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Abstract

We investigate some lifts of vector felds on a cross-section in the semi-tensor (pull-back) bundle tM of tensor bundle of type (2,0) by using
projection (submersion) of the tangent bundle TM and we find some relation for them.
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1. Introduction

Let M, be an n-dimensional differentiable manifold of class C*, and let (T'(M,,), 7;,M,) be a tangent bundle over M,,. We use the notation

(x') = (xa.,x"‘), where the indices i, j, ... run from 1 to 2n, the indices @, 3, ... from 1 to n and the indices , 3, ... from n+ 1 to 2n, x* are
coordinates in M;,, x* = y* are fibre coordinates of the tangent bundle T (M,,).

Let now (TOZ(M,Z)7 ﬁ,Mn) be a tensor bundle of the type (2,0) ([4], [7], [[9], p-118], [11]) over base space M,,, and let T (M,,) be tangent
bundle determined by a natural projection (submersion) 7; : T'(M,) — M,,. The semi-tensor bundle (pull-back [5],[6],[10],[12],[14],[15]) of
the (2,0) —tensor bundle (7;7(My), T, M,) is the bundle (3(M,), 7>, T (M,)) over tangent bundle 7 (M,) with a total space

(M) = {((xa,xa> ,xﬁ) e T(M,) x (T()z) (My) - m (xa,x‘x> =7 (xa,xi> = (xa)}
X
c T % (T3) (My)
X
and with the projection map 7, : 3 (My,) — T (M,,) defined by m (x%,x% x%) = (x*,x%), where (Toz)x (My) (x =m (), = (x%,x%) € T(M,))
is the tensor space at a point x of M, where X% = hih @, B,...=2n+1,...,2n+n?) are fiber coordinates of the tensor bundle TO2 (My).

The generalization of pull-back bundles to higher order cases is known as Pontryagin bundles [8].
If (x') = (xa/ ,x% x%) is another system of local adapted coordinates in the semi-tensor bundle 13(M,), then we have

xa = %);/3 yﬁ,
X —x@ (3B (1.1)

=/

X = (BB = AP AP jonce
The Jacobian of (1.1) has components
o o €
] , A i A B s},) 0
A= (Ag) = 0 Ag 0 7 (1.2)
0 rmoegy (AGAG)  AGiAG;

— = - = / o / 2,0
where [ = (&, &, &), J = (B, B.B). [, =1, 2n 42, AY = G5 AL = T

It is easily verified that the condition DetA # 0 is equivalent to the condition:

Det(A%) # 0,Det(A% ) # 0, Det(AY) AG:) # 0.
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Also, dimtg (M) =2n+n?.

We note that cross-sections for (2,0) —tensor bundle and semi-tensor bundle of the type (2,0) were examined in ([2],[3]). The main purpose
of this paper is to study the behaviour of complete lifts of vector fields on cross-sections for (2,0) —semi tensor (pull-back) bundle by using
projection of the tangent bundle 7 (M,,). We denote by 35 (T(M,)) and 3} (M,,) the modules over F (T'(M,)) and F (M,) of all tensor fields
of the type (p,q) on T(M,) and M,,, respectively, where F (T (M,)) and F (M,,) denote the rings of real-valued C~ —functions on T'(M,) and
M, respectively.

2. Vertical lifts of tensor fields and y—operator

Let A € 33(T(M,)). On putting

VVAU 0
A= A =1 o : @1
g A

from (1.2), we easily see that with ™A’ = A ("A). The vector field YA € S}(13(M,)) is called the vertical lift of A € 33(T'(M,)) to the
semi-tensor bundle of the type (2,0).

For any ¢ € 31(M,), if we take account of (1.2), we can prove that (y9)' = A (y@). Where y¢ is a vector field in 77! (U) defined by

0
ro=(vp)' = 0 : 2.2)

le(xz (Pgl 4 lals(sz

From (1.2) we easily see that the vector fields y¢ defined in each 7! (U) C 5 (M,) determine global vertical vector fields on ) (M,). We
call yg the vertical-vector lift of the tensor field ¢ € $1(M,) to 3 (M,).

For any ¢ € 31(T(M,)), if we take account of (1.2), we can prove that (y@)’ = A(y@), where Y@ is a vector field defined by

oF

y£
Yo=1 0 (2.3)
0

with respect to the coordinates (xg,xﬁ 7xﬁ).
3. Complete lifts of vector fields

LetX € S(l)(T(Mn)), ie. X = X%(x%)dy. The complete lift X of X to tangent bundle is defined by X = X*dy + y* 9 X *dg [[13], p.15].
On putting

chE yg aSXB
cx=| «xP [ = xP : (€B))
CCXE teo‘ZagXa' +z“186gX“2
from (1.2), we easily see that <X’ = A(“°X). The vector field X is called the complete lift of °X € S} (T(M,)) to 3(My).
CCXB
Proof. IfX € 3}(My) and | “X E are components of (<X )’ with respect to the coordinates (x?,xf x) on t5(My), then we have by
chE
(1.2) and (3.1):
(ch)J _ A; (CCX)I
(CLx) _ AJE(ch)(Z +A.(IX(LLX)O£ +AJ§(LLX)O£'
Firstly, if J = 3, we have

= AL (059X ®) + (Af") X°
= °A(2X) +5° (%eah) x*
= %0 (afx*)

= yoexP
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by virtue of (1.2) and (3.1). Secondly, if J/ = 3, we hav

(&

(ch)ﬁ _ Ag(CCX)a-FAg (CCX)(X —Q—A%(CCX)E

= ABxoe—xb

by virtue of (1.2) and (3.1). Thirdly, if J = E, then we have

(x)P
where
On the other hand,
A (x)® =

where,

by

by

b3

by

You can check that
ay =bz,ay =by,a3 =by,a4 = by.

Thus, we have (3.1).

4. Horizontal lifts of vector fields

(290 (9 X ) AL} + 17 (2eafy ) x

+1 (X %) Af; 41 (9pAl: ) X

4
Y ap,
p=1

al = 5% (%X AR,
a = (Al ) X%,
@y = 1% (9eX%) AR,
ay = t%E <a€A§§) X%,

A%(L'L'X)H+Ag (ch)Ot +A%(CCX)H
xe1 (9Af) ) A + X1 AR, 9l

AR AR 120 gpx o 1 AB AR 12 9, x %

4
X bg;
q=1

= X% (9 ) AL,
= x%@%pb oAl
= AbaB g x o
= Abab ey x o,

Let X € 3}(T(My)), i.e. X = X%0q. If we take account of (1.2), we can prove that 77 X" = A (HHX), where 11X € 3} (12(My)) is a vector

field defined by
—rPxe
HHX _ Xﬁ ,

,r‘glgtsazxtf _ ngglalsxa

4.1)

with respect to the coordinates (xB,xﬁ ,xﬁ) on 13(My). We call 7HX the horizontal lift of the vector field X to £3(M,). Where

o =yTla.
Theorem 4.1. IfX € 3}(T(M,)) then

cex HH X = y(VX) +y(VX),

where the symmetric affine connection V is the given by r ge = Fg‘ﬁ.
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Proof. From (2.2), (2.3), (3.1) and (4.1), we have

ysasxﬁ _FI;X(X
ccx —HHX _ X/j _ Xﬁ

1ER I XM 4 HE Y X _Fglstgoczxc _ nggtoclsxc
¥ 0eXP 43T oX

= 0
1FR P XM 4 1MEJ X P2 4 TgLt®® X 4 T bt MEXO
0

= 0

1F2 P XM 4 ToLte®XC 4 1ME9 X% 4 T MEX O
¥ (9exP + T ox%)
| o
0
0
= 0
1592 (9 XM +TGeXC) 4+ 1%% (0 X* + T2 X )
yg (agXB +FgaXa>
| o
0
0
= 0
15 (0eX ™ 4+ TgbX %) +14 (deX® +TgsX?)

B
A7 (Vex?)
0

0 y€ (VgXﬁ>
€02 (@E)?oq) o€ (@Syaz) 0

= Y(VX)+7r(VX)

which prove Theorem 4.1. O
5. Cross-sections in the semi-tensor bundle of the type (2,0)

Let & € 33(M,) be a tensor field of the type (2,0) on M,,. Then the correspondence x — &, &, being the value of & at x € T(M,), determines
a cross-section B¢ of 12 (My).

Thus if g : M, — T3 (M,) is a cross-section of (TOZ(Mn)7 TT,M,), such that T o o¢ = I(y,), an associated cross-section f¢ : T'(M,) — 12 (My)
of semi-tensor bundle (1‘5(Mn),7'1727 T(M,,)) defined by [[1], p. 217-218], [5], [6], [[13], p. 1221:

Bij (xﬁ,x‘x> = (xﬁ7xoc7o.€ om (xa,xa)> = (xa,xa,cé (xa)> = (xﬁ,xa,éa‘az (xﬁ>) .
If the (2,0)—tensor field & has the local components &% % (x*), the cross-section B¢ (T (My)) of 13(M,) is locally expressed by

xB:yB :Vﬁ (xa)7
B :xﬁ7 5.1)

of =g (),

with respect to the coordinates x? = (xﬁ,xﬁ 7xﬁ) in12(M,).
x% = y% being considered as parameters. Differentiating (5.1) by x* = y*, we have vector fields B(g) (6 =1,...,n) with components

B VP
B — i =P = o ,
(0) = 50 ® 0
PLL

which are tangent to the cross-section g (T'(Mp)).
Thus B(g) have components

By: (Bfgy)={ o |-

(=)
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with respect to the coordinates (xﬁ,xﬁ ,xﬁ) in 13 (M,). Where

68 b _ 0

0 0 90

Let X € 3} (T (My)), i.e. X = X%0. We denote by BX the vector field with local components

B 5gX5 A§X§ xB
B 0
BX:(fo ): 0 - o - o (5.2)
(0) 0 0 0

with respect to the coordinates (xﬁ,xﬁ ,xﬁ) in 12(M,), which is defined globally along Be (T (My)).
Differentiating (5.1) by x, we have vector fields Cio) (@ =n+1,...,2n) with components

B
0x8 Jox
Co) = Fr dox” = P )
8950!1 [0%]

which are tangent to the cross-section g (T (My)).
Thus C(g) have components

agvﬁ
(B ) =
Cor: (Cloy) = | 8 !
92

with respect to the coordinates (xﬁ,xﬁ 7xB) in 13(M,). Where

IxP

Let X € 3} (T(M,)). Then we denote by CX the vector field with local components
x°® dg vk

(B x0) —
cx: (clyx®) = | xP (5.3)
Xeaegalaz

with respect to the coordinates (xﬁ,xﬁ ,xB) in 2(M,), which is defined globally along Be (T (My)).
On the other hand, the fibre is locally expressed by

1P =B = const.,

xP = const.,

B _ ou0 _ o

x.B_z 1 2_[ 1 2’
[alag

being considered as parameters. Thus, on differentiating with respect to B =10 we easily see that the vector fields £ (3)

(6 =2n+1,...,2n+ n?) with components

, y agyﬁ 0
E=:|E/= |=0=x"=] o= =10
(9) < (9)) 6 a%fm o 6)9]‘] 6%2

is tangent to the fibre, where § is the Kronecker symbol.
Let & be a tensor field of the type (2,0) with local components

§=E""0y @y,
on M,,.
We denote by E& the vector field with local components
0
EE[EE evr ) =[ 0 , (5.4)
0 Yo

which is tangent to the fibre.
Theorem 5.1. Let X be a vector field on T (My), we have along Bz (T (My)) the formula

X =CX +B(LyX)+E (—Lx&),

where Ly X denotes the Lie derivative of X with respect to V, and Ly & denotes the Lie derivative of & with respect to X.
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Proof. Using (3.1), (5.2), (5.3) and (5.4), we have

X99yVh Ve XP — X%9, VP
CX+B(LyX)+E(-Lx§) = XA +1 0
Xﬂaeéa]txz 0
0
+( o

_Xeaeéalocz _‘_éE(XZaSX(Zl _,’_ g(XlSaEX(XZ

V%9 XB
= xB =<X.
580&2 aSX(l] + éaleasxaz

Thus, we have Theorem 5.1. O

On the other hand, on putting C (E) =E (E)’ we write the adapted frame of f¢ (7(M,)) as {B(B),C(m,c (E) } The adapted frame

{B ( ) } of B¢ (T (M,)) is given by the matrix
(Sﬁ gV« 0
A= (gg) - o & 0 _ (5.5

0 Jgéalar 55 oL
~ -1
Since the matrix A in (5.5) is non-singular, it has the inverse. Denoting this inverse by (A) , we have

8F —ogvh 0

A () = 0 &P o |, (5.6)
SRR S

where () = (i) (%) ' = =T where 4 = (@.0.@). 8= (§.5.5). = (0.0.8).

Proof. In fact, from (5.5) and (5.6), we easily see that

L o 55‘ (9ﬁV°‘ 0 9 _aevﬁ 0
A(A) — (A3 (Ag) - o & 0 0 0
0 g bk )\ o 365"1"2 55, %5,
53‘ —dgV* + dyV? 0 5 0 0
= 0 8¢ 0 ~( 0 8¢ 0 |=8=I
0

0 9SEE — 0l 805G 0
O
Then we see from Theorem 5.1 that the complete lift “X of a vector field X € 3/ (T(M,,)) has along Be (T (My)) components of the form

LyX
“X . X
—Lx&

with respect to the adapted frame {B(E) Cip),C (E) }

Let A € S3(T(M,)). If we take account of (2.1) and (5.5), we can easily prove that A’ = A("A), where "YA € 3(13(My,)) is a vector field
defined by

VVAa 0
VVA — VVAO( — 0
g A

with respect to the adapted frame {B(E) .Cip),C (E) } of B (T(My))-

Let ¢ € 31(M,) now. If we take account of (2.2) and (5.5), we see that (y9)’ = A(y9). Yo is given by

0
}’(P—(Y‘P)I—(O . . )
1€ @ | e o
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with respect to the adapted frame {B (B)’ Cp),C (E) }

BX, CX and E& also have components:

X 0 0
BX=1| 0 Cx=| x> | ,EE=| 0
0 0 g

respectively, with respect to the adapted frame {B (E)’C( ):C (E) } of the cross-section B¢ (7(My)) determined by a tensor field & of the
type (2,0) in 7' (Mp,).
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