi-starlike and bi-starlike functions defined by modified Tremblay
operator and find estimates on the modulus of the coefficients |a2| and |a3| for functions in this class. In the sequel, it is assumed that
0 < γ 5 1; 0 < µ 5 1, 0 < µ− γ < 1, µ ≥ γ .
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2. Main Results

Definition 6. A function f (z) given by (1.1) is said to be in the class NΣ(α,µ,γ) if the following conditions are satisfied:

f ∈ Σ and
∣∣∣∣arg

z(Tµ,γ
z f )′(z)

T
µ,γ
z f (z)

∣∣∣∣< απ

2
(0 < α ≤ 1,z ∈ U) (2.1)

and

∣∣∣∣arg
w(Tµ,γ

w g)′(w)
T

µ,γ
w g(w)

∣∣∣∣< απ

2
(0 < α ≤ 1,w ∈ U) (2.2)

where the function g(w) is given by (1.2).
It is clear that for γ = µ , this class is reduced to S∗

Σ
(α) of class of strongly bi-starlike of order α (0 < α ≤ 1), which is introduced by

Brannan and Taha [3].

Theorem 1. If f (z) given by (1.1) be in the class NΣ(α,µ,γ), then

∣∣a2
∣∣≤ 2α(γ +1)

√
(γ +2)

(µ +1) [4α(µ +2)(γ +1)+(1−3α)(µ +1)(γ +2)]
(2.3)

and

∣∣a3
∣∣≤ 2α(γ +2)(γ +1)2

(µ +1)[γ(µ +3)+2]
. (2.4)

Proof. For f given by (1.1), we can write from (2.1) and (2.2)

z(Tµ,γ
z f )′(z)

T
µ,γ
z f (z)

= [p(z)]α (2.5)

w(Tµ,γ
w g)′(w)

T
µ,γ
w g(w)

= [q(w)]α (2.6)

where p(z) and q(w) are in Caratheódory Class P . So p(z) and q(w) are have the following series expansions:

p(z) = 1+ p1z+ p2z2 + p3z3 + · · · (2.7)

and

q(w) = 1+q1w+q2w2 +q3w3 + · · · . (2.8)

(see for details [4]). Now, equating the coefficients (2.5) and (2.6), we find that

µ +1
γ +1

a2 = α p1, (2.9)

2(µ +1)(µ +2)
(γ +1)(γ +2)

a3−
(

µ +1
γ +1

)2
a2

2 = α p2 +
α(α−1)

2
p2

1, (2.10)

−µ +1
γ +1

a2 = αq1 (2.11)

and[
4(µ +1)(µ +2)
(γ +1)(γ +2)

−
(

µ +1
γ +1

)2
]

a2
2−

2(µ +1)(µ +2)
(γ +1)(γ +2)

a3 = αq2 +
α(α−1)

2
q2

1. (2.12)

From (2.9) and (2.11), we get

p1 =−q1 (2.13)
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and

2
(

µ +1
γ +1

)2
a2

2 = α
2(p2

1 +q2
1). (2.14)

Also from (2.10), (2.12) and (2.14), we get

a2
2 =

α2(p2 +q2)(γ +2)(γ +1)2

(µ +1) [4α(µ +2)(γ +1)+(1−3α)(µ +1)(γ +2)]
. (2.15)

It is well known that from the Caratheódory Lemma, the coefficients of |pn| ≤ 2 and |qn| ≤ 2 for n ∈N (see [4]). If we take absolute value of
both side of a2

2 and if we apply the Carathéodory Lemma to coefficients p2 and q2 we obtain

∣∣a2
∣∣≤√ 4α2(γ +2)(γ +1)2

(µ +1) [4α(µ +2)(γ +1)+(1−3α)(µ +1)(γ +2)]
.

This gives desired bound for |a2| as asserted in (2.3).

Now, in order to find the bound on |a3|, from (2.10), (2.12) and (2.13), we can write

4a3 = αλ

{
4(µ +2)(γ +1)− (µ +1)(γ +2)

(µ +2)(µ +1)
p2 +

(γ +2)
µ +2

q2 +
2(α−1)(γ +1)

µ +1
p2

1

}
(2.16)

where

λ =
(γ +1)(γ +2)
γ(µ +3)+2

.

If α = 1, then

|a3| ≤
2λ (γ +1)

µ +1
.

Now, we consider the case 0 < α < 1. From (2.16), we can write

4Re(a3) = αλRe
{

4(µ +2)(γ +1)− (µ +1)(γ +2)
(µ +2)(µ +1)

p2 +
(γ +2)
µ +2

q2 +
2(α−1)(γ +1)

µ +1
p2

1

}
(2.17)

From Herglotz’s Representation formula (see [13]) for the functions p(z) and q(w), we have

p(z) =
∫ 2π

0

1+ ze−it

1− ze−it dµ1(t),

and

q(w) =
∫ 2π

0

1+we−it

1−we−it dµ2(t),

where µi(t) are increasing on [0,2π] and µi(2π)−µi(0) = 1 , i = 1,2.
We also have

pn = 2
∫ 2π

0
e−intdµ1(t), n = 1,2, . . . ,

and

qn = 2
∫ 2π

0
e−intdµ2(t), n = 1,2, . . . .

Now (2.17) can be written as follows :

4Re(a3) = 2λα

{(
4(γ +1)

µ +1
− γ +2

µ +2

)∫ 2π

0
cos2tdµ1(t)+

γ +2
µ +2

∫ 2π

0
cos2tdµ2(t)

}

−8λα(1−α)(γ +1)
µ +1

[(∫ 2π

0
costdµ1(t)

)2
−
(∫ 2π

0
sintdµ1(t)

)2
]
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≤ 2λα

{(
4(γ +1)

µ +1
− γ +2

µ +2

)∫ 2π

0
cos2tdµ1(t)+

γ +2
µ +2

∫ 2π

0
cos2tdµ2(t)+

4(1−α)(γ +1)
µ +1

(∫ 2π

0
sintdµ1(t)

)2
}

= 2λα

{(
4(γ +1)

µ +1
− γ +2

µ +2

)(∫ 2π

0
(1−2sin2t)dµ1(t)

)
+

γ +2
µ +2

(∫ 2π

0
(1−2sin2t)dµ2(t)

)
+

4(1−α)(γ +1)
µ +1

(∫ 2π

0
sintdµ1(t)

)2
}
.

By Jensen’s inequality (see [14]), we have

(∫ 2π

0
|sint|dµ(t)

)2
≤
∫ 2π

0
sin2tdµ(t).

Hence

4Re(a3)≤ 2λα

{
4(γ +1)

µ +1
−
(

4(1+α)(γ +1)
µ +1

− 2(γ +2)
µ +2

)∫ 2π

0
sin2tdµ1(t)−

2(γ +2)
µ +2

∫ 2π

0
sin2tdµ2(t)

}
and thus

Re(a3)≤
2λα(γ +1)

µ +1

which implies

|a3| ≤
2λα(γ +1)

µ +1
.

This completes the proof of theorem.

If we choose γ = µ , in the Theorem 1, we have the following corollary.

Corollary 1. [3] Let f (z) given by (1.1) belong to S∗
Σ
(α) (0 < α ≤ 1). Then

|a2| ≤
2α√
1+α

and |a3| ≤ 2α.

3. The Class NΣ(β ,µ,γ) and Coefficient Estimates For The Functions In This Class

Definition 7. A function f (z) given by (1.1) is said to be in the class NΣ(β ,µ,γ) if the following conditions are satisfied:

f ∈ Σ and Re
{

z(Tµ,γ
z f )′(z)

T
µ,γ
z f (z)

}
> β (0≤ β < 1,z ∈ U) (3.1)

and

Re
{

w(Tµ,γ
w g)′(w)

T
µ,γ
w g(w)

}
> β (0≤ β < 1,w ∈ U) (3.2)

where the function g is inverse of the function f given by (1.2),
For γ = µ , the class of NΣ(β ,µ,γ) is reduced to S∗

Σ
(β ) of bi-starlike of order β (0≤ β < 1), which is introduced by Brannan and Taha [3].

Theorem 2. If f (z) given by (1.1) in the class NΣ(β ,µ,γ), then

∣∣a2
∣∣≤√2λ (1−β )(γ +1)

µ +1
(3.3)

and

∣∣a3
∣∣≤ 2(1−β )λ (γ +1)

µ +1
(3.4)

where

λ =
(γ +1)(γ +2)
γ(µ +3)+2

.
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Proof. We can write the inequalities in (3.1) and (3.2) as in the following:

z(Tµ,γ
z f )′(z)

T
µ,γ
z f (z)

= β +(1−β )p(z) (3.5)

and

w(Tµ,γ
w g)′(w)

T
µ,γ
w g(w)

= β +(1−β )q(w) (3.6)

where p(z) and q(w) are given by (2.7) and (2.8), respectively. Like the proof of Theorem 1, by equating coefficients of (3.5) and (3.6) yields,

µ +1
γ +1

a2 = (1−β )p1, (3.7)

2(µ +1)(µ +2)
(γ +1)(γ +2)

a3−
(

µ +1
γ +1

)2
a2

2 = (1−β )p2, (3.8)

−µ +1
γ +1

a2 = (1−β )q1 (3.9)

and[
4(µ +1)(µ +2)
(γ +1)(γ +2)

−
(

µ +1
γ +1

)2
]

a2
2−

2(µ +1)(µ +2)
(γ +1)(γ +2)

a3 = (1−β )q2. (3.10)

From (3.7) and (3.9) we get

p1 =−q1 (3.11)

and

2
(

µ +1
γ +1

)2
a2

2 = (1−β )2(p2
1 +q2

1). (3.12)

Also from (3.8) and (3.10) we obtain

2(µ +1)
λ (γ +1)

a2
2 = (1−β )(p2 +q2), (3.13)

where λ =
(γ+1)(γ+2)
γ(µ+3)+2 . Thus, clearly we have

|a2|2 ≤
λ (γ +1)
2(µ +1)

(1−β )(|p2|+ |q2|) . (3.14)

If we apply the Carathéodory Lemma to coefficients of p2, q2 we find the upper bound on |a2| as given in (3.3).

For the purpose of to find the bound on |a3|, we multiply 4(µ+1)(µ+2)
(γ+1)(γ+2) −

(µ+1)2

(γ+1)2 and (µ+1)2

(γ+1)2 to the equations (3.8) and (3.10) respectively and
on adding them we obtain:

4(µ +1)(µ +2)
λ

a3 = (1−β ){(3µγ +2µ +7γ +6)p2 +(µ +1)(γ +2)q2} . (3.15)

Now, let’s take absolute value of the both side of (3.15). After then, if we apply the Carathéodory Lemma to coefficients of p2, q2 we find

∣∣a3
∣∣≤ 2(1−β )λ (γ +1)

µ +1
,

which is asserted in (3.4).

In the Theorem 2, if we choose γ = µ , we obtain:

Corollary 2. [3] If f (z) given by (1.1) belongs to S∗
Σ
(β ) (0≤ β < 1), then

|a2| ≤
√

2(1−β ) and |a3| ≤ 2(1−β ).
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4. Conclusion

In our present paper, we introduce new subclasses NΣ(α,µ,γ) and NΣ(β ,µ,γ) of strongly bi-starlike and bi-starlike functions using
Tremblay fractional derivative operator. Furthermore we obtained upper bounds for |a2| and |a3| for the functions in these classes. Unlike
recent studies about bi-univalent functions, we have used Brannan and Taha’s technique for obtain the upper bounds on the coefficients |a3|.
For γ = µ , we can concluded the results which were given by Brannan and Taha [3]. In fact, our Theorems generalizes the results given in
[3].
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