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Gülnur Çelik Kızılkan1* and Kemal Aydın2

1Department of Mathematics and Computer Sciences, Faculty of Sciences,Necmettin Erbakan University, Konya, Turkey
2Department of Mathematics, Faculty of Science, Selçuk University, Konya, Turkey
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Abstract

In this study, we have given an algorithm and a step size strategy for numerical solution of Hurwitz stable differential equation systems. The
algorithm is suited for implementation using computer algebra systems. So we also have given numerical examples from various field using
this algorithm and a Maple procedure for the algorithm.
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1. Introduction

Most of real-life problems are modeled by differential equations. The calculation of the analytical solution of these problems is either
impossible or impractical. Therefore, there is a need to use numerical methods. Usually, it is important to use variable step size for the
accuracy and efficiency of solution in numerical integration of initial value problems ([11]). Also,the authors of this article investigated how
variable step size determined for numerical integrations of initial value problems with different aspects in [5, 6, 7, 8].
Consider the following Cauchy problem on D = {(t,X) : |t− t0| ≤ T, |x j− x j0| ≤ b j}

X ′ = F(t,X),X(t0) = X0 (1.1)

where X(t) = (x j(t)), X0 = (x j0), x j0 = x j(t0), F(t,X) = ( f j), f j = f j(t,x1,x2, ...,xN), F(t,X) ∈C1([t0−T, t0 +T ]×RN), X(t), X0 and
b = (b j) ∈ RN .
In [4, 7] a step size strategy for F(t,X) = AX is proposed by

hi ≤
1

α
4
√

N5
(

2δL

βi−1
)

1
2 (1.2)

such that the local error ||LEi|| ≤ δL. Here, the user determines error level δL. For general case of F(t,X) the step size strategies are also
proposed in [8].
In this paper, the step size strategy in [4, 7] is developed for the system

X ′(t) = AX(t),A ∈ RN×N ,

where the matrix A is a Hurwitz stable matrix. In Section 2; some basic concepts are given and the concept of Hurwitz stability is remained.
The step size strategy for linear differential equation systems is reviewed. In Section 3; the step size strategy for the Hurwitz systems and the
algorithm which calculates the step sizes according to the given strategy and numerical solutions are given. The numerical solutions obtained
with the new strategy and algorithm are compared with the results in [4, 7]. Finally, the given strategy and algorithm are applied to some
industrial problems.

2. Preliminaries

Firstly, we should be noted that we use the Frobenius norm for every A = (ai j) ∈ RN×N and as a norm in RN we use Euclidean norm, in this
study.
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Let we consider the following Cauchy problem on D.

X ′(t) = AX(t),X(t0) = X0 (2.1)

Here, D = {(t,X) : |t− t0| ≤ T, |x j− x j0| ≤ b j}, X(t) = (x j(t)), X0 = (x j0), x j0 = x j(t0), A = (ai j) ∈ RN×N , X(t), X0 and b = (b j) ∈ RN .
Let in i− th step numerical solution be Yi = (yi j) ∈ RN . We let construct the Cauchy problem

Z′ = AZ(t),Z(ti−1) = Yi−1,Y0 = X0, t ∈ [ti−1, ti). (2.2)

The vector of local error LEi is defined by LEi = Yi−Z(ti).
We use Euler method which is defined in [14] by

Yi+1 = Yi +hi+1Fi, (2.3)

where Fi = ( fi j) ∈ RN , Yi = (yi j) ∈ RN and hi+1 = ti+1− ti. The local error vector for the Euler’s method is given by

LEi =−
h2

i
2

A2Z(τi j),τi j ∈ [ti−1, ti) (2.4)

and the upper bound of the local error ||LEi|| is given by

||LEi|| ≤ ( 1
2 α2βi−1)

√
N5h2

i ,

where α = max1≤i, j≤N |ai j| and max1≤ j≤N(supti−1≤τi<ti |z j(τi)|)≤ βi−1.

2.1. Concept of Hurwitz Stability

The following theorem explains the concept of Hurwitz stability.

Theorem 2.1.(Lyapunov) Let A = (ai j) ∈ RN×N . The matrix A is asymptotically stable if and only if there is a solution H = H∗ > 0 of
the Lyapunov matrix equation A∗H +HA =−I. Here, H = H∗ > 0 indicates that the symmetric matrix H is a positive definite matrix and
A∗ is the transposition of the matrix A (see, [1] ).
Lyapunov theorem states if such H does exist then all the eigenvalues of matrix A lie strictly in the left-hand half-plane ([1, 10]).
Also, define the region CH = {z ∈C : Rez < 0} in the complex plane C. If σ(A)⊂CH then A ∈ RN×N is said to be Hurwitz stable ([15]).
Here σ(A) is the spectrum of A.
According to these statements, Hurwitz stability and asymptotically stability are the equivalent concepts. Because of this equivalence, we
chose to use the concept of ”Hurwitz stability” in this paper.
The stability parameter of the system (2.1) which shows the quality of Hurwitz stability and Hurwitz stability is given in [1, 10] as follows:

κ(A) = 2||A||||H||. (2.5)

If there is a solution H = H∗ > 0 of the Lyapunov equation A∗H +HA =−I, then the stability parameter is shown as κ(A)< ∞. Otherwise
it is κ(A) = ∞. For the solution of the system (2.1) the following holds

||X(t)|| ≤
√

κ(A)e−
t||A||
κ(A) ||X(0)|| (2.6)

see ([1, 2]).

2.2. The step size strategy (SSSLS)for linear systems

According to equation (2.4), the upper bound of local error for the system (2.1) is given by

||LEi|| ≤ (
1
2

α
2
βi−1)

√
N5h2

i , (2.7)

where

α = max
1≤i, j≤N

|ai j|, max
1≤ j≤N

( sup
ti−1≤τi<ti

|z j(τi)|)≤ βi−1. (2.8)

From the inequality (2.7) in step i, the step size is calculated by

hi ≤
1

α
4
√

N5
(

2δL

βi−1
)

1
2 (2.9)

such that ||LEi|| ≤ δL , where δL is the error level that is determined by user ( [4, 7] ).

3. Step Size Strategy and Algorithm for the Hurwitz Stable Systems

In this section, we will give a step size strategy for the differential equation systems with Hurwitz stable. This strategy is development of the
strategy given in [4, 7]. Then we will give an algorithm to be used in computer calculations of this strategy.

3.1. New Strategy (SSSHS)

We let assume that (2.1) is a Hurwitz stable system and consider the following theorem before giving a step-size strategy.
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Theorem 3.1 The upper bound of local error for the Cauchy problem (2.1) is

||LEi|| ≤
1
2
||A||2βi−1

√
κ(A)e−

ti−1 ||A||
κ(A) h2

i , (3.1)

where κ(A) and βi−1 are given by (2.5) and (2.8), respectively.

Proof The local error of the Cauchy problem (2.1) is known to be

||LEi|| ≤
1
2

h2
i ||A||2||Z(τi)||2 (3.2)

in the interval [ti−1, ti) from [4, 7]. Here, Yi is the solution vector obtained from the numerical method in step i and Z(t) is the same as
defined in (2.2). If we write

||Z(τi)|| ≤
√

κ(A)e−
τi ||A||
κ(A) ||Z(ti−1)||,τi ∈ (ti−1, ti) (3.3)

in the inequality (2.6), we obtain

||LEi|| ≤
1
2

h2
i ||A||2

√
κ(A)e−

ti−1 ||A||
κ(A) ||Z(ti−1)|| (3.4)

by inequalities (3.2) and (3.3).

Strategy 1 According to the inequality (3.1), the step-size is computed with

hi ≤ (
2δL

βi−1
)

1
2

1
||A||

κ(A)−
1
4 eti−1

||A||
2κ(A) (3.5)

in the ith step of the numerical integration of Cauchy problem (2.1) such as the local error is smaller than error level δL .

Note 1 In accordance with our goal, ith step size can be chosen from the inequality (3.5). Theoretically, if the step sizes are computed by
the inequality (3.5), the error level δL are not exceeded. However, sometimes it may be observed that ||LEi||> δL in a few steps, in practice.
This situation can be caused by several reasons. Especially, the effects of floating point arithmetic can be one of the reasons (see [4, 9]). It is
well known that another reason can be the instability of the numerical method ([12]). Actually; if the value T is selected according to the
nature of the real-life problems then the local error is usually expected to be than error level δL .

3.2. New Algorithm (SSAHS)

This algorithm is development of the algorithm in [4, 7] for the Hurwitz stable systems. SSAHS calculates the step sizes given by the
inequality (3.5) and the numerical solution of the Cauchy problem (2.1) with Hurwitz stable.
SSAHS is as follows.

Algorithm 1

Step 0 (Inputs) t0, T , κ(A), b, h∗, δL, X0, A.
Step 1 Calculate β0 and ||A||.
Step 2 Calculate βk−1 and ĥk; ĥk = ( 2δL

βk−1
)

1
2 κ(A)−

1
4 1
||A||e

tk−1
||A||

2κ(A) .

Step 3 Control step size ĥk with algorithm K.
Step 4 Calculate tk = tk−1 +hk and Yk = (I +hkA)Yk−1 . Replace k by k+1 and go to step 2.

Here, K is the step size control algorithm given in [3].

Example 1 Let us calculate the step sizes and numerical solution of Cauchy problem

(
x′1
x′2

)
=

(
−7 −1
1 −5

)(
x1
x2

)
,

(
x1(0)
x2(0)

)
=

(
−1
1

)
(3.6)

on D = {(t,X) : t ∈ [0,T ], |x j− x j0| ≤ 5|} using SSALS and SSAHS. The stability parameter of the system (3.6) is κ(A) = 1,41271 . For
T = 10, h∗ = 10−12 and δL = 10−1, outputs obtained from each algorithm are seen in Table 1.

Both SSSLS and SSSHS can be used for the numerical integration of the Cauchy problem

X ′(t) = AX(t),X(t0) = X0,

where A is the Hurwitz stable matrix.

Because of the matrix A =

(
−7 −1
1 −5

)
is a Hurwitz stable matrix, it is more advantageous to be preferred SSSHS. Because, larger step

sizes are obtained by SSSHS. Therefore, the processing time is shorter. The process takes only 19 steps by SSAHS while ending with step
834 by SSALS as it can be seen from the above tables.
Table 2 and Figure 3.1 show us the number of steps and CPU times for T = 1, T = 3, T = 5, T = 7 and T = 10 with SSAHS and SSALS.
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Table 1: The values of hi and ||LE||i obtained from SSALS and SSAHS for Example 1.

Table 2: The number of steps and Cpu times for T = 1, T = 3, T = 5, T = 7 and T = 10 with SSALS and SSAHS for Example 1.

Figure 3.1: The number of steps and CPU times for values T with SSAHS and SSALS for Example 1.
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4. Applications

We have considered only real-life problems and applied SSAHS to these problems, in this section. We have used Maple procedures for
Cauchy problems given by equation (2.1) in all calculations.

4.1. Mixing problem (Brine Tank Cascade)

Let brine tanks A, B, C be given as in Figure 4.1 and V1, V2, V3 be volumes of each tank, respectively.

Figure 4.1: The brine tanks in cascade

Suppose that the water enters the tank A at rate r, drains from A to B, from B to C and from C in the same rate. Let assume that there is a
uniform salt concentration in each tank and x1(t), x2(t), x3(t) denote the amount of salt at time t.
We suppose added to tank A water containing no salt. Therefore, the amount of salt in each tank is modeled by the following differential
system

X ′(t) =

 −V1
r 0 0

V1
r −V2

r 0
0 V2

r −V3
r

X(t)

where X(t) =
(

x1(t) x2(t) x3(t)
)T (for example, [16]).

To apply SSAHS we let take V1 = 20 (gal), V2 = 40 (gal), V3 = 50 (gal), r = 10 gal/min and the initial value X0 =
(

10 0 0
)T . In this

case the differential system can written as

X ′(t) =

 −0.5 0 0
0.5 −0.25 0
0 0.25 −0.2

X(t),X(0) =

 10
0
0

 . (4.1)

Let us examine the behavior the amount of salt in each tank for three hours. Consider Cauchy problem (4.1) on D = {(t,X) : t ∈
[0,180], |x j− x j(0)| ≤ 1} and use the values of h∗ = 10−12 and δL = 10−1 . The stability parameter of the system (4.1) is κ(A) = 9.89988 .
The behavior the amount of salt in each tank have been illustrated in Figure 4.2.

Figure 4.2: Exact and numerical solutions of Cauchy problem (4.1) calculated with SSAHS for the mixing problem.

The results have been summarized in Table 3 and Figure 4.3 illustrates the values of hi and ||LEi|| calculated by SSAHS.
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Table 3: The values of hi and ||LEi|| calculated by SSAHS for mixing problem.

Figure 4.3: hi and ||LEi|| calculated by SSAHS for the mixing problem (4.1).



296 Konuralp Journal of Mathematics

4.2. Irregular Heartbeats and Lidocaine

The drug lidocaine is used to treate the illness of ventricular arrhythmia or irregular heartbeat. Let’s give the dynamic model for this treatment,
x1(t) is amount of lidocaine in the bloodstream, x2(t) is amount of lidocaine in body tissue and X(t) =

(
x1(t) x2(t)

)T .
On D = {(t,X) : t ∈ [0,120], |x j− x j0| ≤ 5}, consider following system which valids for a special body weight only(for example, [16]);

X ′(t) =
(
−0.09 0.038
0.066 −0.038

)
X(t),X(0) =

(
0

200

)
. (4.2)

Let us apply SSAHS to Cauchy problem (4.2) and examine its behavior for two hours. We let use the values of h∗ = 10−12 and δL = 10−1 .
The stability parameter of the system (4.2) is κ(A) = 17.1613. The behavior the amount of lidocaine in the bloodstream and the amount of
lidocaine in body tissue have been illustrated in Figure 4.4.

Figure 4.4: Exact and numerical solutions of Cauchy problem (4.2) calculated with SSAHS for irregular heartbeats and Lidocaine problem.

The results have been summarized in Table 4 and Figure 4.5 illustrates the values of hi and ||LEi|| calculated by SSAHS.

Table 4: The values of hi and ||LEi|| calculated by SSAHS for irregular heartbeats and lidocaine problem.

4.3. Biomass Transfer

Consider a forest having several varieties of trees. Let variables x1 , x2, x3, t be defined as biomass decayed into humus, biomass of dead
trees, biomass of living trees and time in decades, respectively. A typical biological model is

X ′(t) =

 −1 3 0
0 −3 5
0 0 −5

X(t),X(0) =

 0
0
6

 , (4.3)

where X(t) =
(

x1(t) x2(t) x3(t)
)T (for example, [16]). Let us apply SSAHS to Cauchy problem (4.3) to examine the behavior

biomass decayed into humus, biomass of dead trees and biomass of living trees for five decade. Consider Cauchy problem (4.3) on
D = {(t,X) : t ∈ [0,5], |x j− x j0| ≤ 1} and use the values of h∗ = 10−12 and δL = 10−1 . The stability parameter of the system (4.3) is
κ(A) = 19.4504 . The behavior of x1 , x2, x3 have been illustrated in Figure 4.6.
The results have been summarized in Table 5 and Figure 4.7 illustrates the values of hi and ||LEi|| calculated by SSAHS.
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Figure 4.5: hi and ||LEi|| calculated by SSAHS for the irregular heartbeats and Lidocaine problem (4.2).

Figure 4.6: Exact and numerical solutions of Cauchy problem (4.3) calculated with SSAHS for the biomass transfer problem.

Table 5: The values of hi and ||LEi|| calculated by SSAHS for biomass transfer problem.
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Figure 4.7: hi and ||LEi|| calculated by SSAHS for the biomass transfer problem (4.3).

5. Conclusions

In this work, a step size strategy named as SSSHS and an algorithm named as SSAHS were given for the system

X ′(t) = AX(t),X(t0) = X0,

where A is the Hurwitz stable matrix. SSAHS calculates the step sizes based on SSSHS and the numerical solutions. SSAHS is suitable
to write computer procedure. To calculate the step sizes and numerical solutions, the Maple procedures have been used. A numerical
example was given to compare with SSSLS (SSALS) and SSSHS (SSAHS). Both SSSLS (SSALS) and SSSHS (SSAHS) can be used for the
numerical integration of the Cauchy problem

X ′(t) = AX(t),X(t0) = X0,

where A is the Hurwitz stable matrix. However, it was seen that it is more advantageous to be preferred SSSHS (SSAHS). Because, the larger
step sizes are obtained by SSSHS (SSAHS). Therefore, the processing time is shorter. SSSHS and SSAHS were applied to real life problems
which named as mixing problem, irregular heartbeats and Lidocaine problem and biomass transfer problem.
In this study, the Euclidean norm was used as the vector norm. By using different norms, different step sizes instead of the step sizes given
by inequality (3.5) can also selected. It should be noted that an expected situation.
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