Some Notes On (2,0)-Semitensor Bundle

Furkan Yıldırım ${ }^{1 *}$
${ }^{1}$ Narman Vocational Training School, Ataturk University, 25530, Erzurum, Turkey
*Corresponding author E-mail: furkan.yildirim@atauni.edu.tr

Abstract

We investigate some lifts of vector felds on a cross-section in the semi-tensor (pull-back) bundle tM of tensor bundle of type $(2,0)$ by using projection (submersion) of the tangent bundle TM and we find some relation for them.

Keywords: Cross-section, pull-back bundle, tangent bundle, semi-tensor bundle.
2010 Mathematics Subject Classification: 53A45, 55R10, 55R65, 57R25.

1. Introduction

Let M_{n} be an n-dimensional differentiable manifold of class C^{∞}, and let $\left(T\left(M_{n}\right), \pi_{1}, M_{n}\right)$ be a tangent bundle over M_{n}. We use the notation $\left(x^{i}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}\right)$, where the indices i, j, \ldots run from 1 to $2 n$, the indices $\bar{\alpha}, \bar{\beta}, \ldots$ from 1 to n and the indices α, β, \ldots from $n+1$ to $2 n, x^{\alpha}$ are coordinates in $M_{n}, x^{\bar{\alpha}}=y^{\alpha}$ are fibre coordinates of the tangent bundle $T\left(M_{n}\right)$.
Let now $\left(T_{0}^{2}\left(M_{n}\right), \widetilde{\pi}, M_{n}\right)$ be a tensor bundle of the type (2,0) ([4], [7], [[9], p.118], [11]) over base space M_{n}, and let $T\left(M_{n}\right)$ be tangent bundle determined by a natural projection (submersion) $\pi_{1}: T\left(M_{n}\right) \rightarrow M_{n}$. The semi-tensor bundle (pull-back [5],[6],[10],[12],[14],[15]) of the $(2,0)$-tensor bundle $\left(T_{0}^{2}\left(M_{n}\right), \widetilde{\pi}, M_{n}\right)$ is the bundle $\left(t_{0}^{2}\left(M_{n}\right), \pi_{2}, T\left(M_{n}\right)\right)$ over tangent bundle $T\left(M_{n}\right)$ with a total space

$$
\begin{aligned}
t_{0}^{2}\left(M_{n}\right) & =\left\{\left(\left(x^{\bar{\alpha}}, x^{\alpha}\right), x^{\overline{\bar{\alpha}}}\right) \in T\left(M_{n}\right) \times\left(T_{0}^{2}\right)_{x}\left(M_{n}\right): \pi_{1}\left(x^{\bar{\alpha}}, x^{\alpha}\right)=\tilde{\pi}\left(x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\alpha}\right)\right\} \\
& \subset T\left(M_{n}\right) \times\left(T_{0}^{2}\right)_{x}\left(M_{n}\right)
\end{aligned}
$$

and with the projection map $\pi_{2}: t_{0}^{2}\left(M_{n}\right) \rightarrow T\left(M_{n}\right)$ defined by $\pi_{2}\left(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}\right)$, where $\left(T_{0}^{2}\right)_{x}\left(M_{n}\right)\left(x=\pi_{1}(\tilde{x}), \tilde{x}=\left(x^{\bar{\alpha}}, x^{\alpha}\right) \in T\left(M_{n}\right)\right)$ is the tensor space at a point x of M_{n}, where $x^{\overline{\bar{\alpha}}}=t^{\beta_{1} \beta_{2}}\left(\overline{\bar{\alpha}}, \overline{\bar{\beta}}, \ldots=2 n+1, \ldots, 2 n+n^{2}\right)$ are fiber coordinates of the tensor bundle $T_{0}^{2}\left(M_{n}\right)$. The generalization of pull-back bundles to higher order cases is known as Pontryagin bundles [8].
If $\left(x^{i^{\prime}}\right)=\left(x^{\bar{\alpha}^{\prime}}, x^{\alpha^{\prime}}, x^{\bar{\alpha}^{\prime}}\right)$ is another system of local adapted coordinates in the semi-tensor bundle $t_{0}^{2}\left(M_{n}\right)$, then we have
$\left\{\begin{aligned} x^{\bar{\alpha}^{\prime}} & =\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}} y^{\beta}, \\ x^{\alpha^{\prime}} & =x^{\alpha^{\prime}}\left(x^{\beta}\right), \\ x^{\overline{\bar{\alpha}}^{\prime}} & =t^{\beta_{1}^{\prime} \beta_{2}^{\prime}}=A_{\alpha_{1}}^{\beta_{1}^{\prime}} A_{\alpha_{2}}^{\beta_{2}^{\prime}} t^{\alpha_{1} \alpha_{2}} .\end{aligned}\right.$
The Jacobian of (1.1) has components
$\bar{A}=\left(A_{J}^{I^{\prime}}\right)=\left(\begin{array}{ccc}A_{\beta}^{\alpha^{\prime}} & A_{\beta \varepsilon}^{\alpha^{\prime}} y^{\varepsilon} & 0 \\ 0 & A_{\beta}^{\alpha^{\prime}} & 0 \\ 0 & t^{\alpha_{1} \alpha_{2}} \partial_{\beta}\left(A_{\alpha_{1}}^{\beta_{1}^{\prime}} A_{\alpha_{2}}^{\beta_{2}^{\prime}}\right) & A_{\alpha_{1}}^{\beta_{1}^{\prime}} A_{\alpha_{2}}^{\beta_{2}^{\prime}}\end{array}\right)$,
where $I=(\bar{\alpha}, \alpha, \overline{\bar{\alpha}}), J=(\bar{\beta}, \beta, \overline{\bar{\beta}}), I, J, \ldots=1, \ldots, 2 n+n^{2}, A_{\beta}^{\alpha^{\prime}}=\frac{\partial x^{\alpha^{\prime}}}{\partial x^{\beta}}, A_{\beta \varepsilon}^{\alpha^{\prime}}=\frac{\partial^{2} x^{\alpha^{\prime}}}{\partial x^{\beta} \partial x^{\varepsilon}}$.
It is easily verified that the condition $\operatorname{Det} \bar{A} \neq 0$ is equivalent to the condition:
$\operatorname{Det}\left(A_{\beta}^{\alpha^{\prime}}\right) \neq 0, \operatorname{Det}\left(A_{\beta}^{\alpha^{\prime}}\right) \neq 0, \operatorname{Det}\left(A_{\alpha_{1}}^{\beta_{1}^{\prime}} A_{\alpha_{2}}^{\beta_{2}^{\prime}}\right) \neq 0$.

Also, $\operatorname{dim} t_{0}^{2}\left(M_{n}\right)=2 n+n^{2}$.
We note that cross-sections for $(2,0)$-tensor bundle and semi-tensor bundle of the type (2,0) were examined in ([2],[3]). The main purpose of this paper is to study the behaviour of complete lifts of vector fields on cross-sections for (2,0) -semi tensor (pull-back) bundle by using projection of the tangent bundle $T\left(M_{n}\right)$. We denote by $\mathfrak{S}_{q}^{p}\left(T\left(M_{n}\right)\right)$ and $\mathfrak{S}_{q}^{p}\left(M_{n}\right)$ the modules over $F\left(T\left(M_{n}\right)\right)$ and $F\left(M_{n}\right)$ of all tensor fields of the type (p, q) on $T\left(M_{n}\right)$ and M_{n}, respectively, where $F\left(T\left(M_{n}\right)\right)$ and $F\left(M_{n}\right)$ denote the rings of real-valued C^{∞}-functions on $T\left(M_{n}\right)$ and M_{n}, respectively.

2. Vertical lifts of tensor fields and $\gamma-$ operator

Let $A \in \mathfrak{I}_{0}^{2}\left(T\left(M_{n}\right)\right)$. On putting
${ }^{v v} A=\left(\begin{array}{l}{ }^{v \nu} A^{\bar{\alpha}} \\ { }^{v \nu} A^{\alpha} \\ { }^{v v} A^{\bar{\alpha}}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ A^{\alpha_{1} \alpha_{2}}\end{array}\right)$,
from (1.2), we easily see that with ${ }^{v v} A^{\prime}=\bar{A}\left({ }^{v v} A\right)$. The vector field ${ }^{v v} A \in \mathfrak{I}_{0}^{1}\left(t_{0}^{2}\left(M_{n}\right)\right)$ is called the vertical lift of $A \in \mathfrak{I}_{0}^{2}\left(T\left(M_{n}\right)\right)$ to the semi-tensor bundle of the type $(2,0)$.
For any $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$, if we take account of (1.2), we can prove that $(\gamma \varphi)^{\prime}=\bar{A}(\gamma \varphi)$. Where $\gamma \varphi$ is a vector field in $\pi^{-1}(U)$ defined by
$\gamma \varphi=(\gamma \varphi)^{I}=\left(\begin{array}{l}0 \\ 0 \\ t^{\varepsilon \alpha_{2}} \varphi_{\varepsilon}^{\alpha_{1}}+t^{\alpha_{1} \varepsilon} \varphi_{\varepsilon}^{\alpha_{2}}\end{array}\right)$.
From (1.2) we easily see that the vector fields $\gamma \varphi$ defined in each $\pi^{-1}(U) \subset t_{0}^{2}\left(M_{n}\right)$ determine global vertical vector fields on $t_{q}^{p}\left(M_{n}\right)$. We call $\gamma \varphi$ the vertical-vector lift of the tensor field $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$ to $t_{0}^{2}\left(M_{n}\right)$.

For any $\varphi \in \mathfrak{I}_{1}^{1}\left(T\left(M_{n}\right)\right)$, if we take account of (1.2), we can prove that $(\gamma \varphi)^{\prime}=\bar{A}(\gamma \varphi)$, where $\gamma \varphi$ is a vector field defined by
$\gamma \varphi=\left(\begin{array}{l}y^{\varepsilon} \varphi_{\varepsilon}^{\beta} \\ 0 \\ 0\end{array}\right)$
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$.

3. Complete lifts of vector fields

Let $X \in \mathfrak{I}_{0}^{1}\left(T\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha}\left(x^{\alpha}\right) \partial_{\alpha}$. The complete lift ${ }^{c} X$ of X to tangent bundle is defined by ${ }^{c} X=X^{\alpha} \partial_{\alpha}+y^{\varepsilon} \partial_{\varepsilon} X^{\alpha} \partial_{\bar{\alpha}}$ [[13], p.15]. On putting
${ }^{c c} X=\left(\begin{array}{l}{ }^{c} X^{\bar{\beta}} \\ { }^{c} X^{\beta} \\ { }^{c} X^{\bar{\beta}}\end{array}\right)=\left(\begin{array}{l}y^{\varepsilon} \partial_{\varepsilon} X^{\beta} \\ X^{\beta} \\ t^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+t^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}}\end{array}\right)$,
from (1.2), we easily see that ${ }^{c c} X^{\prime}=\bar{A}\left({ }^{c c} X\right)$. The vector field ${ }^{c c} X$ is called the complete lift of ${ }^{c} X \in \mathfrak{I}_{0}^{1}\left(T\left(M_{n}\right)\right)$ to $t_{0}^{2}\left(M_{n}\right)$.
Proof. If $X \in \mathfrak{I}_{0}^{1}\left(M_{n}\right)$ and $\left(\begin{array}{c}{ }^{c c} X^{\bar{\beta}} \\ { }^{c} X^{\beta} \\ { }^{c} X^{\bar{\beta}}\end{array}\right)$ are components of $\left({ }^{c c} X\right)^{J}$ with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t_{0}^{2}\left(M_{n}\right)$, then we have by (1.2) and (3.1):

$$
\begin{aligned}
\left({ }^{c c} X\right)^{J} & =A_{I}^{J}\left({ }^{c c} X\right)^{I} \\
\left({ }^{c} X\right)^{J} & =A_{\bar{\alpha}}^{J}\left({ }^{c c} X\right)^{\bar{\alpha}}+A_{\alpha}^{J}\left({ }^{c c} X\right)^{\alpha}+A_{\overline{\bar{\alpha}}}^{J}\left({ }^{c c} X\right)^{\bar{\alpha}} .
\end{aligned}
$$

Firstly, if $J=\bar{\beta}$, we have

$$
\begin{aligned}
\left({ }^{c c} X\right)^{\bar{\beta}} & =A_{\bar{\alpha}}^{\bar{\beta}}\left({ }^{c c} X\right)^{\bar{\alpha}}+A_{\alpha}^{\bar{\beta}}\left({ }^{c c} X\right)^{\alpha}+A_{\overline{\bar{\alpha}}}^{\bar{\beta}}\left({ }^{c c} X\right)^{\overline{\bar{\alpha}}} \\
& =A_{\alpha}^{\beta}\left(y^{\varepsilon} \partial_{\varepsilon} X^{\alpha}\right)+\left(A_{\beta \varepsilon}^{\alpha} y^{\varepsilon}\right) X^{\alpha} \\
& =y^{\varepsilon} A_{\alpha}^{\beta}\left(\partial_{\varepsilon} X^{\alpha}\right)+y^{\varepsilon}\left(\partial_{\varepsilon} A_{\alpha}^{\beta}\right) X^{\alpha} \\
& =y^{\varepsilon} \partial_{\varepsilon}\left(A_{\alpha}^{\beta} X^{\alpha}\right) \\
& =y^{\varepsilon} \partial_{\varepsilon} X^{\beta}
\end{aligned}
$$

by virtue of (1.2) and (3.1). Secondly, if $J=\beta$, we have

$$
\begin{aligned}
\left({ }^{c c} X\right)^{\beta} & =A_{\bar{\alpha}}^{\beta}\left({ }^{c c} X\right)^{\bar{\alpha}}+A_{\alpha}^{\beta}\left({ }^{c c} X\right)^{\alpha}+A_{\overline{\bar{\alpha}}}^{\beta}\left({ }^{c c} X\right)^{\overline{\bar{\alpha}}} \\
& =A_{\alpha}^{\beta} X^{\alpha}=X^{\beta}
\end{aligned}
$$

by virtue of (1.2) and (3.1). Thirdly, if $J=\overline{\bar{\beta}}$, then we have

$$
\begin{aligned}
\left({ }^{c c} X\right)^{\overline{\bar{\beta}}}= & t^{\varepsilon \alpha_{2}}\left(\partial_{\varepsilon} X^{\alpha_{1}}\right) A_{\alpha_{1}}^{\beta_{1}}+t^{\varepsilon \alpha_{2}}\left(\partial_{\varepsilon} A_{\alpha_{1}}^{\beta_{1}}\right) X^{\alpha_{1}} \\
& +t^{\alpha_{1} \varepsilon}\left(\partial_{\varepsilon} X^{\alpha_{2}}\right) A_{\alpha_{2}}^{\beta_{2}}+t^{\alpha_{1} \varepsilon}\left(\partial_{\varepsilon} A_{\alpha_{2}}^{\beta_{2}}\right) X^{\alpha_{2}} \\
= & \sum_{p=1}^{4} a_{p},
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1}=t^{\varepsilon \alpha_{2}}\left(\partial_{\varepsilon} X^{\alpha_{1}}\right) A_{\alpha_{1}}^{\beta_{1}}, \\
& a_{2}=t^{\varepsilon \alpha_{2}}\left(\partial_{\varepsilon} A_{\alpha_{1}}^{\beta_{1}}\right) X^{\alpha_{1}}, \\
& a_{3}=t^{\alpha_{1} \varepsilon}\left(\partial_{\varepsilon} X^{\alpha_{2}}\right) A_{\alpha_{2}}^{\beta_{2}}, \\
& a_{4}=t^{\alpha_{1} \varepsilon}\left(\partial_{\varepsilon} A_{\alpha_{2}}^{\beta_{2}}\right) X^{\alpha_{2}} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
A_{\alpha}^{\overline{\bar{\beta}}}\left({ }^{c c} X\right)^{\alpha}= & A_{\overline{\bar{\beta}}}^{\overline{\bar{\beta}}}\left({ }^{c c} X\right)^{\bar{\alpha}}+A_{\alpha}^{\overline{\bar{\beta}}}\left({ }^{c c} X\right)^{\alpha}+A_{\overline{\bar{\alpha}}}^{\overline{\bar{\beta}}}\left({ }^{c c} X\right)^{\overline{\bar{\alpha}}} \\
= & X^{\alpha} t^{\alpha_{1} \alpha_{2}}\left(\partial_{\alpha} A_{\alpha_{1}}^{\beta_{1}}\right) A_{\alpha_{2}}^{\beta_{2}}+X^{\alpha} t^{\alpha_{1} \alpha_{2}} A_{\alpha_{1}}^{\beta_{1}} \partial_{\alpha} A_{\alpha_{2}}^{\beta_{2}} \\
& +A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{2}} t{ }^{\alpha \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{2}} t_{1} \varepsilon \partial_{\varepsilon} X^{\alpha_{2}} \\
= & \sum_{q=1}^{4} b_{q},
\end{aligned}
$$

where,

$$
\begin{aligned}
b_{1} & =X^{\alpha} t^{\alpha_{1} \alpha_{2}}\left(\partial_{\alpha} A_{\alpha_{1}}^{\beta_{1}}\right) A_{\alpha_{2}}^{\beta_{2}}, \\
b_{2} & =X^{\alpha} t^{\alpha_{1} \alpha_{2}} A_{\alpha_{1}}^{\beta_{1}} \partial_{\alpha} A_{\alpha_{2}}^{\beta_{2}}, \\
b_{3} & =A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}}^{\beta_{2}} \varepsilon \varepsilon^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}, \\
b_{4} & =A_{\alpha_{1}}^{\beta_{1}} A_{\alpha_{2}} t^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}} .
\end{aligned}
$$

You can check that
$a_{1}=b_{3}, a_{2}=b_{1}, a_{3}=b_{2}, a_{4}=b_{4}$.
Thus, we have (3.1).

4. Horizontal lifts of vector fields

Let $X \in \mathfrak{I}_{0}^{1}\left(T\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. If we take account of (1.2), we can prove that ${ }^{H H} X^{\prime}=\bar{A}\left({ }^{H H} X\right)$, where ${ }^{H H} X \in \mathfrak{I}_{0}^{1}\left(t_{0}^{2}\left(M_{n}\right)\right)$ is a vector field defined by
${ }^{H H} X=\left(\begin{array}{l}-\Gamma_{\alpha}^{\beta} X^{\alpha} \\ X^{\beta} \\ -\Gamma_{\sigma \varepsilon}^{\alpha_{1}} t^{\varepsilon \alpha_{2}} X^{\sigma}-\Gamma_{\sigma \varepsilon}^{\alpha_{2}} \varepsilon^{\alpha_{1} \varepsilon} X^{\sigma}\end{array}\right)$,
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ on $t_{0}^{2}\left(M_{n}\right)$. We call ${ }^{H H} X$ the horizontal lift of the vector field X to $t_{0}^{2}\left(M_{n}\right)$. Where $\Gamma_{\alpha}^{\beta}=y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\beta}$.

Theorem 4.1. If $X \in \mathfrak{I}_{0}^{1}\left(T\left(M_{n}\right)\right)$ then
${ }^{c c} X-{ }^{H H} X=\gamma(\hat{\nabla} X)+\gamma(\nabla X)$,
where the symmetric affine connection $\hat{\nabla}$ is the given by $\widehat{\Gamma}_{\beta \theta}^{\alpha}=\Gamma_{\theta \beta}^{\alpha}$.

Proof. From (2.2), (2.3), (3.1) and (4.1), we have

$$
\left.\begin{array}{rl}
{ }^{c} X-{ }^{H H} X= & \left(\begin{array}{l}
y^{\varepsilon} \partial_{\varepsilon} X^{\beta} \\
X^{\beta} \\
t^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+t^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}}
\end{array}\right)-\left(\begin{array}{l}
-\Gamma_{\alpha}^{\beta} X^{\alpha} \\
X^{\beta} \\
-\Gamma_{\sigma \varepsilon}^{\alpha_{1}} t^{\varepsilon \alpha_{2}} X^{\sigma}-\Gamma_{\sigma \varepsilon}^{\alpha_{2}} t^{\alpha_{1} \varepsilon} X^{\sigma}
\end{array}\right) \\
= & \left(\begin{array}{l}
y^{\varepsilon} \partial_{\varepsilon} X^{\beta}+y^{\varepsilon} \Gamma_{\varepsilon \alpha}^{\beta} X^{\alpha} \\
0 \\
t^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+t^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}}+\Gamma_{\sigma \varepsilon}^{\alpha_{1}} t^{\varepsilon \alpha_{2}} X^{\sigma}+\Gamma_{\sigma \varepsilon}^{\alpha_{2}} t^{\alpha_{1} \varepsilon} X^{\sigma}
\end{array}\right) \\
= & \left(\begin{array}{l}
0 \\
0 \\
t^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+\Gamma_{\sigma \varepsilon}^{\alpha_{1}} \varepsilon^{\alpha_{2}} X^{\sigma}+t^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}}+\Gamma_{\sigma \varepsilon}^{\alpha_{2}} t^{\alpha_{1} \varepsilon} X^{\sigma}
\end{array}\right) \\
& +\left(\begin{array}{l}
y^{\varepsilon}\left(\partial_{\varepsilon} X^{\beta}+\Gamma_{\varepsilon \alpha}^{\beta} X^{\alpha}\right) \\
0 \\
0
\end{array}\right) \\
& +\left(\begin{array}{l}
y^{\varepsilon}\left(\partial_{\varepsilon} X^{\beta}+\Gamma_{\varepsilon \alpha}^{\beta} X^{\alpha}\right) \\
0 \\
0 \\
0 \\
t^{\varepsilon \alpha_{2}}\left(\partial_{\varepsilon} X^{\alpha_{1}}+\Gamma_{\sigma \varepsilon}^{\alpha_{1}} X^{\sigma}\right)+t^{\alpha_{1} \varepsilon}\left(\partial_{\varepsilon} X^{\alpha_{2}}+\Gamma_{\sigma \varepsilon}^{\alpha_{2}} X^{\sigma}\right)
\end{array}\right) \\
= & \left(\begin{array}{l}
0 \\
0 \\
t^{\varepsilon \alpha_{2}}\left(\partial_{\varepsilon} X^{\alpha_{1}}+\Gamma_{\varepsilon \sigma}^{\alpha_{1}} X^{\sigma}\right)+t^{\alpha_{1} \varepsilon}\left(\partial_{\varepsilon} X^{\alpha_{2}}+\Gamma_{\varepsilon \sigma}^{\alpha_{2}} X^{\sigma}\right)
\end{array}\right) \\
& +\left(\begin{array}{l}
y^{\varepsilon}\left(\nabla_{\varepsilon} X^{\beta}\right) \\
0 \\
0
\end{array}\right) \\
= & \left(\begin{array}{l}
0 \\
0 \\
t^{\varepsilon \alpha_{2}}\left(\hat{\nabla}_{\varepsilon} \widetilde{X}^{\alpha_{1}}\right)+t^{\alpha_{1} \varepsilon}\left(\hat{\nabla}_{\varepsilon} \widetilde{X}^{\alpha_{2}}\right)
\end{array}\right)+\left(\begin{array}{l}
y^{\varepsilon}\left(\nabla_{\varepsilon} X^{\beta}\right) \\
0 \\
0
\end{array}\right) \\
\hat{\nabla} X)+\gamma(\nabla X)
\end{array}\right)
$$

which prove Theorem 4.1.

5. Cross-sections in the semi-tensor bundle of the type $(2,0)$

Let $\xi \in \mathfrak{I}_{0}^{2}\left(M_{n}\right)$ be a tensor field of the type $(2,0)$ on M_{n}. Then the correspondence $x \rightarrow \xi_{x}, \xi_{x}$ being the value of ξ at $x \in T\left(M_{n}\right)$, determines a cross-section β_{ξ} of $t_{0}^{2}\left(M_{n}\right)$.
Thus if $\sigma_{\xi}: M_{n} \rightarrow T_{0}^{2}\left(M_{n}\right)$ is a cross-section of $\left(T_{0}^{2}\left(M_{n}\right), \tilde{\pi}, M_{n}\right)$, such that $\tilde{\pi} \circ \sigma_{\xi}=I_{\left(M_{n}\right)}$, an associated cross-section $\beta_{\xi}: T\left(M_{n}\right) \rightarrow t_{0}^{2}\left(M_{n}\right)$ of semi-tensor bundle $\left(t_{0}^{2}\left(M_{n}\right), \pi_{2}, T\left(M_{n}\right)\right)$ defined by [[1], p. 217-218], [5], [6], [[13], p. 122]:
$\beta_{\xi}\left(x^{\bar{\alpha}}, x^{\alpha}\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, \sigma_{\xi} \circ \pi_{1}\left(x^{\bar{\alpha}}, x^{\alpha}\right)\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, \sigma_{\xi}\left(x^{\alpha}\right)\right)=\left(x^{\bar{\alpha}}, x^{\alpha}, \xi^{\alpha_{1} \alpha_{2}}\left(x^{\beta}\right)\right)$.
If the $(2,0)$-tensor field ξ has the local components $\xi^{\alpha_{1} \alpha_{2}}\left(x^{\alpha}\right)$, the cross-section $\beta_{\xi}\left(T\left(M_{n}\right)\right)$ of $t_{0}^{2}\left(M_{n}\right)$ is locally expressed by
$\left\{\begin{array}{l}x^{\bar{\beta}}=y^{\beta}=V^{\beta}\left(x^{\alpha}\right), \\ x^{\beta}=x^{\beta}, \\ x^{\bar{\beta}}=\xi^{\alpha_{1} \alpha_{2}}\left(x^{\alpha}\right),\end{array}\right.$
with respect to the coordinates $x^{B}=\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t_{0}^{2}\left(M_{n}\right)$.
$x^{\bar{\alpha}}=y^{\alpha}$ being considered as parameters. Differentiating (5.1) by $x^{\bar{\alpha}}=y^{\alpha}$, we have vector fields $B_{(\bar{\theta})}(\bar{\theta}=1, \ldots, n)$ with components
$B_{(\bar{\theta})}=\frac{\partial x^{B}}{\partial x^{\bar{\theta}}}=\partial_{\bar{\theta}} x^{B}=\left(\begin{array}{l}\partial_{\bar{\theta}} V^{\beta} \\ \partial_{\overline{\bar{x}}} x^{\beta} \\ \partial_{\bar{\theta}} \xi^{\alpha_{1} \alpha_{2}}\end{array}\right)$,
which are tangent to the cross-section $\beta_{\theta}\left(T\left(M_{n}\right)\right)$.
Thus $B_{(\bar{\theta})}$ have components
$B_{(\bar{\theta})}:\left(B_{(\bar{\theta})}^{B}\right)=\left(\begin{array}{l}\delta_{\bar{\theta}}^{\beta} \\ 0 \\ 0\end{array}\right)$,
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t_{0}^{2}\left(M_{n}\right)$. Where
$\delta_{\bar{\theta}}^{\beta}=A_{\bar{\theta}}^{\beta}=\frac{\partial x^{\beta}}{\partial x^{\bar{\theta}}}$.
Let $X \in \mathfrak{I}_{0}^{1}\left(T\left(M_{n}\right)\right)$, i.e. $X=X^{\alpha} \partial_{\alpha}$. We denote by $B X$ the vector field with local components
$B X:\left(B_{(\bar{\theta})}^{B} X^{\bar{\theta}}\right)=\left(\begin{array}{l}\delta_{\bar{\theta}}^{B} X^{\bar{\theta}} \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}A_{\bar{\theta}}^{B} X^{\bar{\theta}} \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}X^{\beta} \\ 0 \\ 0\end{array}\right)$
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t_{0}^{2}\left(M_{n}\right)$, which is defined globally along $\beta_{\xi}\left(T\left(M_{n}\right)\right)$.
Differentiating (5.1) by x^{θ}, we have vector fields $C_{(\theta)}(\theta=n+1, \ldots, 2 n)$ with components
$C_{(\theta)}=\frac{\partial x^{B}}{\partial x^{\theta}}=\partial_{\theta} x^{B}=\left(\begin{array}{l}\partial_{\theta} x^{\bar{\beta}} \\ \partial_{\theta} x^{\beta} \\ \partial_{\theta} \xi^{\alpha_{1} \alpha_{2}}\end{array}\right)$,
which are tangent to the cross-section $\beta_{\xi}\left(T\left(M_{n}\right)\right)$.
Thus $C_{(\theta)}$ have components
$C_{(\theta)}:\left(C_{(\theta)}^{B}\right)=\left(\begin{array}{l}\partial_{\theta} V^{\beta} \\ \delta_{\theta}^{\beta} \\ \partial_{\theta} \xi^{\alpha_{1} \alpha_{2}}\end{array}\right)$,
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t_{0}^{2}\left(M_{n}\right)$. Where
$\delta_{\theta}^{\beta}=A_{\theta}^{\beta}=\frac{\partial x^{\beta}}{\partial x^{\theta}}$.
Let $X \in \mathfrak{I}_{0}^{1}\left(T\left(M_{n}\right)\right)$. Then we denote by $C X$ the vector field with local components
$C X:\left(C_{(\theta)}^{B} X^{\theta}\right)=\left(\begin{array}{l}X^{\theta} \partial_{\theta} V^{\beta} \\ X^{\beta} \\ X^{\theta} \partial_{\theta} \xi^{\alpha_{1} \alpha_{2}}\end{array}\right)$
with respect to the coordinates $\left(x^{\bar{\beta}}, x^{\beta}, x^{\bar{\beta}}\right)$ in $t_{0}^{2}\left(M_{n}\right)$, which is defined globally along $\beta_{\xi}\left(T\left(M_{n}\right)\right)$.
On the other hand, the fibre is locally expressed by
$\left\{\begin{aligned} x^{\bar{\beta}} & =y^{\beta}=\text { const } . \\ x^{\beta} & =\text { const. }, \\ x^{\bar{\beta}} & =t^{\alpha_{1} \alpha_{2}}=t^{\alpha_{1} \alpha_{2}},\end{aligned}\right.$
$t^{\alpha_{1} \alpha_{2}}$ being considered as parameters. Thus, on differentiating with respect to $x^{\bar{\beta}}=t^{\alpha_{1} \alpha_{2}}$, we easily see that the vector fields $E(\overline{\bar{\theta}})$ $\left(\bar{\theta}=2 n+1, \ldots, 2 n+n^{2}\right)$ with components
$E_{(\overline{\bar{\theta}})}:\left(E_{(\bar{\theta})}^{B}\right)=\partial_{\bar{\theta}} x^{B}=\left(\begin{array}{l}\partial_{\overline{\bar{\theta}}} y^{\beta} \\ \partial_{\overline{\bar{\theta}}} x^{\beta} \\ \partial_{\overline{\bar{\theta}}} t^{\alpha_{1} \alpha_{2}}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ \delta_{\gamma_{1}}^{\alpha_{1}} \delta_{\gamma_{2}}^{\alpha_{2}}\end{array}\right)$
is tangent to the fibre, where δ is the Kronecker symbol.
Let ξ be a tensor field of the type $(2,0)$ with local components
$\xi=\xi^{\gamma_{1} \gamma_{2}} \partial_{\gamma_{1}} \otimes \partial_{\gamma_{2}}$
on M_{n}.
We denote by $E \xi$ the vector field with local components
$E \xi:\left(E_{(\bar{\theta})}^{B} \xi^{\gamma_{1} \gamma_{2}}\right)=\left(\begin{array}{l}0 \\ 0 \\ \xi^{\alpha_{1} \alpha_{2}}\end{array}\right)$,
which is tangent to the fibre.
Theorem 5.1. Let X be a vector field on $T\left(M_{n}\right)$, we have along $\beta_{\xi}\left(T\left(M_{n}\right)\right)$ the formula
${ }^{c c} X=C X+B\left(L_{V} X\right)+E\left(-L_{X} \xi\right)$,
where $L_{V} X$ denotes the Lie derivative of X with respect to V, and $L_{X} \xi$ denotes the Lie derivative of ξ with respect to X.

Proof. Using (3.1), (5.2), (5.3) and (5.4), we have

$$
\begin{aligned}
C X+B\left(L_{V} X\right)+E\left(-L_{X} \xi\right)= & \left(\begin{array}{l}
X^{\theta} \partial_{\theta} V^{\beta} \\
X^{\beta} \\
X^{\theta} \partial_{\theta} \xi^{\alpha_{1} \alpha_{2}}
\end{array}\right)+\left(\begin{array}{l}
V^{\alpha} \partial_{\alpha} X^{\beta}-X^{\alpha} \partial_{\alpha} V^{\beta} \\
0 \\
0
\end{array}\right) \\
& +\left(\begin{array}{l}
0 \\
0 \\
-X^{\theta} \partial_{\theta} \xi^{\alpha_{1} \alpha_{2}}+\xi^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+\xi^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}}
\end{array}\right) \\
= & \left(\begin{array}{l}
V^{\alpha} \partial_{\alpha} X^{\beta} \\
X^{\beta} \\
\xi^{\varepsilon \alpha_{2}} \partial_{\varepsilon} X^{\alpha_{1}}+\xi^{\alpha_{1} \varepsilon} \partial_{\varepsilon} X^{\alpha_{2}}
\end{array}\right)={ }^{c c} X .
\end{aligned}
$$

Thus, we have Theorem 5.1.
On the other hand, on putting $C_{(\overline{\bar{\beta}})}=E_{(\overline{\bar{\beta}})}$, we write the adapted frame of $\beta_{\xi}\left(T\left(M_{n}\right)\right)$ as $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$. The adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$ of $\beta_{\xi}\left(T\left(M_{n}\right)\right)$ is given by the matrix
$\widetilde{A}=\left(\widetilde{A}_{B}^{A}\right)=\left(\begin{array}{ccc}\delta_{\beta}^{\alpha} & \partial_{\beta} V^{\alpha} & 0 \\ 0 & \delta_{\beta}^{\alpha} & 0 \\ 0 & \partial_{\beta} \xi_{\alpha_{1} \alpha_{2}}^{\sigma_{\sigma}} & \delta_{\alpha_{1}}^{\beta_{1}} \delta_{\alpha_{2}}^{\beta_{2}}\end{array}\right)$.
Since the matrix \widetilde{A} in (5.5) is non-singular, it has the inverse. Denoting this inverse by $(\widetilde{A})^{-1}$, we have
$(\widetilde{A})^{-1}=\left(\widetilde{A}_{C}^{B}\right)^{-1}=\left(\begin{array}{ccc}\delta_{\theta}^{\beta} & -\partial_{\theta} V^{\beta} & 0 \\ 0 & \delta_{\theta}^{\beta} & 0 \\ 0 & -\partial_{\theta} \xi_{\beta_{1} \beta_{2}}^{\sigma_{1} \sigma_{2}} & \delta_{\beta_{1}}^{\theta_{1}} \delta_{\beta_{2}}^{\theta_{2}}\end{array}\right)$,
where $\widetilde{A}(\widetilde{A})^{-1}=\left(\widetilde{A}_{B}^{A}\right)\left(\widetilde{A}_{C}^{B}\right)^{-1}=\delta_{C}^{A}=\widetilde{I}$, where $A=(\bar{\alpha}, \alpha, \overline{\bar{\alpha}}), B=(\bar{\beta}, \beta, \overline{\bar{\beta}}), C=(\bar{\theta}, \theta, \overline{\bar{\theta}})$.
Proof. In fact, from (5.5) and (5.6), we easily see that

$$
\begin{aligned}
\widetilde{A}(\widetilde{A})^{-1} & =\left(\widetilde{A}_{B}^{A}\right)\left(\widetilde{A}_{C}^{B}\right)^{-1}=\left(\begin{array}{ccc}
\delta_{\beta}^{\alpha} & \partial_{\beta} V^{\alpha} & 0 \\
0 & \delta_{\beta}^{\alpha} & 0 \\
0 & \partial_{\beta} \xi_{\alpha_{1} \sigma_{2} \sigma_{2}}^{\sigma_{2}} & \delta_{\alpha_{1}}^{\beta_{1}} \delta_{\alpha_{2}}^{\beta_{2}}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{\theta}^{\beta} & -\partial_{\theta} V^{\beta} & 0 \\
0 & \delta_{\theta}^{\beta} & 0 \\
0 & -\partial_{\theta} \xi_{\beta_{1} \beta_{2}}^{\sigma_{1} \sigma_{2}} & \delta_{\beta_{1}}^{\theta_{1}} \delta_{\beta_{2}}^{\theta_{2}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\delta_{\theta}^{\alpha} & -\partial_{\theta} V^{\alpha}+\partial_{\theta} V^{\alpha} & 0 \\
0 & \delta_{\theta}^{\alpha} & 0 \\
0 & \partial_{\theta} \xi_{\alpha_{1} \alpha_{2}}^{\sigma_{1} \sigma_{2}} \partial_{\theta} \xi_{\alpha_{1} \alpha_{2}}^{\sigma_{1} \sigma_{2}} & \delta_{\alpha_{1}}^{\theta_{1}} \delta_{\alpha_{2}}^{\theta_{2}}
\end{array}\right)=\left(\begin{array}{ccc}
\delta_{\theta}^{\alpha} & 0 & 0 \\
0 & \delta_{\theta}^{\alpha} & 0 \\
0 & 0 & \delta_{\alpha}^{\theta}
\end{array}\right)=\delta_{C}^{A}=\widetilde{I} .
\end{aligned}
$$

Then we see from Theorem 5.1 that the complete lift ${ }^{c c} X$ of a vector field $X \in \mathfrak{I}_{0}^{l}\left(T\left(M_{n}\right)\right)$ has along $\beta_{\xi}\left(T\left(M_{n}\right)\right)$ components of the form
${ }^{c} X:\left(\begin{array}{l}L_{V} X \\ X \\ -L_{X} \xi\end{array}\right)$,
with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$.
Let $A \in \mathfrak{I}_{0}^{2}\left(T\left(M_{n}\right)\right)$. If we take account of (2.1) and (5.5), we can easily prove that ${ }^{\nu v} A^{\prime}=\widetilde{A}\left({ }^{v \nu} A\right)$, where ${ }^{v \nu} A \in \mathfrak{I}_{0}^{1}\left(t_{0}^{2}\left(M_{n}\right)\right)$ is a vector field defined by
${ }^{v v} A=\left(\begin{array}{l}{ }^{v v} A^{\bar{\alpha}} \\ { }^{v v} A^{\alpha} \\ { }^{{ }^{v}} A^{\bar{\alpha}}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ A^{\alpha_{1} \alpha_{2}}\end{array}\right)$,
with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$ of $\beta_{\xi}\left(T\left(M_{n}\right)\right)$.
Let $\varphi \in \mathfrak{I}_{1}^{1}\left(M_{n}\right)$ now. If we take account of (2.2) and (5.5), we see that $(\gamma \varphi)^{\prime}=\widetilde{A}(\gamma \varphi) . \gamma \varphi$ is given by
$\gamma \varphi=(\gamma \varphi)^{I}=\left(\begin{array}{l}0 \\ 0 \\ t^{\varepsilon \alpha_{2}} \varphi_{\varepsilon}^{\alpha_{1}}+t^{\alpha_{1} \varepsilon} \varphi_{\varepsilon}^{\alpha_{2}}\end{array}\right)$,
with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$.
$B X, C X$ and $E \xi$ also have components:
$B X=\left(\begin{array}{l}X^{\alpha} \\ 0 \\ 0\end{array}\right), C X=\left(\begin{array}{l}0 \\ X^{\alpha} \\ 0\end{array}\right), E \xi=\left(\begin{array}{l}0 \\ 0 \\ \xi^{\alpha_{1} \alpha_{2}}\end{array}\right)$
respectively, with respect to the adapted frame $\left\{B_{(\bar{\beta})}, C_{(\beta)}, C_{(\overline{\bar{\beta}})}\right\}$ of the cross-section $\beta_{\xi}\left(T\left(M_{n}\right)\right)$ determined by a tensor field ξ of the type $(2,0)$ in $T\left(M_{n}\right)$.

References

[1] Isham C.J., "Modern Differential Geometry for Physicists", World Scientific, 1999.
[2] Fattaev H., Tensor fields on cross-section in the tensor bundle of the type (2,0). News of Baku Univ., Physico-mathematical Sciences Series, (2008), no: 4, p.35-43.
[3] Fattaev H., The lifts of vector fields to the semitensor bundle of the Type (2, 0), Journal of Qafqaz University, 25 (2009), no. 1, 136-140.
[4] Gezer A., Salimov A.A., Almost complex structures on the tensor bundles, Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 283-296.
[5] Husemoller D. Fibre Bundles. Springer, New York, 1994.
[6] Lawson H.B. And Michelsohn M.L. Spin Geometry. Princeton University Press., Princeton, 1989
[7] Ledger A.J. and Yano K. Almost complex structure on tensor bundles, J. Dif. Geom. 1 (1967), 355-368
[8] Pontryagin L.S. Characteristic cycles on differentiable manifolds. Amer. Math. Soc. Translation, 1950 (1950), no. 32, 72 pp.
[9] Salimov A. Tensor Operators and their Applications. Nova Science Publ., New York, 2013.
[10] Salimov A.A. and Kadıoğlu E. Lifts of derivations to the semitangent Bundle, Turk J. Math., (2000) 24, 259-266.
[11] Salimov A., Gezer A. and Akbulut K. Geodesics of Sasakian metrics on tensor bundles, Mediterr. J. Math. 2, 135-147
[12] Steenrod N. The Topology of Fibre Bundles. Princeton University Press., Princeton, 1951.
[13] Yano K. And Ishihara S. Tangent and Cotangent Bundles. Marcel Dekker, Inc., New York, 1973.
[14] Yıldırım F., On a special class of semi-cotangent bundle, Proceedings of the Institute of Mathematics and Mechanics, (ANAS) 41 (2015), no. 1, 25-38.
[15] Yıldırım F. and Salimov A. Semi-cotangent bundle and problems of lifts, Turk J. Math, (2014), 38, 325-339.

